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Abstract
PECAM-1 (also known as CD31) is a cellular adhesion and signaling receptor comprised of six
extracellular immunoglobulin (Ig) - like homology domains, a short transmembrane domain, and a
118 amino acid cytoplasmic domain that becomes serine and tyrosine phosphorylated upon
cellular activation. PECAM-1 expression is restricted to blood and vascular cells. In circulating
platelets and leukocytes, PECAM-1 functions largely as an inhibitory receptor that, via regulated
sequential phosphorylation of its cytoplasmic domain, limits cellular activation responses.
PECAM-1 is also highly expressed at endothelial cell intercellular junctions, where it functions as
a mechanosensor, as a regulator of leukocyte trafficking, and in the maintenance of endothelial
cell junctional integrity. In this review we will describe (1) the functional domains of PECAM-1
and how they contribute to its barrier-enhancing properties, (2) how the physical properties of
PECAM-1 influence its subcellular localization and its ability to influence endothelial cell barrier
function, (3) various stimuli that initiate PECAM-1 signaling and/or function at the endothelial
junction, and (4) cross-talk of PECAM-1 with other junctional molecules, which can influence
endothelial cell function.
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The vascular barrier
The vascular barrier is vitally important to cell and tissue homeostasis and it lies at the nexus
of inflammatory responses. Breach of vascular integrity results in the accumulation of
plasma, proteins and cells into the interstitial space, and is one of the cardinal signs of
inflammation (Kumar et al. 2004). Tight regulation of the vascular permeability barrier is
required to hold both acute and chronic inflammatory disease in check, and failure to restore
barrier function in a timely manner can result in a catastrophic loss of vascular volume, as in
septic shock (Cohen 2002), or contribute to the development of chronic inflammatory
diseases like atherosclerosis (Vandenbroucke et al. 2008;Sima et al. 2009).

Endothelial cells constitute the inner lining of the blood vessel and serve as the gateway
from the vasculature into sites of inflammation. In non-inflamed tissues, endothelial cells
help to maintain and regulate blood flow, preserve the vascular barrier, and quiesce the
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activation and extravasation of leukocytes (Pober and Sessa 2007). In response to
inflammatory mediators such as histamine, thrombin, and cytokines, endothelial cells retract
from each other and intercellular junctions break down, allowing the extravasation of fluid,
inflammatory cells, and proteins into the extravascular space (Pober and Sessa 2007).
Fortunately, the increase in permeability is reversible, as the recovery of barrier function
transpires after opened intercellular junctions are re-annealed and/or strengthening of
adhesion between neighboring cells and the extracellular matrix (ECM) occurs (Mehta and
Malik 2006). Consequently, molecules or proteins that hasten these processes or that
strengthen adhesive bonds between cells or the ECM have the potential to prevent lethal
increases in permeability that can lead to shock and death.

The endothelial vascular barrier is regulated by the coordinated opening and closing of
intercellular junctions, which relies on a complex interplay of junctional adhesion
components, cytoskeletal rearrangements, and cellular adhesive and counter-adhesive forces
(Mehta and Malik 2006). The endothelial cell junction is made up of a variety of adhesion
molecules and specialized junctional regions known as tight junctions and adherens
junctions (Dejana 2004). Most adhesion molecules within endothelial cell-cell junctions
interact in a homophilic manner with adhesion molecules on neighboring cells (Dejana
2004). Tight junctions, also known as zonula occludens, help regulate both paracellular
permeability (barrier function) and cell polarity (fence function) (Bazzoni and Dejana 2004).
Vessels that are less permeable to fluid (i.e. vessels in brain) have well-organized tight
junctions, whereas leakier vessels (i.e. post-capillary venules) have poorly organized tight
junctions (Bazzoni and Dejana 2004). Tight junction components include claudins,
occludins, junctional adhesion molecules (JAM), and endothelial cell selective adhesion
molecule (ESAM) (Dejana 2004). Adherens junctions, on the other hand, consist of vascular
endothelial (VE)-cadherin and a variety of associated proteins, namely catenins and
plakoglobin, which bind to its cytoplasmic tail (Dejana et al. 2008). The catenin proteins and
plakoglobin help anchor VE-cadherin to the cytoskeleton, and these interactions are critical
for full control of endothelial permeability and the stabilization of cell-cell junctions (Dejana
et al. 2008). Outside of the specialized junctional components, other adhesion molecules are
expressed at endothelial cell-cell junctions, the best known of which are S-endo-1 and
PECAM-1 (Dejana 2004), the latter of whose biological properties will be discussed at
length later in this review. As the assembly of adherens junctions was shown to be essential
for the proper assembly of tight junctions (Taddei et al. 2008), and PECAM-1 has been
reported to modulate the localization of VE-cadherin and β-catenin (Park et al. 2010;Biswas
et al. 2006), it is likely that the various junctional components are intimately involved in the
regulation of each other during junction formation and the coordination of junctional
opening and closing.

The biology of PECAM-1
PECAM-1, depicted schematically in Figure 1, is a member of the Ig-superfamily of cell
adhesion molecules and is a type I transmembrane glycoprotein that consists of six
extracellular Ig-like homology domains, a 19-residue transmembrane domain, and a 118
residue cytoplasmic tail (Newman and Newman 2003). PECAM-1 is expressed on most
non-erythroid cells of the hematopoietic lineage including platelets, monocytes, neutrophils,
human T cell, and human and mouse B cell subsets (Newman and Newman 2003;Newman
1999;Newman 1997). PECAM-1 is also highly expressed on endothelial cells, where it is a
major constituent of the endothelial cell intercellular junction in confluent vascular beds
(Newman 1999;Newman 1997). Since its cloning in 1990 by three different groups
(Newman et al. 1990;Simmons et al. 1990;Stockinger et al. 1990), there have been a
plethora of studies that together provide mechanistic insights into how PECAM-1 regulates
vascular barrier function. In this review we will describe (1) the functional domains of
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PECAM-1 and how they contribute to its barrier-enhancing properties, (2) how the physical
properties of PECAM-1 influence its subcellular localization and its ability to influence
endothelial cell barrier function, (3) various stimuli that initiate PECAM-1 signaling and/or
function at the endothelial junction, and (4) cross-talk of PECAM-1 with other junctional
molecules, which can influence endothelial cell function.

The first indication that PECAM-1 possesses adhesive activity came from a study in which
PECAM-1 was observed to become strongly localized to cell-cell borders when adjacently
transfected cells contact one another (Albelda et al. 1991). These findings led to the
hypothesis that PECAM-1/PECAM-1 homophilic interactions are responsible for
concentrating this molecule at endothelial cell intercellular junctions – a concept that was
later proven in a sophisticated series of investigations employing chimeric proteins
comprised of various mutant forms of the PECAM-1 extracellular domain fused to the Fc
region of IgG (Sun et al. 1996b;Sun et al. 1996a;Newton et al. 1997). While collectively
these studies determined that 4–5 amino acid residues on either face of Ig-homology domain
1 are required for PECAM-1/PECAM-1 homophilic interactions, how they interact to form
stable, high-affinity PECAM-1/PECAM-1 adhesions is not yet known. Residues within
IgD2 also appear to play a supporting role; however, whether this domain forms part of the
homophilic binding interface, versus simply positioning IgD1 in such a way as to maximize
its efficiency in forming homophilic interactions is also not known. Finally, PECAM-1 is
heavily glycosylated, with nine consensus N-linked glycosylation sites within its
extracellular domain (Newman et al. 1990;Newton et al. 1999), and Kitazume et al. recently
reported that α2, 6 sialic residues may contribute importantly to the homophilic binding
ability of endothelial PECAM-1(Kitazume et al. 2010). How, where and whether sialic acid
residues contribute to the homophilic binding interface remains to be critically explored.

In addition to mediating homophilic PECAM-1/PECAM-1 interactions (Sun et al.
1996b;Sun et al. 1996a;Newton et al. 1997), a number of heterophilic binding partners for
PECAM-1 have been reported, including glycosaminoglycans (GAG) (Delisser et al.
1993;Sun et al. 1998), the integrin αVβ3 (Piali et al. 1995;Buckley et al. 1996;Sun et al.
1996b), and CD38 on lymphocytes (Deaglio et al. 1998). None of these, however, have been
either mapped to specific locations on PECAM-1 or shown to function as counter-receptors
for PECAM-1 under physiological conditions. To date, the only heterophilic binding partner
for PECAM-1 that has thus far been shown to be physiologically relevant is the neutrophil-
specific CD177/PR3 complex of neutrophils (Kuckleburg and Newman 2013), which
interacts with PECAM-1 IgD6 (Sachs et al. 2007). Such interactions, however, have to date
not been shown to have any effect on endothelial barrier function, though PECAM-1 has
been speculated to have a role in localizing the NB1/PR3 complex to endothelial cells,
where PR3 can act, via protease-activated receptor 2 (PAR2) to reseal the endothelial cell
junction following neutrophil transendothelial migration (Kuckleburg and Newman 2013)

The cytoplasmic domain of PECAM-1 (Figure 1) contains residues that serve as potential
sites for palmitoylation, phosphorylation, and the docking of cytosolic signaling molecules
(Newman and Newman 2003). When phosphorylated sequentially, first by a Src-family
kinase (Ming et al. 2011;Paddock et al. 2011), and then by Csk (Tourdot et al. 2013), the
two Immunoreceptor Tyrosine-based Inhibitory Motifs (ITIM) that encompass Tyr663 and
Tyr686 of human PECAM-1 recruit Src homology 2 (SH2) domain-containing proteins, the
best characterized of which is SH2 domain-containing protein tyrosine phosphatase (SHP)-2
(Jackson et al. 1997b;Newman and Newman 2003).
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Mechanistic insights into PECAM-1-regulated barrier function
Due to its localization and expression on vascular endothelial cells and leukocytes that
traverse the endothelial cell-cell junction during inflammatory processes, and its ability to
modulate a variety of intracellular signaling processes, PECAM-1 is primed to serve a vital
role in the regulation of the vascular barrier. Indeed, much recent work has implicated
PECAM-1 in an array of biological processes for which the vascular barrier plays a central
role. More specifically, PECAM-1 plays vital roles in leukocyte emigration (Muller et al.
1993;Thompson et al. 2001;Schenkel et al. 2004;Wang et al. 2005;Woodfin et al.
2009;Bixel et al. 2010), angiogenesis (Delisser et al. 1997;Zhou et al. 1999;Cao et al. 2002),
and shear stress-induced atherosclerotic lesion development (Goel et al. 2008;Harry et al.
2008;Harrison et al. 2013); all physiologic processes that rely on junctional integrity and/or
signaling from junctional components. Moreover, PECAM-1 has been shown to be
important for the restoration of vascular integrity following barrier breach with histamine
(Biswas et al. 2006), in the brain microvasculature of mice suffering from experimental
autoimmune encephalomyelitis (Graesser et al. 2002), and during LPS-induced endotoxemia
where the blood vessels of PECAM-1-deficient mice exhibit increased permeability and
mice have an exaggerated loss of blood volume (Carrithers et al. 2005;Maas et al. 2005). In
angiogenesis, PECAM-1 has been shown to play a prominent role in endothelial cell
migration, junctional development, capillary morphogenesis, and the maturation of cell-
matrix interactions (Delisser et al. 1997;Cao et al. 2002;RayChaudhury et al. 2001;Kondo et
al. 2007;Wu and Sheibani 2003). PECAM-1 has additionally been demonstrated to be a
“mechano-responsive” molecule that enables endothelial cells to respond to fluid shear
stress, which modulates inflammatory signaling pathways, cytoskeletal architecture, and
cell-matrix interactions (Tzima et al. 2005;Collins et al. 2012;Feaver et al. 2010). Table 1
summarizes the prominent role that PECAM-1 plays in the aforementioned physiologic
processes. The rest of this review will help to elucidate the various mechanisms through
which PECAM-1 regulates the vascular barrier during these biological processes.

Adhesive interactions guiding subcellular localization
While a subpopulation of PECAM-1 associates with the cytoskeleton of activated platelets
(Newman et al. 1992), very little of it can be found in the Triton X-100 insoluble
cytoskeletal fraction of endothelial cells (Lampugnani et al. 1995). Consistent with these
observations, Sun et al. demonstrated that homophilic binding Ig Domain 1 within the
extracellular domain is sufficient for the molecule to become strongly localized to the cell-
cell junctions of REN mesothelioma cells (Sun et al. 2000) – a finding that was more
recently confirmed in cultured endothelium (Privratsky et al. 2011). The subcellular
localization of PECAM-1 might also be able to be influenced by isoform switching in
certain cell types. For example, mouse Δ15 PECAM-1 (contains exon 14) does not localize
to cell-cell junctions in MDCK cells (Sheibani et al. 2000), but concentrates at cell-cell
borders normally in endothelial-like bEND (Dimaio and Sheibani 2008) and Ren
mesothelioma (Bergom et al. 2008) cells. Taken together, it appears that the homophilic
binding of PECAM-1 to neighboring PECAM-1 molecules on adjacent cells is sufficient to
enable junctional localization – a process that has been termed “diffusion trapping”.

PECAM-1 not only resides at the junction, but it is a constituent of a recycling compartment
on endothelial cells, termed the lateral border recycling compartment (LBRC) that
modulates the transmigration of leukocytes through the endothelial cell-cell junction. The
LBRC is a surface-connected membrane network that is located at the borders between
adjacent endothelial cells and is recycled and targeted to the region of the cell where
paracellular or transcellular migration is occurring (Mamdouh et al. 2003;Mamdouh et al.
2009) (Figure 2). Leukocyte transmigration is facilitated by LBRC recycling mediated by
endothelial microtubules and kinesin family molecular motors (Mamdouh et al. 2008). This
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membrane network contains PECAM-1, CD99, CD155 and junctional adhesion molecule
(JAM)-A (Mamdouh et al. 2003;Mamdouh et al. 2009;Sullivan et al. 2013). PECAM-1/
PECAM-1 homophilic interactions between leukocytes and endothelial cells appear to be
important for leukocyte transmigration as monocytes were unable to transmigrate through
the junction and endothelial PECAM-1 was not targeted to the zone around a transmigrating
monocyte when PECAM-1 was blocked with an anti-PECAM-1 blocking antibody
(Mamdouh et al. 2003). Interestingly, ITIM-mediated recruitment of SHP-2 is not essential
for PECAM-1 to efficiently enter and exit the LBRC and to support targeted recycling of the
LBRC (Dasgupta et al. 2009), though more recent studies have shown that endothelial
CD155 regulates a step between those regulated by PECAM and CD99 and the recruitment
of SHP-2 may be a common mechanism for the transmigration process (Sullivan et al.
2013). Thus, it is likely that the localization of PECAM-1, along with other adhesion
molecules, to membrane compartments along the endothelial cell-cell border and their
complex interplay with cytosolic signaling molecules and cytoskeletal elements is required
for efficient leukocyte transendothelial migration and junctional integrity during this
process. Whether PECAM-1 within the LBRC regulates the passage of fluid and proteins
following stimuli that disrupt the paracellular endothelial barrier, however, remains to be
determined. The cross-talk between elements of the LBRC and how they regulate the
coordinated opening and closing of cell-cell junctions remains an active area of current
research.

Not only the localization, but the relative amount of PECAM-1 at the paracellular junction
appears to modulate junctional integrity. Monocyte diapedesis has been demonstrated to
alter endothelial junctional organization to a more monocyte-permeable state (increased
PECAM-1 and decreased VE-cadherin expression), which augments transmigratory activity
(Hashimoto et al. 2011) (Figure 2). Other reports have shown that ICAM-1 engagement by
transmigrating leukocytes can activate Src and lead to increased PECAM-1 expression,
which augments transmigration (Liu et al. 2012) (Figure 2). Thus, at least in the case of
leukocyte transmigration, increased PECAM-1 expression is associated with a more
leukocyte-permeable or “diapedesis-inducing” state. Whether the relative expression level of
PECAM-1 affects junctional integrity in response to other inflammatory stimuli, however,
remains to be determined.

PECAM-1/SHP-2 complexes have been proposed to regulate the phosphorylation state of β-
catenin, and thereby β-catenin/VE-cadherin complexes (Ilan et al. 2000) (Figure 3). Recent
studies, however, have shown that cells expressing a PECAM-1 variant incapable of binding
SHP-2 exhibited normal to near-normal barrier integrity (Privratsky et al. 2011). More work
needs to be done in this area, perhaps using a variety of agonists, as well as endothelial cells
from different sources, to better understand cadherin-dependent versus –independent
mechanisms of PECAM-1-mediated barrier protection.

PECAM-1 isoforms and signaling
Another area of research revealing that the structure of PECAM-1 is important for junctional
function is work that has centered on the properties of alternatively-spliced PECAM-1
isoforms and how cell type-specific expression of these isoforms can affect angiogenesis,
leukocyte diapedesis, and endothelial junctional stability (Dimaio and Sheibani 2008;Kondo
et al. 2007;Wang and Sheibani 2006;Wang et al. 2003a;Sheibani et al. 2000;Sheibani et al.
1997). The PECAM-1 gene consists of 16 exons, with the cytoplasmic domain being
encoded from the end of exon 9 through exon 16 (Kirschbaum et al. 1994). Alternative
splicing of the PECAM-1 cytoplasmic and transmembrane domains results in the production
of numerous PECAM-1 isoforms, including a soluble form (Goldberger et al. 1994) and
various isoforms that lack one or more cytoplasmic exons (Kirschbaum et al. 1994;Baldwin
et al. 1994;Sheibani et al. 1997;Bergom et al. 2008;Yan et al. 1995;Robson et al.
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2001;Sheibani et al. 1999;Sheibani et al. 2000;Wang and Sheibani 2002;Wu and Sheibani
2003;Wang et al. 2003a;Wang et al. 2003b;Wang et al. 2004;Dimaio and Sheibani 2008).
Full length PECAM-1 is by far the predominant isoform expressed in humans in all cells
(Wang et al. 2003b), whereas mRNA encoding PECAM-1 in mice tends to undergo more
extensive alternative splicing with Δ14, 15 (loss of exons 14 and 15) being the predominant
isoform expressed (Sheibani et al. 1999).

Isoform switching of PECAM-1 has the potential to alter the signaling properties of
PECAM-1-expressing cells, as SHP-2 can only be recruited and activated by PECAM-1
isoforms that contain ITIMs encoded by exons 13 and 14 (Jackson et al. 1997a;Dimaio and
Sheibani 2008;Wang and Sheibani 2006;Bergom et al. 2008) (Figure 4). To illustrate this
concept, expression of a mouse PECAM-1 isoform containing exon 14, as opposed to one
lacking exon 14, in heterologous Madin-Darby canine kidney (MDCK) cells led to
activation of mitogen activated protein kinases (MAPK), extracellular signal-regulated
kinases (ERK), and the small GTPases Rac1 and Rap1, resulting in loss of cell-cell contacts,
de-stabilization of adherens junctions, and a change in the subcellular localization of
cadherins and catenins (Wang and Sheibani 2006;Sheibani et al. 2000) (Figure 4). Early on,
these effects were proposed to modulate the spatio-temporal disruption of adherens junctions
downstream of PECAM-1 homophilic interactions during leukocyte transmigration (Wang
and Sheibani 2006). It also helped to explain the more migratory phenotype of PECAM-1-
expressing endothelial cells during angiogenesis, as exon 14-positive PECAM-1 isoforms
were found to be preferentially expressed early in vascular development, and replaced later
by isoforms lacking exon 14 (Wu and Sheibani 2003;Sheibani et al. 2000;Sheibani et al.
1997). Later experiments revealed that these effects might not be operative in endothelial
cells, however, as expression of exon-14-containing murine PECAM-1 (contains the ITIM)
in an immortalized mouse brain endothelial cell line (bEND) had minimal effects on the
activation of MAPK/ERKs and resulted in a less migratory phenotype, which was
hypothesized to be due to PECAM-1 ITIM-mediated SHP-2 inhibitory signaling (Dimaio
and Sheibani 2008) (Figure 4). In addition, further work by this same group revealed that
expression of the predominant form of murine PECAM-1, Δ14&15 (lacks the ITIM), in
primary murine retinal endothelial cells was sufficient to restore migration and capillary
morphogenesis of null cells to wild-type levels, whereas full-length PECAM-1 (contains the
ITIM) had no effect on these cellular properties (Park et al. 2010). Thus, it appears that
isoform switching can change the signaling properties of PECAM-1 through loss (or gain) of
functional domains that bind signaling partners, but the effects of this is cell-type specific,
and in the case of endothelial cells might result in more inhibitory, as opposed to activating,
signaling if the PECAM-1 ITIM is present. As human endothelial cells express mostly full-
length PECAM-1 (Wang et al. 2003b), it remains to be determined whether differential
signaling induced by various PECAM-1 isoforms is relevant in humans.

Stimulus-specific functions of PECAM-1
Though PECAM-1 modulates junctional signaling in a variety of physiological conditions,
some studies have shown that PECAM-1 is only required for junctional integrity in response
to certain stimuli, at least in the case of leukocyte transmigration. In vivo, PECAM-1 has
been shown to be required for leukocyte transmigration in response to IL-1β, but not TNFα
or certain chemokines (Thompson et al. 2001;Woodfin et al. 2009). IL-1β, which mainly
activates endothelial cells as opposed to leukocytes, appears to make leukocyte
transmigration dependent on the junctional adhesion molecules ICAM-1, JAM-A, and
PECAM-1 in a sequential manner (Woodfin et al. 2009;Woodfin et al. 2007;Nourshargh et
al. 2006). It is likely that interaction of these adhesion molecules on endothelial cells with
their counterparts on leukocytes activates leukocyte integrins and allows them to traverse the
junction. Other stimuli, such as TNFα and chemokines, however, bypass the need for these
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junctional adhesive interactions by directly activating leukocyte integrins and allowing them
to transmigrate through junctions (Woodfin et al. 2009). Thus, it would not be surprising if
integrin activation and cell-matrix adhesion in endothelial cells was also differentially
regulated by PECAM-1 in response to various stimuli. For example, the expression of
PECAM-1 has been shown to change the adhesive properties of endothelial cells rendering
them more adherent to extracellular matrix (ECM) proteins, at least in the case of
angiogenesis (Park et al. 2010). In addition, it has been shown PECAM-1/SHP-2 complexes
can modulate actin stress fibers and focal adhesions (Wang and Sheibani 2006;O'Brien et al.
2004). Taken together, it is likely that in response to specific cytokine stimuli, PECAM-1
modulates the activation state of integrins, and other proteins important for adhesive
interactions, which allows endothelial cells to turn over cell-cell and cell-matrix interactions
that are required for efficient junctional function during processes such as leukocyte
diapedesis and angiogenesis. Whether PECAM-1 changes the activation state of integrins
important for endothelial cell-ECM interactions downstream of inflammatory stimuli, and
whether this plays a prominent role in junctional integrity and localized movement of
endothelial cells during leukocyte diapedesis or paracellular permeability remains to be
determined.

PECAM-1 as a biosensor: cross-talk with other signaling molecules
The observation that PECAM-1 has both adhesive as well as signaling properties, together
with the fact that it is expressed at high receptor density on the surface of vascular
endothelial cells, suggested that it might function as a biosensor of local environmental
changes. There now exists extensive evidence that PECAM-1 both senses flow and transmits
tensile forces into endothelial cells. Early studies found that mechanical changes to
endothelial cells brought about by hyper- or hypo-osmotic shock or changes in flow result
resulted in rapid tyrosine phosphorylation of PECAM-1 (Harada et al. 1995;Osawa et al.
1997)(Osawa et al. 2002;Tai et al. 2005;Fleming et al. 2005), an observation that is now
understood to be due to the presence of a multimolecular complex between PECAM-1 and
VE-cadherin (Tzima et al. 2005;Collins et al. 2012;Conway et al. 2013) that, in response to
flow activates Gα11, Src, and associated cytosolic and signaling molecules (Figure 5). The
resulting phosphorylation of PECAM-1 ITIM tyrosines creates a scaffold for recruitment
signaling molecules that have the potential to modulate responses of endothelial cells. In
fact, PECAM-1-deficient endothelial cells exhibit defective activation of Src, MAPK/ERK,
and PI3K/Akt in response to shear (Osawa et al. 2002;Tai et al. 2005;Tzima et al. 2005),
with subsequent loss of NF- B-driven gene transcription (Tzima et al. 2005), and activation
of endothelial cell nitric oxide synthase (eNOS) (Fleming et al. 2005;Tai et al. 2005).
Functionally-related processes such as flow-mediated dilation, which is attributable to
release from endothelial cells of vasodilatory factors, including prostacyclin, nitric oxide
(NO) and endothelium-derived hyperpolarizing factor (Busse and Fleming 2003), are also
markedly impaired in the absence of PECAM-1 (Bagi et al. 2005;Liu et al. 2005). Precisely
how PECAM-1 and VE-cadherin interact remains uncertain, as they are concentrated in
distinct, and different compartments that comprise endothelial cell-cell boundaries
(Lampugnani et al. 1995;Dejana 2004). Thus, while VE-cadherin is found primarily within
the adherens junction proper, PECAM-1 is enriched in distinctive actin/myosin/vinculin-
depleted three-dimensional reticular networks that form in areas where adjacent endothelial
cells overlap - sometimes referred to as the reticular adherens junction (Fernandez-Martin et
al. 2012). Perhaps the biosensor function of PECAM-1 takes place at the intersection of
these two specialized domains.
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Concluding Remarks
Owing to its unique distribution on platelets, leukocytes, and endothelial cells, PECAM-1
lies at the nexus of thrombosis and inflammation. There is growing appreciation that these
two pathophysiological conditions are inextricably and mechanistically linked. PECAM-1,
via its ability to inhibit platelet activation, suppress cytokine production and responsiveness,
stimulate vessel wall production of prostacyclin, and support the integrity of endothelial
cell-cell junctions, appears to play a significant role in each of these interrelated processes.
Future studies aimed at understanding how the adhesive properties of PECAM-1 are
regulated to support the integrity of the vascular endothelium should lead to an improved
understanding of how PECAM-1, together with other cell surface receptors that are found at
endothelial cell-cell junctions, functions to regulate inflammation, thrombosis, and the
immune response.
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Fig. 1. Schematic of PECAM-1
(a) Full-length PECAM-1 contains six Ig-like homology domains, a 19-residue
transmembrane domain, and a 118 residue cytoplasmic tail. Residues important for
homophilic binding include Lys89 in Ig-domain 1, residues important for modulating
heterophilic binding interactions are located in Ig-domain 6. Post-translational
palmitoylation of Cys595 can target PECAM-1 to membrane microdomains. Tyr663 and
Tyr686 in exons 13 and 14 of the cytosolic domain comprise ITIMs that when
phosphorylated create docking sites for cytosolic signaling molecules. (b) Δ14, 15
PECAM-1 does not contain exons 14 and 15, which removes Tyr686. This isoform of
PECAM-1 no longer contains a functional ITIM. (c) Δ15 PECAM-1 does not contain exon
15, but still retains both tyrosine residues that make up the ITIM.
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Fig. 2. Barrier regulation by PECAM-1 during leukocyte diapedesis
(a) PECAM-1 is a constituent of a recycling compartment on endothelial cells, the LBRC,
which modulates the transmigration of leukocytes through the endothelial cell-cell junction.
The LBRC is a surface-connected membrane network that is located at the borders between
adjacent endothelial cells and is recycled and targeted to the region of the cell where
paracellular or transcellular migration is occurring. (b) Increased levels of PECAM-1 and
decreased levels of VE-cadherin appear to be associated with a more “leukocyte-permeable”
state as transmigrating monocytes appear to induce increased PECAM-1 and decreased VE-
cadherin expression, which augments transmigratory activity. Mechanisms for this could
include Src and eNOS activation downstream of ICAM-1 engagement on endothelial cells
by adherent leukocytes, which have been shown to increase PECAM-1 expression.
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Fig. 3. Mechanisms by which PECAM-1 modulates paracellular permeability
Homophilic PECAM-1/PECAM-1 interactions between neighboring endothelial cells have
been demonstrated to localize PECAM-1 at the endothelial junction. These interactions have
recently been shown to be more important than known signaling mechanisms for
PECAM-1-mediated barrier protection. PECAM-1 has been shown in certain experimental
systems to facilitate the dephosphorylation and stabilization of β-catenin through recruitment
of SHP-2 to its ITIM, thus allowing β-catenin to re-associate with VE-cadherin, thus
stabilizing the EC junction. In other experimental systems, the ability of PECAM-1 to fortify
endothelial cell-cell junctions appears to be ITIM-, and therefore SHP-2, -independent. See
text for details.
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Fig. 4. Differential regulation of the vascular barrier by PECAM-1 isoforms
(a) Δ15 PECAM-1 retains the ITIM tyrosines, which enables it to recruit SHP-2 and inhibit
Src (dashed line). Src no longer activates MAPK/ERKs which stabilizes expression of
PECAM-1 and VE-cadherin at the endothelial cell junction. (b) In contrast, Δ14, 15
PECAM-1 does not contain the ITIM, thus the inhibition on Src is relieved, which activates
MAPK/ERKs (solid line) leading to decreased expression of PECAM-1 and VE-cadherin
and turnover of focal adhesion complexes. This destabilizes the junction and creates a more
migratory phenotype.
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Fig. 5. Modulation of barrier function by PECAM-1-mediated mechanotransduction
(a) PECAM-1 is associated with Gα11 and is part of a mechanosensory complex with VE-
cadherin and VEGFR2. PECAM-1 senses mechanical force and transmits signals to VE-
cadherin, which activates VEGFR2 leading to NFκB-mediated pro-inflammatory gene
transcription. (b) Mechanical force on PECAM-1 also activates PI3K, which triggers RhoA
activation leading to changes in cytoskeletal architecture and focal adhesion complexes.
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Table 1

Process Finding Reference

Leukocyte diapedesis

PECAM-1 helps leukocytes transmigrate through the cell-cell
junction and basement membrane

(Thompson et al.
2001;Wang et al.

2005;Woodfin et al.
2009;Duncan et al.

1999;Bixel et al. 2010)

ICAM-1-activated Src and eNOS signaling sequentially induce
PECAM-1-mediated PMN transendothelial migration through
Tyr686 phosphorylation and increased EC PECAM-1 surface

expression

(Liu et al. 2012)

PECAM-1 is part of the LBRC, a surface connected membrane
compartment, that promotes leukocyte transmigration

(Mamdouh et al.
2003;Mamdouh et al.
2008;Mamdouh et al.
2009;Dasgupta et al.

2009;Sullivan et al. 2013)

Monocyte diapedesis alters endothelial junctional organization to a
more monocyte-permeable state (increased PECAM-1 and decreased

VE-cadherin expression), which augments transmigratory activity
(Hashimoto et al. 2011)

Mechanotransduction and atherogenesis

PECAM-1 transmits mechanical force in a mechanosensory complex
with VE-cadherin and VEGFR2 to confer responsiveness to flow in

endothelial cells and activate pro-inflammatory signaling pathways in
response to disturbed flow

(Tzima et al. 2005)

PECAM-1 and Gαq11 are part of a sensory complex at EC junctions
that respond to rapid changes in fluid shear stress (Otte et al. 2009)

Localized tensional forces on PECAM-1 result in activation of PI3K,
cell-wide activation of integrins and the small GTPase RhoA, which
facilitates changes in cytoskeletal architecture and focal adhesions

(Collins et al. 2012)

PECAM-1 expression is correlated with more plaques in
atherosusceptible regions of the aorta

(Harry et al. 2008;Stevens
et al. 2008)

Expression of PECAM-1 is correlated with decreased atherosclerotic
lesion area in the total aorta with preferential protection in the aortic
sinus, descending aorta, and the branching arteries of the aortic arch

(Goel et al. 2008)

PECAM-1 mechanotransduction is essential for fibronectin gene
expression and assembly into matrix fibrils in response to fluid shear

stress
(Feaver et al. 2010)

EC conditioned by shear stress recruit fewer flowing neutrophils after
stimulation with TNF, a response that is less effective in the absence

of PECAM-1. Expression of CD31 is not required for the shear-
induced modification of wound closure

(Glen et al. 2012)

Paracellular permeability

PECAM-1-specific antibody fragments augment albumin transit
across endothelial cell junctions both in cultured cells and in mice,

expression of PECAM-1 makes non-PECAM-1-expressing cells less
permeable to albumin

(Ferrero et al. 1995)

Expression of PECAM-1 delays the onset of EAE by promoting
vascular integrity and decreasing parenchymal inflammatory cell

infiltration
(Graesser et al. 2002)

Expression of PECAM-1 is associated with increased vascular
integrity in LPS-induced endotoxemia

(Carrithers et al.
2005;Maas et al. 2005)

PECAM-1 facilitates the dephosphorylation and stabilization of β-
catenin through ITIM-mediated recruitment of SHP-2 and activation

of GSK-3β thus promoting reconstitution of adherens junctions
(Biswas et al. 2006)

PECAM-1 homophilic interactions are more important than its
signaling function for maintaining the integrity of endothelial cell

junctions
(Privratsky et al. 2011)

CD44 regulates vascular permeability and integrity through a
PECAM-1 dependent mechanism (Flynn et al. 2013)
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Process Finding Reference

Gamma radiation decreases endothelial barrier function, which is
correlated with a transient loss of PECAM-1 and cell detachment (Sharma et al. 2013)

Reticular AJ act coordinately with PECAM-1 to maintain endothelial
barrier function in regions of low actomyosin-mediated tension

(Fernandez-Martin et al.
2012)

Angiogenesis

PECAM-1 engagement on the cell surface can transduce "outside-in"
signals and activate MAPK/ERKs and small GTPases, impacting

both cadherin-mediated cell-cell and integrin-mediated cell-matrix
interactions

(Wang and Sheibani 2006)

PECAM-1 expression has a significant impact on endothelial cell-
cell and cell-matrix interactions by augmenting cell migration and
capillary morphogenesis by increasing eNOS expression and NO

availability

(Park et al. 2010)

PECAM-1 stimulates EC cell migration and the formation of
filopodia through SHP-2- and paxillin-mediated MAPK pathway

activation and the turnover of focal adhesions

(Zhu et al. 2010;O'Brien et
al. 2004)

PECAM-1 expression and its potential interactions with EphB4/
ephrin B2 and eNOS are important for survival, migration, and

functional organization of EC during retinal vascular development
and angiogenesis

(Dimaio et al. 2008)

PECAM-1 isoforms lacking ITIM, as opposed to isoforms containing
the ITIM, in PECAM-1−/− bEND cells activated MAPK/ERKs,
disrupted adherens junctions, and enhanced cell migration and

capillary morphogenesis in Matrigel

(Dimaio and Sheibani
2008)

PECAM-1-expression in EC is correlated with increased migration,
more ability to undergo capillary morphogenesis, and more dense

peripheral focal adhesions and peripheral cortical actin distribution
(Kondo et al. 2007)

Sustained activation of MAPK/ERKs results in disruption of
cadherin-mediated cell-cell adhesion, down-regulation of PECAM-1
expression, and enhanced cell migration in microvascular endothelial

cells

(Wu and Sheibani 2003)

Antibodies against PECAM-1 decrease angiogenesis in transplanted
tumors, inhibit tube formation and migration of HUVEC, and block

in vitro tube formation by rat capillary endothelial cells during
cytokine-induced rat corneal neovascularization

(Cao et al. 2002;Delisser
et al. 1997)

PECAM-1 is strongly expressed at cell borders in confluent
monolayers whereas little or no PECAM-1 immunostaining is

detected in sparse or migrating cultured EC

(RayChaudhury et al.
2001)
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