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Abstract
Objectives—Evaluating occupational exposures in population-based case-control studies often
requires exposure assessors to review each study participants' reported occupational information
job-by-job to derive exposure estimates. Although such assessments likely have underlying
decision rules, they usually lack transparency, are time-consuming and have uncertain reliability
and validity. We aimed to identify the underlying rules to enable documentation, review, and
future use of these expert-based exposure decisions.

Methods—Classification and regression trees (CART, predictions from a single tree) and
random forests (predictions from many trees) were used to identify the underlying rules from the
questionnaire responses and an expert's exposure assignments for occupational diesel exhaust
exposure for several metrics: binary exposure probability and ordinal exposure probability,
intensity, and frequency. Data were split into training (n=10,488 jobs), testing (n=2,247), and
validation (n=2,248) data sets.
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Results—The CART and random forest models' predictions agreed with 92–94% of the expert's
binary probability assignments. For ordinal probability, intensity, and frequency metrics, the two
models extracted decision rules more successfully for unexposed and highly exposed jobs (86–
90% and 57–85%, respectively) than for low or medium exposed jobs (7–71%).

Conclusions—CART and random forest models extracted decision rules and accurately
predicted an expert's exposure decisions for the majority of jobs and identified questionnaire
response patterns that would require further expert review if the rules were applied to other jobs in
the same or different study. This approach makes the exposure assessment process in case-control
studies more transparent and creates a mechanism to efficiently replicate exposure decisions in
future studies.
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INTRODUCTION
Exposure assessment of occupational risk factors in population-based studies is challenging.
These studies rely on subject-reported lifetime occupational histories, and in some studies,
on the subjects' responses to more detailed questions in job- or industry-specific modules.
Typically, one or more exposure assessors review the questionnaire responses one job at a
time to ascertain exposure – a time-consuming activity when each subject reports an average
of 6 jobs over a lifetime [1–3]. While experts may document their decision rules, these
exposure decisions are rarely explicitly published and thus provide no mechanism for others
to evaluate or reproduce these assessments. This lack of transparency faces substantial
criticism [4, 5]. As a result, alternative approaches are being implemented that use structured
model-based exposure assessments to apply expert-based decision rules based on patterns in
questionnaire responses [1, 6].

If decision rules can be successfully applied to questionnaire responses in epidemiologic
studies, it raises the question of whether we can learn from the patterns of exposure
decisions previously made by experts and apply them to other studies. We refer to these
patterns as latent or underlying decision rules, because although the experts have used rules
in making their assessments, the explicit rules that relate the questionnaire response patterns
to the exposure decision may not have been documented. These underlying decision rules
are valuable, given the time-consuming nature of the assessments and the limited number of
available experts with broad knowledge about historical occupational situations.

To determine if underlying decision rules can be identified, we applied two statistical
learning approaches designed to extract patterns and relationships between variables [7–8]
— classification and regression trees (CART) and random forests—to questionnaire
responses and the associated expert-based exposure estimates for occupational diesel
exhaust exposure in the population-based New England Bladder Cancer case-control study
[9]. Uncovering these rules has several important benefits. First, it can provide a mechanism
for replicating the decision rules for other subjects within or across studies. Second, it can
reduce the burden on the expert if the existing rules can be applied to the questionnaire
responses and then reviewed by an expert, as was shown in the development of an asthma-
specific job-exposure matrix [10]. Third, it makes the decision rules transparent, thus
providing a way for other experts to evaluate and improve the rules.
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METHODS
Model overview

We focused on tree-based statistical learning approaches because decision trees are able to
handle non-linearity, interactions, and missing values, while producing interpretable
decision rules [11–13]. Tree-based approaches predict decisions based on a sequential
splitting pattern that resembles an upside-down tree, with the `root' at the top, below which
are nodes that divide observations into branches. At the bottom are `leaves' that provide the
predicted assignment (Figure 1). The nodes are selected iteratively, with the most predictive
variable at each node used to split the observations into two branches according to that
variable. Within each branch, the splitting continues until the model meets specified
stopping criteria, such as a complexity parameter set to control the growth of the tree or a
minimum number of observations per leaf. To illustrate, we show a fictional, simple
decision tree in Figure 1 to classify 100 jobs into unexposed and exposed to diesel exhaust.
The decision rules represented by the tree are revealed by starting at the root and evaluating
the condition at each node to determine which branch to follow until a leaf (an exposure
decision) is encountered (0 = unexposed; 1 = exposed, 1st label from top). Each leaf also
reports the number of jobs assigned to the leaf (2nd label) and the proportion of jobs
accurately classified within the leaf (3rd label). This tree has four leaves, a depth of two
nodes, and uses three variables to classify jobs as exposed or unexposed. In this example,
the most predictive variable is `smelled exhaust'. If the subject neither smelled exhaust nor
worked on a construction site on a particular job, the model classified the job as unexposed
(0), which agreed with the expert's assignments for 90% of the 10 jobs in that leaf.
Conversely, if a subject smelled exhaust and was a truck driver, the model classified the job
as exposed (1), with 90% agreement with the expert's assignments for the 30 jobs in that
leaf.

Each decision tree can also be written as a series of conditions that provides a clear
interpretation of the questionnaire response patterns that lead to an exposure assessment
decision. For example, the conditions that created the second leaf from the left in Figure 1
are:

Rule: [exposure classification = 1; probability job assigned exposure by expert = 80%]

 Smelled exhaust = no

 Construction site = yes

The probability in the first line of the decision rule above is the relative frequency of the
classified jobs that agreed with the expert assignment of being exposed (exposure
classification = 1) and not smelling exhaust, but working at a construction site (32/40 in this
case).

Random forest models are based on CART but can improve the predictive performance of
CART by averaging the predictions across many simple trees [14]. In CART, the entire
training data set and all entered variables are evaluated to derive one tree. In contrast,
random forest models develop hundreds of trees, where each tree is trained on a random
subset of the observations (jobs) and on a random subset of the input (questionnaire
response) variables [15].

Study population
To examine whether or not CART and random forest models could identify an expert's
decision rules, we used 14,983 jobs reported by the subjects from the New England Bladder
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Cancer Study (n=1,213 cases, 1,418 controls) [9]. Each participant completed a lifetime
occupational history questionnaire. The occupational history had open-ended questions
asking the job title, name and location of employer, type of service or product provided, year
started and stopped, work frequency, activities and tasks, the tools and equipment, and
chemicals and materials handled. In addition, `did you ever work near diesel engines or
other types of engines' and `did you ever smell diesel exhaust or other types of engine
exhaust' were asked for each job. Answers to the occupational histories may have triggered a
module that asked more detailed diesel exhaust and non-diesel exhaust questions for 67 jobs/
industries; a module was completed for 64% of the reported jobs.

Diesel exhaust exposure estimates
The jobs were reviewed one-by-one by an industrial hygienist to assign the probability,
intensity, and frequency of diesel exhaust exposure [6]. Probability was assessed based on
the estimated proportion of workers likely exposed to diesel exhaust for the reported
information including task, job or industry, and decade, with estimated cut points of <5%
(none/negligible, category 0), 5–49% (low, 1), 50–79% (medium, 2), and ≥80% (high, 3).
Approximately 75% of the jobs were assessed as having none or negligible probability of
exposure. Intensity was assessed on a continuous scale as the estimated average level of
respirable elemental carbon (REC, μg/m3) in the workers breathing zone during tasks where
diesel exhaust occurred and categorized with cut points of <0.25 (none/incidental, category
0), 0.25 to <5 (low, 1), 5 to <20 (medium, 2), and ≥20 (high, 3) μg/m3 REC. Frequency was
assessed on a continuous scale as the estimated average number of hours per week exposed
to diesel exhaust and categorized with cut points of <0.25 (none/negligible, category 0), 0.25
to <8 hours per week (low, 1), 8 to <20 hours per week (medium, 2), and ≥20 (high, 3) hours
per week.

Identifying questions related to diesel exhaust
We reviewed the responses to the occupational histories and the job- and industry-specific
modules to identify variables that could be potential determinants of an expert's exposure
assignment. All categorical variables were re-coded into dichotomous variables. This
recoding does not change the information provided to the expert, it merely changes the form
of the variables to a more convenient modeling structure. From the free-text responses in the
occupational histories, we coded diesel exhaust information into standardized variables [6],
resulting in 51 dichotomous occupational history variables, such as `job had traffic
exposure', `job used diesel equipment', and `job start year'. We included variables for 83 2-
digit and 169 3-digit standardized industry codes [16], and 61 2-digit and 134 3-digit
standardized occupation codes [17]. From the module responses, we coded 67 dichotomous
variables identifying the administered module, one variable indicating no module was
completed, one variable indicating a module with diesel exhaust-related questions was
completed, and 154 variables derived from questions directly or indirectly related to diesel
exhaust exposure. Examples of module variables included `traffic-exposed job', `equipment
powered by diesel', and `industry = heavy construction'. Overall, 498 variables were
extracted from the occupational histories and 223 variables from the modules were
extracted.

Model development
We used the rattle package [18,19] in R [20], which interfaces with the rpart [21] and
randomForest [22] R packages to develop CART and random forests, respectively. Both
approaches were used to predict a binary probability metric (none/low=0 vs. medium/
high=1) to evaluate the models' ability to separate the jobs into exposed and unexposed
categories, so that, at a minimum, the model predictions could focus the expert review on
the more likely exposed jobs. The models were also used to predict ordinal metrics (0–3) for
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probability, intensity, and frequency of exposure, which were treated as discrete, non-
ordered categories in the model.

We randomly split the jobs into three datasets to get unbiased estimates for prediction errors
for each model: 1) a training data set comprising 70% of the data (n=10,488) to build the
models; 2) a testing data set comprising 15% of the data (n=2,247) to choose the optimal
model among candidate models within a given class of model based on the estimated
prediction error; and 3) a validation data set comprising 15% of the data (n=2,248) used to
evaluate the final model predictions. The prediction errors in the testing data set were used
to determine the final set of explanatory variables to input into the model.

Building a CART model requires the user to define tuning parameters that control the tree
size. We kept constant values for the minimum number of jobs to allow a split within a node
(20), the minimum number of jobs within a leaf (7), and the maximum node depth (30), the
default settings in the rpart package. For each metric, we examined complexity parameters
ranging from 0.0001 (most complex model) to 0.1 (simplest model). We selected the model
with the lowest relative cross-validated error using 10-fold cross-validation in the training
data set [8, 23, 24] to prevent the tree from overfitting the training data at the expense of the
fit of the testing and validation data.

Random forests models combine many trees, where each tree is built from a random sample
of the training data. The data left out in the training data when building any particular tree is
referred to as the out-of-bag sample. An average prediction error for a random forest model
can be calculated from averaging the prediction error from each of the hundreds of trees'
out-of-bag sample. We used 300 trees because the average prediction error stabilized in the
out-of-bag data after 100 trees. We used the square root of the number of input variables as
the number of variables to consider at each split when building the individual trees [24]. We
set the complexity parameter in the random forest model to the same value used for the best
identified CART model.

Model evaluation
We evaluated the predictions of the best identified CART and random forest against the
expert assignments within the validation data set based on the overall agreement with the
expert's assignments and the percent agreement for each exposure category.

We conducted two sensitivity analyses. First, we examined the agreement of the models'
predictions compared to the expert's assignments for models restricted to only occupational
history variables (including the two supplementary diesel exposure questions), rather than
all potential variables, to examine the reliability of the models' predictions when fewer or
non-specific occupational data is collected. Second, we examined the sensitivity of the
prediction reliability of the CART model (with complexity parameter = 0.01) to the size of
the training data set by systematically increasing the number of jobs used in the training set
in 5% increments to determine if we could reliably predict exposure assignments if we had
exposure decisions for only a subset of the data. For each training set size, the prediction
error was calculated based on the remaining data. We resampled 100 training sets of each
size to estimate the distribution of prediction errors.

RESULTS
Decision rules

We first present a simple CART model that classified jobs into binary probability categories
that was user-constrained to a high value (0.01) for the complexity parameter to limit the
growth of the tree (Figure 2). The tree had a prediction agreement of 93.2% in the validation
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set. The most predictive variable was `worked near or smelled exhaust', which was
constructed from the two diesel exhaust-related questions in the occupational histories.

We observed somewhat better agreement when we allowed the tree to grow larger.
Variables identified in decision rules for these more complex CART models are listed in
Supplemental Material, Table 1. Decision rules from the CART models are available by
contacting the corresponding author.

Model performance
Binary probability—For binary exposure, both the CART and random forest models
exhibited a high overall agreement with the expert's rating (92–94%) in the validation data
set (Table 1). Higher agreement was observed in jobs assessed as negligible/low exposed by
the expert (93–95%) and lower agreement was observed in jobs assessed as medium/high
exposed (79–92%). The models restricted to the occupational history variables had about
10% lower agreement in the medium/high category than the full models, but the two models
had similar agreement in the negligible/low category. The random forest and CART models
had the same agreement in the negligible/low category, but the agreement for the medium/
high category was 1–4% higher in the random forest models than the CART models.

Ordinal probability—For ordinal exposure probability, the CART and random forests
models' predictions agreed with 85–89% of the expert's assignments (Table 1). The
agreement was highest (97–98%) for jobs assessed as unexposed by the expert. For jobs
with a high rating, the agreement dropped from 85% when all variables were used to 68–
72% when restricted to occupational history variables. The agreement was 7–43% for jobs
assessed by the expert as having a low or medium rating. CART models had higher
agreement with the expert's assignments than random forest models for jobs assessed as
having low (32% versus 23%) and medium ratings (21% vs. 14%) when all variables were
used. Poorer agreement was observed in the categories with lower prevalence.

Intensity—For exposure intensity, the CART and random forests models predictions'
agreed with 87–90% of the expert's assignments (Table 2). Both CART and random forest
models predicted jobs with no exposure well (agreement 96–98%) and had moderate to
moderately high agreement with the expert ratings for jobs with low intensity (64–71%),
medium intensity (41–57%), and high intensity (60–65%).

Frequency—For exposure frequency, the CART and random forests models' predictions
agreed with 83–87% of the expert's assignments (Table 2). The predictions for jobs assessed
as having no frequency of exposure agreed well (97–98%) with the expert's assignments.
The agreement was poor to moderate for jobs rated as low (26–52%) or medium (12–39%)
frequency, and moderate for jobs rated as high frequency (57–65%). Agreement was
consistently higher for the models fit using all variables compared to using only the
occupational history variables, but no consistent pattern was observed for the random forest
models compared to the CART models.

Pattern of disagreements—The cross-tabulations of the predicted estimates for
probability, intensity, and frequency from the CART model compared to the expert's
estimates are shown in Table 2 for the validation data set. Similar patterns were observed for
these three metrics. When a disagreement occurred, the CART model tended to predict a
lower exposure rating than the expert for the two middle categories. It was rare for the
CART model to predict a medium or high exposure rating when the expert assigned an
unexposed rating (e.g., probability metric: 23 jobs) or for the CART model to predict a low
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or unexposed rating when the expert assigned a high rating (e.g., probability metric: 40
jobs). Similar patterns were observed for the random forest models (not shown).

Training set size—The CART model's prediction error generally decreased as the number
of jobs used in the training data set increased, with a plateau occurring when at least 3,750
randomly chosen jobs (25% of the nearly 15,000 jobs) were used (Figure 3). The largest
median validation error occurred when using 5% of the data for training. The variance in
prediction error was generally largest at the extreme training sample sizes (5%, 95%), where
there were few jobs to use to either train the model or to evaluate the model performance,
respectively.

DISCUSSION
We applied statistical learning methods to explain and predict an expert's exposure estimates
derived from subjects' responses to an occupational questionnaire in a case-control study of
occupational diesel exhaust exposure and bladder cancer. We found that the models had
excellent ability to reproduce the expert's assignments for a binary probability metric and for
the unexposed category for three ordinal metrics. For the ordinal metrics the models had
poor to moderately-high ability to reproduce the experts' assignments for the exposed
categories. However, the models identified the groups of questionnaire response patterns
where agreement was poor. Thus, we recommend a two-stage assignment process to apply
the resulting decision rules to unassessed jobs: initial assignment of decision rules, followed
by expert review of the jobs identified by the model as more difficult to correctly classify.

Our CART and random forest models had similar predictive ability to that of artificial neural
network (ANN) models used by Black et al. [25] to predict a dichotomous exposure for
benzene exposure. ANN models are also a statistical learning approach, but ANNs use
internal weights that can not be easily reviewed for plausibility by outside experts [10, 11].
We used, instead, tree-based methods such as CART because tree-based models provide
both a visual and easily understood set of rules underlying the expert's exposure decisions.
The extracted rules do not necessarily represent the decision process used by the expert.
Instead, the models' rules extract questionnaire response patterns that best predict an expert's
exposure decision. Black and colleagues [25] suggest that 60% of assessor's time can be
saved by application of ANN models to identify unexposed jobs. We also predict a
substantial reduction in the exposure assessment burden from using CART models to assign
exposure in subsequent studies. Exposure assessors can focus their efforts on evaluating jobs
that the tree-based methods found more difficult to classify, such as when the probability
assessment for a leaf straddles the assignment cut point (e.g., 20–80%).

While random forests generally outperform CART models in prediction [8], the CART and
random forest approaches used here performed similarly in predicting the expert's
assignments. Any slight reduction in performance of the CART models compared to the
random forest models is a tradeoff for the CART models' greatly improved interpretability,
i.e., having only one decision tree rather than hundreds. The CART models' predictive
abilities across the exposed categories might be improved further if the ordinal nature of the
exposure metrics is considered instead of the categorical treatment used in the functions
called by the R package rattle.

Overall, 66 of the 498 occupational history variables and 40 of the 223 module variables
were predictive in a CART model for at least one exposure metric (Supplemental Material,
Table 1). Coding the occupational history questions was a time-consuming, but essential
step to developing the input variables for the models and required an occupational health
professional. Without this, our potential explanatory determinants from the occupational
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histories would have been restricted to SOC, SIC, job start and stop years, and the two
supplementary questions, whereas the extracted decision rules revealed that the coded
occupational history variables were important determinants. Limiting the models to using
only the occupational history variables had little effect on the ability to reproduce the
expert's classification of jobs as unexposed, but generally decreased the ability to reproduce
the expert's classification of jobs into exposed categories. In our study, the adequate
predictive ability of the models based only on the occupational histories likely reflects the
use of the two engine/exhaust-related questions into the occupational histories, because the
constructed variable derived from these two study-specific questions generally appeared to
be the most predictive variable in all models. These two questions represent, in part, the
subjects' self-assessment of exposure. However, these questions related to all types of
engines and exhausts and not solely diesel exhaust and thus the self-assessment was not a
perfect predictor of exposure status. The classification trees revealed that the expert's review
considered whether there was additional supporting information for diesel exhaust sources in
the responses. The increased ability of the models when using all variables (the occupational
history and modules) to replicate the expert's assignments provides support for using
modules in population-based studies to capture important within-job differences, but using
modules can require a substantial time burden on the study participant and a substantial
study cost to the interview and exposure assessment. The extracted decision rules, however,
have identified the most important diesel-related questions, which can be used to simplify
subsequent questionnaires for similar populations. This may reduce participant burden
without losing much in the ability to reliably assign exposures using expert judgment.

Our sensitivity analyses revealed only small differences in performance between models.
For example, overall agreement improved only 1% for the binary probability metric when
the complexity parameter moved from 0.01 to 0.0006, although the number of rules needed
to explain the model increased from 11 to 55, indicating that even a simple model was able
to predict the binary exposure status well. Similarly, when we varied the number of jobs
used in the training data set, the prediction error plateaued for all metrics when at least 25%
(3,750 jobs) of the jobs was used. This suggests that an expert may be able to assess a
random subset of the jobs after which CART models can be developed to provide reliable
exposure predictions for the remaining jobs. The required size may, however, vary based on
the number of jobs, prevalence of exposure, and the predictive ability of the model.
Additional sensitivity analyses could be used to evaluate the appropriate minima for the
number of observations per node and leaf. Some important determinants may not be
captured using CART models when few subjects answered a particular question or when the
minima are set too high. Thus, the determinants extracted here reflect common, not rare,
exposure scenarios. Our focus on specificity rather than sensitivity in capturing determinants
is appropriate because high specificity generally minimizes the expected attenuation in
exposure-response associations when exposure prevalence is low [26].

The predictions of CART and random forest models are likely only as valid as the expert's
exposure assessment [27], although the models could reduce some error from inconsistently
applied rules. Therefore, our measures of agreement do not provide reassurance that
exposures are classified correctly and provide only insights into reliability of the estimates if
a CART model was used to assign exposures instead of one-by-one expert assessment.
However, because no gold standards exist, extracting these rules provides an important first
step to opening the black box to provide transparent decision rules so that other exposure
assessors can review and revise the rules and thereby improve the quality of the assessments.
Review of the models can be used to recognize discrepancies within the expert's estimates
and to determine whether the decision rules could be improved by identifying additional
explanatory variables, whether the condition is so rare that it cannot be captured in the
model, or whether the expert's estimates should be improved [28]. After these improvements
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are made from the internal and external reviews, new models can be developed to improve
upon previous models.

Extrapolation outside of the scope of the study should be done carefully and may require
important modifications to secular and geographic trends in exposure. Diesel exhaust
exposure may also represent a best-case scenario. Diesel exhaust exposure is relatively
common compared with other exposure agents often evaluated within population-based
case-control studies, and it may be easier for subjects to identify and recall due to familiarity
of diesel exhaust in the general population. In addition, the job- and industry-specific
modules used in this study were specifically developed to collect information on diesel
exhaust exposure. Our study provides a first step in demonstrating that CART models are
able to extract underlying patterns between questionnaire responses and an expert's ratings
for an agent that had been the focus of the questionnaires and had a reasonable prevalence
rate. Future evaluations are needed to examine the utility of these models to extract decision
rules for other agents that have lower exposure prevalences and that were not the primary
focus. In addition, future evaluations are needed to determine whether similar decision rules
would be extracted from exposure estimates provided by multiple independent or panels of
experts.

Statistical learning approaches, such as CART and random forest models, offer great
promise for explaining and predicting expert-based exposure estimates. Our approach was
specific to extracting decision rules from previously made exposure assessments and can
only be used in settings that are similar to those of where the decision rules were derived.
For evaluating new exposures or new settings, we encourage exposure assessors to develop
deterministic rules based on the questionnaire responses and program transparent
assessments [1, 6]. The statistical learning approaches used here are straightforward to apply
using the free GUI (rattle) within R, making these approaches accessible. The resulting
models had excellent specificity allowing expert assessment of unexposed jobs to be
reproduced with a great level of fidelity. The sensitivity was generally moderate, but,
nonetheless, could reduce review time, especially if the models' estimates of the probability
of belonging to an exposure category were used to triage jobs for further expert review. We
encourage other researchers to apply these types of models to expert-based exposure
assessments to describe the underlying decision rules. This will provide important insights
into the rationales for exposure decisions, identify where exposure decisions may be
inconsistent, and identify the most important information used by the expert to make an
exposure decision. Building this body of knowledge will allow us to refine questionnaires to
reduce subject burden and more rapidly provide exposure estimates in subsequent studies to
test the reproducibility of findings across populations.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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What this paper adds

• Expert-based exposure assessment of occupational risk factors in population-
based case-control studies is challenging, time-consuming, and is criticized for
its lack of transparency. Evaluating exposures in these studies often requires
exposure assessors to review each study participants' reported occupational
information job-by-job to derive exposure estimates.

• The structured format of occupational history and job-specific modules in
questionnaires, however, makes it possible to identify underlying expert
exposure decision rules.

• The present study is the first to use the statistical learning techniques of
classification and regression trees and random forests to identify the underlying
decision rules of an exposure assessor.

• The good agreement between the model predictions and one-by-one expert
evaluations provides support for extracting transparent, identifiable decision
rules from previously made expert assessments. This approach can be used to
focus expert review efforts on questionnaire response patterns that had poorer
prediction replication.
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Figure 1.
Illustrative decision tree for the classification of 100 jobs by diesel exhaust exposure. The
terminal nodes at the bottom of the tree are leaves with labels for exposure classification (0
= unexposed, 1 = exposed), number of jobs in leaf, and percent agreement of tree-based
classifications with exposure status assigned by an expert.
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Figure 2.
CART decision tree classifying jobs into exposed (0) and unexposed (1) categories. The
labels in each leaf, in order, are the predicted exposure category, the number of jobs in the
leaf, and the percent of predictions in the leaf that agree with the expert estimate. Variables
from the occupational history are designated OH; variables from the modules are designated
M.
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Figure 3.
CART prediction errors in the validation data set as the size of the training set varies for four
exposure metrics: binary exposure probability, ordinal probability, intensity, and frequency
of exposure. Each boxplot is based on 100 randomly selected training sets to estimate the
model using all variables (complexity parameter = 0.01), with the prediction error estimated
on the validation set.
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Table 1

Proportion of exposure predictions from CART and random forest models that agreed with the expert
exposure estimate in the validation data set (n=2,248).

Expert Exposure Agreement (%)

Metric Number of Jobs CART, OH variables CART, OH &
module variables

Random Forest, OH
variables

Random Forest, OH
& module variables

Probability, Binary

Negligible/Low 1887 93 95 93 95

Medium/High 358 79 89 80 92

Overall 2245 92 94 92 94

Probability, Ordinal

Negligible 1705 97 97 98 98

Low 182 32 43 23 32

Medium 73 7 21 8 14

High 285 68 85 72 85

Overall 2245 85 89 85 89

Intensity

None
1708

a 98 97 96 97

Low 394 64 68 67 71

Medium 86 48 56 41 57

High 57 61 65 61 60

Overall 2245 87 89 88 90

Frequency

None
1757

a 97 97 98 98

Low 209 32 52 26 34

Medium 141 12 39 13 35

High 141 57 63 59 65

Overall
2248 

b 83 87 84 86

CART, classification and regression tree; OH, occupational history.

a
The number of unexposed jobs based on intensity and frequency exceeds the number of unexposed jobs based on the probability metric. This

occurred because the estimated level of exposure intensity and frequency for some jobs did not exceed the minimum threshold (<0.25 μg m−3 REC
and < 0.25 hours per week, respectively), even though a diesel exposure source was identified.

b
There were 3 additional observations for the frequency metric; these observations were excluded from the probability and intensity analyses

because for those metrics an `unknown' had been assigned.
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Table 2

Cross-tabulation of the CART model-predicted assignments versus expert assignments and proportion of
predicted estimates that agreed with expert assignments in the validation data set (n=2,248).

Expert CART Model
a

Exposure Metric Predicted Estimate, Number of Jobs Agreement (%)

None Low Medium High

Probability

Negligible 1660 22 4 19 97

Low 87 78 0 17 43

Medium 32 11 15 15 21

High 34 6 3 242 85

Intensity

None 1651 52 2 3 97

Low 115 269 8 2 68

Medium 13 21 48 4 56

High 15 6 0 36 65

Frequency

None 1700 32 15 10 97

Low 85 109 10 5 52

Medium 53 12 55 21 39

High 25 19 8 89 63

a
All variables offered in models.
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