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Abstract
One can interpret fragmentation spectra stemming from peptides in mass spectrometry-based
proteomics experiments using so called database search engines. Frequently, one also runs post-
processors such as Percolator to assess the confidence, infer unique peptides and increase the
number of identifications. A recent search engine, MS-GF+, has shown promising results, due to a
new and efficient scoring algorithm. However, MS-GF+ provides few statistical estimates about
the peptide-spectrum matches, hence limiting the biological interpretation. Here, we enabled
Percolator-processing for MS-GF+ output, and observed an increased number of identified
peptides for a wide variety of datasets. In addition, Percolator directly reports p values and false
discovery rate estimates, such as q values and posterior error probabilities, for peptide-spectrum
matches, peptides and proteins, functions that are useful for the whole proteomics community.

Introduction
A critical component of mass spectrometry-based proteomics is the database searching,
where search engines are used to match fragmentation spectra to theoretical spectra of
peptides in a database.1 While the most common examples of the search engines are
Sequest,2 Mascot3 and X!Tandem,4 a newer alternative, named MS-GF+,5,6 is discussed
here. These search engines all produce peptide-spectrum matches (PSMs) from which the
researcher can infer the peptides and the proteins present in the analyzed sample. The
biological interpretation is typically confounded by the relatively large proportion of spectra
that are matched incorrectly by the search engines, i.e. matched to peptides that were not
actually in the mass spectrometer and undergoing fragmentation. Such mismatching is likely
the result of various effects, such as unusual peptide fragmentation,7 unaccounted-for post-
translation modifications (PTMs)8,9 and incomplete databases.10

To help discriminate between correct and incorrect PSMs, the search engines assign scores
to each PSM, as a measure of how well the peptide matches the spectrum. The scoring
algorithms often make up the most fundamental difference between search engines, and
although the scores do not necessarily have a direct probabilistic interpretation, they indicate
the quality of the match. In the end, the researcher typically chooses a score threshold
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associated with a certain confidence level, above which the PSMs are accepted as
predominantly correct matches. Regardless of how we measure the confidence level, the
actual discrimination is performed by the scores, hence the various search engines will
produce different sets, and numbers, of PSMs for a certain confidence level.

The standard procedure for inferring identifications from high-throughput experiments is to
control the false discovery rate (FDR).11–13 This is the expected fraction of incorrect
identifications among the set of identifications accepted as correct. Here, the FDR is
represented by the q value, the minimal FDR required to call an identification significant,
which has the desirable property of being monotonically increasing with the number of
identifications.13,14 In the field of mass spectrometry-based proteomics, the target-decoy
analysis15 is arguably the most commonly used approach for estimating the q value. The
method requires matching the spectra against a shuffled or reversed decoy database, in
addition to the target database of the studied organism. The matches to the decoy database
are true negatives and serve to model the incorrect matches to the target database.

An advantage of a properly performed target-decoy analysis is that the results from different
search engines can be compared directly, with the FDR as the common denominator.
Furthermore, as the decoy PSMs are assumed to be good models of incorrect target PSMs,
they can be used to train a machine learning algorithm to produce scores to improve the
separation between correct and incorrect target PSMs. This idea is embodied in Percolator, a
post-processing tool that accepts target and decoy PSMs from a search engine, and trains a
linear support vector machine (SVM) to improve the classification of correct target PSMs.16

Percolator considers a set of features that describes each PSM, and combines these into a
new score, tailored for the dataset at hand. This score routinely increases the number of
confident identifications, as the typical original search engine scores fail to address the
specific characteristics of each individual experiment.

So far, the improvements made by Percolator have been seen for the classical search engines
Sequest, Mascot and X!Tandem, as their inherent, general, scoring scheme is not fully
adjusted for each individual dataset. However, the recently developed MS-GF+ has been
demonstrated to perform well for a wide range of different datasets, due to its highly
sophisticated scoring algorithm. MS-GF+ uses a dynamic programming algorithm to match
all peptides, not restricted to the ones in the searched database, against each spectrum. The
rendered score distribution can then be utilized to calibrate the scoring function for each
individual spectrum.5 With this information, the score assigned to the best matching peptide
in the searched database becomes more interpretable.

However, despite the impressive performance of MS-GF+, a closer look at the scores of
incorrect PSMs reveals some room for improvement. Figure 1 shows the relationship
between scores of the same set of spectra searched against two different decoy databases.
Low scoring PSMs are clearly correlated between the two runs. Ideally, the scores of these
pairs of incorrect PSMs should not be correlated, to facilitate the discrimination of correct
PSMs. In practice, however, most search engines exhibit this type of correlation as a result
of confounding features among the spectra. An example of such a confounding variable, that
influences the scores without providing evidence for the match quality, is the number of
peptide candidates to a spectrum.17 A solution is offered by post-processors that can
decrease the influences of confounding variables by accounting for them while learning how
to optimally separate between correct and incorrect matches.18

Here, we present a joint effort to combine the sophisticated scoring algorithm of MS-GF+
and the machine learning of Percolator. The new tool, denoted by MS-GF+Percolator and
implemented as a converter of the output format from MS-GF+ to the input format for
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Percolator, increases the number of identifications over MS-GF+ alone. In addition, post-
processing by Percolator enables direct statistical interpretation of the results, as q values,
posterior error probabilities (PEP, also known as “local FDR”) and p values are reported for
PSMs, unique peptides, and proteins. Previously, these estimates required additional
analyses subsequent to MS-GF+. In this study, we first validate the statistical assumptions
made by Percolator, and then present the observed improvements of MS-GF+Percolator for
a wide variety of datasets.

Experimental procedures
Updates to MS-GF+

Percolator’s performance relies on characteristics, called features, of the PSMs. The features
help to tell correct from incorrect matches. By default, MS-GF+ outputs a set of scores,
called RawScore and DeNovoScore, as well as the statistical estimates E values and spectral
E values, for each PSM. RawScore is the match quality score of MS-GF+, and
DeNovoScore is the maximum possible RawScore to the given spectrum, considering all
possible peptide sequences.

To further facilitate Percolator’s discriminative performance, MS-GF+ was amended with an
option (-addFeatures) to output an additional set of features. These values include the
fragmentation spectrum ion current, and the fractions of it that can be explained by
theoretical fragment ions from the peptide sequence. Moreover, the number of theoretical
fragment ions that were matched to fragment peaks is also reported, as well as the average
mass errors and standard deviation of the top seven fragment peaks.

In Percolator, the default MS-GF+ output and these additional features make up the basis for
about half of the features used for learning and discrimination. The other half of the features
comes from the peptide mass, charge state and other quantities relating to the identified
peptide. The feature generation is explained in more detail in the Results section.

The latest version of MS-GF+ can be obtained freely for research and non-profit institutions
from http://proteomics.ucsd.edu/Software/MSGFPlus.html.

Percolator and file format converter
To enable Percolator to post-process results from MS-GF+, its mzIdentML format19 output
is converted to the input file format (pin) of Percolator. A converter was implemented in C+
+ and added to the Percolator package, which is freely available online at http://per-
colator.com/. The converter uses the CodeSynthesis XSD library (http://
www.codesynthesis.com/products/xsd/) to parse and write the two formats, both written in
the Extensible Markup Language (XML).

The converter, named msgf2pin, takes as input a target and a decoy mzIdentML format file
from MS-GF+ run with the addFeatures option set to 1. The generated pin-file contains the
feature information for each PSM, and can be directly interpreted and post-processed by
Percolator.

Experimental data
To evaluate the MS-GF+Percolator algorithm, we analyzed previously published mass
spectrometry-based proteomics data from one purified protein sample and four complex
samples. The purified sample consisted of Orbitrap data from mixture 7 of the ISB18
dataset, obtained online at https://regis-web.systemsbiology.net/PublicDatasets/.20
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As for complex samples, first, a human dataset of LTQ-Orbitrap spectra from a prostate
cancer cell line was used.21 Second, LTQ-Orbitrap spectra from mouse brain tissue
published by Huttlin et al.22 were used as an example of phosphorylation enriched datasets.
Third, data of human peripheral blood mononuclear cells from the Proteome Informatics
Research Group (iPRG) 2013 study was used as an example of data with high accuracy
fragmentation spectra.23 The sample is labeled with 6plex Tandem mass tags (TMT)24 for
quantification, and has been used to benchmark a variety of tools and approaches. All the
above samples were digested with trypsin. Fourth, yeast datasets digested with various
enzymes (trypsin, Lys-C, Arg-C, Glu-C and Asp-N) published by Swaney et al.25 were used
to evaluate MS-GF+Percolator’s applicability to different cleavage specificities. From the
study, the CID spectra were used here.

Database searching
For all datasets, we used MS-GF+ version 9540, followed by post-processing by Percolator,
version 2.05. In addition, we used the search engines Crux26 version 1.40 in the sequest-
search mode, and X!Tandem4 version Sledgehammer 2013.09.01.1.

The ISB18 mix spectra, downloaded in mzXML file format, were searched against a
database of the 18 purified proteins as well as common contaminants. Appended to the
database was a larger (25x) proportion of shuffled sequences, as entrapment sequences for
incorrect matches.27 In addition to the target database, a decoy database containing the
reversed target database sequences was searched separately to estimate the statistical
confidence. When a second decoy database was used, Mimic (https://github.com/percolator/
mimic) was used to shuffle the amino acid sequences while retaining the same level of
homology as in the target databases. We used a ± 10 ppm mass tolerance window, with no
enzyme specificity.

All remaining datasets were converted from their native raw file format to the mgf, ms2 or
mzXML file format using msconvert of ProteoWizard version 2.2 to 3.0.28 Subsequently,
they were searched against Ensembl29 (release 68) databases of the appropriate organism
and, separately, against the corresponding reversed decoy databases. A ± 10 ppm precursor
mass tolerance was used in all cases, and appropriate settings for activation technique and
fragmentation spectrum mass accuracy. The enzymatic parameters were set to allow one
non-enzymatic termini for each peptide, for the respective enzyme. Crux was run in non-
enzymatic mode for enzymes other than trypsin. Cysteine carbamidomethylation was
accounted for by a fixed modification of 57.02 u on C, and methionine oxidation by a
variable modification of 15.99 u on M. For the phosphorylated mouse dataset, an additional
79.96 u mass shift was allowed on amino acids S, T and Y. In the TMT labeled sample, a
fixed modification of 229.16 u on the N-terminal and K was used.

The target and decoy outputs from MS-GF+ were converted from the mzIdentML format to
the Percolator-in format by the program msgf2pin supplied in Percolator’s converter
package. Subsequent Percolator processes were run with peptide termini-features for the
respective enzyme, and using the MS-GF+ E value as the initial feature direction for MS-GF
+. The same analysis was done for the Crux and X!Tandem output, but converting the file
format using the programs sqt2pin and tandem2pin, also supplied in Percolator’s converter
package.

To estimate the confidence of the identified unique peptides, the canonical amino acid
sequence was considered, disregarding charge states and PTMs. As MS-GF+ reports only
confidence estimates for PSMs, proper comparisons to MS-GF+Percolator on the level of
unique peptides require an additional “Weed-out then estimate” (WOTE) procedure,
described and evaluated previously.30 This includes discarding all but the best scoring
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duplicate PSMs matching to a given target or decoy peptide, followed by statistical
evaluation of the remaining unique peptides. Here, a target-decoy confidence estimation was
performed using the MS-GF+ E values, by the software qvality31 downloaded on April 23,
2013. Percolator performs a target-decoy analysis for unique peptides by default.

Results
Selection of Percolator features

For learning, Percolator obtains a set of features from the MS-GF+ output. These features
are listed and described in Table 1. However, classification and prediction using machine
learning algorithms always include risks of overfitting and biased learning. Percolator uses a
nested cross-validation scheme to avoid overfitting,32 but its statistical accuracy still relies
on the assumption that matches to the decoy database are good models of incorrect target
matches. This assumption must hold for all features used by Percolator during learning.
Otherwise, the algorithm would easily discriminate between matches from the two
databases, but not necessarily between correct and incorrect target matches.

To validate that the decoy model is suitable for all features used by Percolator on the MS-
GF+ output, a previously described semi-labeled calibration protocol was applied using the
ISB18 dataset.27 Accordingly, only the incorrect matches of spectra from a purified mixtures
of known proteins were analyzed. With this dataset, such incorrect matches are easily
identified as the PSMs that match parts of the database that are not made up of sequences
from the 18 ISB proteins (or common contaminants). This portion of the database is larger,
and made up of shuffled sequences, or proteins from an evolutionary distant organism.
Furthermore, p values reported for incorrect PSMs should be uniformly distributed,
according to their definition. Percolator assigns p values to PSMs based on their final
Percolator score. Hence, we isolated the surely incorrect PSMs of the ISB18 mix sample,
and plotted their p values against a rank from 0 to 1 to illustrate their uniformity, see Figure
2. Based on this quantile-quantile plot we can see the deviation of the p values from
uniformity, i.e. biases in the Percolator output, as p values diverging from the x = y diagonal.

Performance of MS-GF+Percolator
In the previous section, we validated the accuracy of the statistical estimates reported from
MS-GF+Percolator. With this confirmation, the performance of the algorithm can be
benchmarked more safely against other approaches for analyzing shotgun proteomics data.
To measure the performance, we compared the numbers of confidently identified unique
peptides from the different algorithms. The main benefit of using unique peptides instead of
PSMs is that they represent a biologically more relevant entity. Note, however, that the
number of unique peptides is lower than the number of PSMs, as many PSMs can map to a
single peptide sequence.30 We tested MS-GF+Percolator on a wide range of datasets, and
compared it to MS-GF+ alone, as well as to Crux+Percolator and X!Tandem+Percolator.
Crux is an open source alternative to Sequest, that represents the traditional method for
running Percolator. X!Tandem is also an open source search engine that have been
associated with Percolator previously.33,34

Figure 3 (A) shows the performance of MS-GF+Percolator on the prostate cancer cell line
dataset, measured by the number of identified peptides at different peptide level q value
thresholds. The complete analysis took less than an hour on a desktop computer with an
Intel Core 2 Quad 2.66 GHz processor, about half of which is the Percolator analysis. At a
peptide level q value of 0.01, the increase of MS-GF+Percolator corresponds to 5.1% more
peptides over the native MS-GF+. Similar results were seen for a highly phosphorylated
mouse dataset (Figure 3 (B), 5.0% increase), and the iPRG data (Figure 3 (C), 7.1%
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increase). The yeast sample digested with five different enzymes showed that Percolator’s
performance varies substantially depending on the enzyme (Figure 4 A–E). The
improvements in the number of confidently identified unique peptides over native MS-GF+
were 6.4%, 12.9%, 16.2%, 7.5% and 5.1% for Arg-C, Asp-N, Glu-C, Lys-C and trypsin,
respectively. The results suggest that Percolator increases the number of confident
identifications from MS-GF+ on a wide variety of data, especially for enzymes other than
trypsin. As discussed in more detail later, a likely explanation is that the scoring algorithm
of MS-GF+ is better optimized for tryptic peptides.

For completeness we also compared the performance of the different methods on the PSM
level. As expected, the same trends as for unique peptides were seen for the number of
confidently identified PSMs. At a PSM level q value of 0.01, MS-GF+ and MS-GF
+Percolator identified 22,712 and 23,877 PSMs, respectively, for the prostate cancer set.
The corresponding numbers for the phosphorylated mouse dataset were 58,734 and 59,235
PSMs and for the iPRG dataset 65,260 and 70,303 PSMs. In the yeast samples digested with
multiple enzymes, the following numbers of PSMs were identified with MS-GF+ and MS-
GF+Percolator, respectively: Arg-C; 23,140 and 24,947, Asp-N; 59,456 and 67,631, Glu-C;
19,279 and 23,037, Lys-C; 65,045 and 68,870, trypsin; 123,049 and 129,833.

Feature analysis
To estimate the importance of the different groups of features for MS-GF+Percolator, we
repeatedly removed groups of related features from the analysis. The features were grouped
based on whether they described MS-GF+ raw scores, E values (as well as these first two
groups combined), descriptions of the fragment ions, the precursor ions, the peptide or the
enzymatic digestion. By removing one of these groups at the time, the contribution of the
corresponding features can be inferred from the change in MS-GF+Percolator performance,
computed by counting the number of confident unique peptides at a q value of 1%.

The human prostate cancer and the iPRG data are examples of datasets with low and high
accuracy fragmentation spectra, respectively. Table 2 and Table 3 show the results of the
feature analyses for these datasets. Included in the tables are the corresponding numbers for
Crux. The features used by Percolator for Crux differ somewhat from those in MS-GF
+Percolator, but they generally represent the same types of information and can, to some
extent, be grouped similarly.

Discussion
This study shows that post-processing PSMs obtained from MS-GF+ by Percolator increases
the number of confidently identified peptides. Using a sample of known protein content, p
values assigned to absent peptides were demonstrated to be uniformly distributed. We
interpret the uniformity as an indication of that the statistical estimates from MS-GF
+Percolator are accurate. In turn, this is a consequence of that the features used for training
the classifier do not behave differently between the target and decoy databases, but rather
between correct and incorrect PSMs.

Users of MS-GF+Percolator can expect an increased number of confidently identified
peptides compared to the native MS-GF+. In agreement with previous studies,16 the
improvements from Percolator are generally more pronounced for enzymes alternative to
trypsin. Most likely, scoring algorithms tend to be designed and optimized with an emphasis
on trypsin, while leaving some room for improvement for other enzymes. Percolator, on the
other hand, attempts to optimally weigh the enzymatic cleavage features for the dataset at
hand, needing only the cleavage specificity rules of the enzyme. Thus, Percolator works to
adjust the imperfections of the scoring function of the search engine.
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Regardless of the performance improvements over MS-GF+ alone, however, perhaps the
most attractive attribute of MS-GF+Percolator is its rigorous statistical estimates. Percolator
directly outputs p values, q values and posterior error probabilities on the level of PSMs,
peptides and proteins (using the inbuilt Fido algorithm35). This greatly facilitates the
downstream interpretation of the results. With MS-GF+Percolator, the versatility and
accuracy of MS-GF+ are made more accessible to proteomics researchers.

The feature analysis clearly shows that the removal of some groups of features have a large
impact on the performance of MS-GF+Percolator, while the removal of other groups is less
detrimental. However, there are clear differences between the two datasets. The fragment
ion features, for example, have a more positive effect for high accuracy than low accuracy
fragment data, as expected. Despite these differences, the combination of RawScores and E
values generally tends to be the most informative group of features. Still, the feature analysis
highlights that correct and incorrect identifications can be discriminated without the use of
any search engine scores, although this becomes harder with low accuracy fragmentation
spectra. Note, however, that the search engines scores are still taken into account implicitly
as they were used to rank the PSMs to identify the top scoring match for each spectrum.

The feature analysis also shows some differences between choosing Sequest (in its Crux
implementation) or MS-GF+ as the search engine. The most striking difference, with respect
to the influence of the features, is the large contribution from the enzymatic cleavage
features in Crux+Percolator. An explanation is that in MS-GF+, cleavage information from
the C and N terminal ends of the peptide sequence is incorporated into the RawScore, which
is not done in Sequest’s cross correlation score (XCorr). The results also show that removing
the raw scores and E values leads to a large performance decrease when removed both at the
same time, however when removing the groups individually only a smaller performance
decrease is observed. The reason is that these features are dependent, and encode almost the
same information.

Critical evaluation
In this study, the performance of MS-GF+Percolator was compared to that of MS-GF+,
Crux+Percolator and X!Tandem+Percolator. In contrast, many published methods for
analyzing proteomics experiments are benchmarked against a wider set of algorithms. In our
case, however, the message is simple; to demonstrate how Percolator improves the results of
MS-GF+. We apply the principle of ceteris paribus, meaning to only alter one variable at the
time. Showing the performance of MS-GF+ before and after the Percolator post-processing
gives a clear picture of the gain from using Percolator. The comparisons to Crux+Percolator
are motivated by that Crux, and Sequest, traditionally has been the default search engines for
the stand alone version of Percolator, similarly, X!Tandem has been increasingly associated
with Percolator.

In the performance tests we have focused on the number of identified unique peptides, in
contrast to the number of PSMs. Like many have done previously,30,36,37 we would like to
emphasize the distinction between PSMs and unique peptides. In short, the statistical
confidence estimated for a PSM is not valid for the corresponding peptide. The reason is that
the hypotheses underlying the confidence measures are different in the two cases. The null
hypothesis, for instance, could be formulated for a PSM as; “no appropriate match was
found for the spectrum”, but differently for a peptide; “no evidence was found for the
peptide”. As a consequence, PSM and peptide FDRs differ, and can not be directly
compared. We argue that the peptide level accuracy measurements have a more direct
interpretation to the end user for most biological applications.
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Although Percolator is flexible and accepts virtually any feature, we implemented a limited
number of features in this study. A more rigorous attempt to produce and test the
performance of different features could boost the performance of MS-GF+Percolator further,
and compose an interesting direction for the future. Some promising candidates could be
predictions of the iso-electric points (pI) and retention times of peptides, as well as features
describing the potential co-fragmentation of multiple peptides species.
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Figure 1. The covariation of two MS-GF+ decoy searches
MS-GF+ was run against a reversed decoy database (Decoy 1) and a shuffled decoy
database (Decoy 2) generated with Mimic. For each PSM, the negative logarithm of the E
value reported by MS-GF+ was plotted.
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Figure 2. Statistical calibration of null p values from MS-GF+Percolator
Using only incorrect matches from the Orbitrap spectra of ISB18 mix 7, p values were
estimated from the Percolator score, after post-processing the MS-GF+ results. The y axis
represents the p values reported by Percolator, and the x axis a uniform rank from 0 to 1.
The black line marks the x = y diagonal, and the gray dashed lines x = 2y and x = y/2. A
calculated Kolomogorov-Smirnov test D value of 0.014 between the reported and ideal p
values indicates a small difference between the two distributions.
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Figure 3. MS-GF+Percolator performance on tryptic datasets
The numbers of accepted unique peptides are plotted as a function of the peptide level q
value threshold. Panel (A) shows the results for the human prostate cancer data, (B) the
phosphorylated mouse data and (C) the TMT labeled iPRG data. Peptide level confidence
estimates from MS-GF+ were obtained by using qvality as described in Experimental
procedures.
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Figure 4. The performance of MS-GF+Percolator on the yeast data digested by multiple enzymes
The number of accepted unique peptides for different peptide level q values thresholds, for
several different enzymes. The enzymes used for digestions are (A) Arg-C, (B) Asp-N, (C)
Glu-C, (D) Lys-C and (E) trypsin.) Peptide level confidence estimates from MS-GF+ were
obtained by using qvality as described in Experimental procedures.
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Table 1
MS-GF+ features in Percolator

List of the features from MS-GF+ used by Percolator.

Feature name Feature description

RawScore Raw match score of MS-GF+

DeNovoScore Maximum possible raw match score to this spectrum

ScoreRatio RawScore divided by DeNovoScore

Energy Difference between RawScore and DeNovoScore

lnEValue Negative MS-GF+ E Value, logged

lnSpecEValue Negative MS-GF+ Spectral E Value, logged

IsotopeError Number of additional neutrons in peptide

lnExplainedIonCurrent Summed intensity of identified fragment ions, divided by that of all fragment ions, logged

lnNTermIonCurrentRatio Summed intensity of identified N-terminal fragments, divided by that of all identified fragments, logged

lnCTermIonCurrectRatio Summed intensity of identified N-terminal fragments, divided by that of all identified fragments, logged

lnMS2IonCurrent Summed intensity of all observed fragment ions, logged

Mass Peptide mass

PepLen Peptide length

dM Difference between theoretical and experimental mass

absdM Absolute value of the difference between theoretical and experimental mass

MeanErrorTop7 Mean of mass errors of the seven fragment ion peaks with the highest intensities

sqMeanErrorTop7 Squared MeanErrorTop7

StdevErrorTop7 Standard deviation of mass errors of the seven fragment ion peaks with the highest intensities

ChargeN Boolean, peptide charge is N

enzN Boolean, N-terminal agrees with enzymatic cleavage rules

enzC Boolean, C-terminal agrees with enzymatic cleavage rules

enzInt Number of internal cleavage sites
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Table 2
Feature analysis for human prostate data

The performance of Percolator using reduced sets of features, on a dataset with low accuracy fragmentation
spectra. The performance is estimated by counting the number of unique peptides with a peptide level q value
lower than or equal to 0.01. The first number represents the number of identified peptides, for MS-GF
+Percolator or Crux+Percolator. The number in parenthesis shows the corresponding percental change in
performance relative the full feature set, for the respective approach.

Removed features MS-GF+Percolator Crux+Percolator

None 10791 9123

RawScores: RawScore, DeNovoScore, ScoreRatio, Energy 10684 (−0.99%)

E values: lnEValue, lnSpecEValue 10677 (−1.06%)

Scores: RawScores and E values 5260 (−51.26%) 7693 (−15.67%)

Precursor: IsotopeError, dM, absdM 10709 (−0.76%) 8992 (−1.44%)

Fragment ions: lnExplainedIonCurrentRatio, lnNTermIonCurrentRatio,
lnCTermIonCurrentRatio, lnMS2IonCurrentRatio, MeanErrorTop7, sqMeanErrorTop7,
StdevErrorTop7

10749 (−0.39%) 9096 (−0.30%)

Peptide: Mass, PepLen, ChargeN 10725 (−0.61%) 9069 (−0.59%)

Enzyme: enzN, enzC, enzInt 10646 (−1.34%) 7745 (−15.10%)
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Table 3
Feature analysis for iPRG data

The performance of Percolator using reduced sets of features, on a dataset with high accuracy fragmentation
spectra. The performance is estimated by counting the number of unique peptides with a peptide level q value
lower than or equal to 0.01. The first number represents the number of identified peptides, for MS-GF
+Percolator or Crux+Percolator. The number in parenthesis shows the corresponding percental change in
performance relative the full feature set, for the respective approach.

Removed features MS-GF+Percolator Crux+Percolator

None 38813 35587

RawScores: RawScore, DeNovoScore, ScoreRatio, Energy 38050 (−1.97%)

E values: lnEValue, lnSpecEValue 35363 (−8.89%)

Scores: RawScores and E values 27225 (−29.86%) 4131 (−88.39%)

Precursor: IsotopeError, dM, absdM 38737 (−0.20%) 35421 (−0.47%)

Fragment ions: lnExplainedIonCurrentRatio, lnNTermIonCurrentRatio,
lnCTermIonCurrentRatio, lnMS2IonCurrentRatio, MeanErrorTop7, sqMeanErrorTop7,
StdevErrorTop7

38043 (−1.98%) 35478 (−0.31%)

Peptide: Mass, PepLen, ChargeN 38372 (−1.14%) 35571 (−0.04%)

Enzyme: enzN, enzC, enzInt 38246 (−1.46%) 31831 (−10.55%)
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