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Abstract

Poly (ADP-ribose) polymerase 1 (PARP-1) is a constitutive enzyme, the major isoform of PARP

family, which is involved in the regulation of DNA repair, cell death, metabolism, and

inflammatory responses. Pharmacological inhibitors of PARP provide significant therapeutic

benefits in various preclinical disease models associated with tissue injury and inflammation.

However, our understanding the role of PARP activation in the pathophysiology of liver

inflammation and fibrosis is limited. In this study we have investigated the role of PARP-1 in the

liver inflammation and fibrosis using acute and chronic models of CCl4-induced liver injury and

fibrosis, a model of bile duct ligation (BDL)-induced hepatic fibrosis in vivo, and isolated liver-

derived cells ex vivo. Pharmacological inhibition of PARP with structurally distinct inhibitors or

genetic deletion of PARP-1 markedly attenuated CCl4-induced hepatic cell death, inflammation,

and fibrosis. Interestingly, the chronic CCl4-induced liver injury was also characterized by

mitochondrial dysfunction and dysregulation of numerous genes involved in metabolism. Most of

these pathological changes were attenuated by PARP inhibitors. PARP inhibition not only

prevented CCl4-induced chronic liver inflammation and fibrosis, but was also able to reverse these

pathological processes. PARP inhibitors also attenuated the development of BDL-induced hepatic

fibrosis in mice. In liver biopsies of subjects with alcoholic or hepatitis B-induced cirrhosis,

increased nitrative stress and PARP activation was noted. These results, taken together, suggest

that the reactive oxygen/nitrogen species-PARP pathway plays a pathogenetic role in the
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development of liver inflammation, metabolism and fibrosis. Several PARP inhibitors are

currently in clinical trials for oncological indications. The current results indicate that liver

inflammation and liver fibrosis may be additional clinical indications where PARP inhibition may

be of translational potential.

Introduction

Globally, alcohol consumption, viral hepatitis and steatohepatitis are the leading causes of

chronic liver injury and inflammation, resulting in liver fibrosis, cirrhosis, eventually

culminating in the development of hepatocellular carcinoma. Liver fibrosis is the major

cause of morbidity and mortality amongst all chronic liver diseases(1). Liver fibrosis is

characterized by increased deposition of extracellular matrix (ECM) (2), resulting in the

disruption of cellular architecture. Derangement of the sinusoidal architecture not only

affects hepatocytes, but also exerts adverse effects on other non-parenchymal cell types such

as hepatic stellate cells (HSCs), myofibroblasts and endothelial cells, the function of which

would be essential in the maintenance of liver structure and function(3, 4).Activation of

HCSs plays a pivotal role in liver fibrogenesis, since these cells are the primary source of

ECM deposition upon liver injury(4). Although our knowledge on the pathomechanisms of

liver fibrosis has expanded over the past decade, the clinical options for the treatment of this

devastating condition remain severely limited.

Poly (ADP-ribose) polymerase1 (PARP-1) is a constitutively expressed primarily nuclear

enzyme, which plays important physiological roles in regulation of numerous cellular

processes, such as DNA repair and the maintenance of chromatin structure. In addition,

pathological over-activation of PARP-1, due to reactive oxygen and nitrogen species

formation, promotes cell death, and stimulates pro-inflammatory mediator production(5).

PARP-1 functions as a DNA damage sensor and signaling molecule, binding to both single-

and double-stranded DNA breaks. Upon binding to damaged DNA, PARP-1 forms

homodimers and catalyzes the cleavage of NAD+ into nicotinamide and ADP-ribose to form

long branches of ADP-ribose polymers on target proteins such as histones and PARP-1

itself, which results in cellular energetic depletion, mitochondrial dysfunction, and

ultimately necrosis. Numerous transcription factors (e.g. nuclear factor-κB), DNA

replication factors, and signaling molecules have also been shown to become poly(ADP-

ribosylated) by PARP-1(6, 7). By modulating these processed PARP inhibitors have been

shown to exert tissue protective and anti-inflammatory effects in animal models of ischemia-

reperfusion injury, circulatory shock, and various forms of inflammation(5, 8). It has also

been recently suggested that PARP-1 and PARP-2 (a minor isoform of PARP enzyme

family) play important roles in regulating important metabolic functions in rodents (e.g.

mitochondrial function/biogenesis, and adipogenesis) in various organ systems, including in

the liver, at least in part via modulation of NAD+ levels and consequently sirtuin 1

activity(9-12). Furthermore, PARP inhibition has recently been shown to improved

mitochondrial function (respiration, enzyme activity, reactive oxygen species defense) in

both C. elegans worms and in AML12 hepatocyte cell line, and promoted longevity in

worms(13).
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Recent studies have linked PARP-1 activation and up-regulation to the production of pro-

fibrotic markers such as connective tissue growth factor (CTGF) (14) and transforming

growth factor β (TGF-β)(15) in kidney tubular epithelial and vascular smooth muscle cells.

In this study, we have investigated the role of PARP-1 in liver inflammation, metabolism

and fibrosis using in vivo models of carbon tetrachloride (CCl4)-induced acute and chronic

liver injury, a model of bile duct ligation (BDL)-induced hepatic fibrosis, isolated liver-

derived cells, and samples from liver biopsies of cirrhotic human subjects. Our findings

unveil a pathogenic role of PARP-1 in liver inflammation, metabolism and fibrosis, and

indicate the potential therapeutic utility of PARP inhibitors for liver inflammatory diseases

and fibrosis.

Materials and Methods

Animals

All the animal protocols conformed to the National Institutes of Health (NIH) guidelines and

were approved by the Institutional Animal Care and use Committee of the National Institute

on Alcohol Abuse and Alcoholism ((Bethesda, MD, USA) and/or INSERM (Créteil,

France). 6- to 8-week-old male C57BL/6J mice were obtained from The Jackson Laboratory

(Bar Harbor, ME, USA). PARP1-/- mice on C57BL/6J were generated as previously

described(16). Male PARP1-/- mice and their wild type controls (PARP1+/+) were used in

the study (termed PARP-/- and WT/PARP+/+ mice in the figures).

Hepatic tissue samples from human subjects

Alcoholic and hepatitis B-associated cirrhotic liver samples (stage 3-4 fibrosis) were

collected from donor livers during liver transplantation from the Liver Tissue Cell

Distribution System (LTCDS), University of Minnesota. The LTCDs were supported by

NIH Contract #N01-DK-7-0004 / HHSN267200700004C. Additional information on the

sample preparation, age and gender of the donors is provided in the Supplemental Materials.

The details of the induction of liver injury and fibrosis by CCl4 and bile duct ligation
(BDL) and the treatment protocols are described in the Supplemental Methods.

The determination of liver function, histology and immunohistochemistry, quantitative
analysis of hepatic fibrosis are described in the Supplemental Methods.

The determination of hepatic PARP and myeloperoxidase activities, 4-hydroxynonenal (4-
HNE), 3-nitrotyrosine (3-NT), and hydroxyproline contents, real-time PCR, Western
immunoblot analysis are described in the Supplemental Methods.

Other procedures such as isolation and treatments of murine hepatic hepatocytes and

stellate cells, cell death determination by flow cytometer and activation of hepatic stellate

cells are also described in the Supplemental Methods.

Statistical analysis

All the values were represented as mean ± S.E.M. Statistical analysis of the data was

performed by ANOVA followed by Tukey's post-hoc test for multiple comparisons. The
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analysis was conducted using the GraphPad-Prism4 software. P<0.05 was considered

statistically significant.

Results

Acute CCl4 treatment exerts a time-dependent liver injury and PARP activation

To determine the onset of PARP activation and liver injury by CCl4, we performed a time

course experiment in an acute liver injury model induced by CCl4. CCl4 exerted a time-

dependent hepatic injury peaking as early as 48 hours, as indicated by increased serum ALT

activities (Suppl. Fig. 1A). This response was paralleled with enhanced hepatic nitrative and

oxidative stress, characterized by increased 3-nitrotyrosine (3-NT;Suppl. Fig. 1B) and 4-

hydroxynonenal (4-HNE;Suppl. Fig. 1C) content, and was also associated with a marked

increase in PARP activity in the liver tissue (Suppl. Fig. 1D,E).

Genetic ablation of PARP1-/- or its pharmacological inhibition protects mice against acute
CCl4 -induced liver injury

Acute liver injury was induced in either PARP1+/+(WT) or PARP1−/− mice with a single

injection of CCl4 as described in the supplemental methods section. Mice were sacrificed

and their hepatic tissues and serum were subjected to histological and biochemical

investigations 48 hours later. First, histological examination revealed massive inflammation

and necrosis (Suppl. Fig. 2A) and serum ALT levels revealed significant increase in WT

mice treated with CCl4, when compared with WT mice treated with vehicle (Suppl. Fig.

2B). Similar trend was observed with hepatic myeloperoxidase (MPO) activities, marker of

neutrophil infiltration (Suppl. Fig. 2C). Determination of inflammatory cytokines/

chemokines mRNA expression also revealed enhanced expression of TNF-α, IL1-β, MIP1-

α, MIP-2, MCP-1, respectively, in WT(PARP1+/+) mice treated with CCl4, when compared

to corresponding vehicle controls (Suppl. Fig. 2C). These phenotypic changes were smaller

in magnitude in PARP1-/- mice treated with CCl4 when compared to PARP1+/+ mice (Suppl.

Fig. 2A-D). Likewise, treatment with either of the two PARP inhibitors used (PJ34 or AIQ)

attenuated the CCl4-induced pathological alterations in WT mice (Suppl. Fig. 3A-C). Of

note the biochemical parameters measured in the vehicle-treated PARP1-/- mice were

comparable to those measured in WT(PARP1+/+) mice.

Genetic ablation of PARP1 protects against chronic CCl4-induced liver injury and
inflammation in mice

Chronic CCl4 treatment for 4 weeks (3 times/week) induced a significant degree of liver

injury, characterized by inflammation and necrosis evidenced by histological examination

(Fig. 1A) as well as elevated serum ALT levels (Fig. 1B). This liver injury was accompanied

by an increase in hepatic oxidative/nitrative stress markers (3-NT and 4-HNE) in the CCl4
treated group (Fig. 1C) and was also associated with an increase in the mRNA levels for

various pro-inflammatory cytokines and chemokines such as TNF-α, IL1-β, MIP1-α,

MIP-2, MCP-1 (Fig. 1D), respectively in the CCl4 treated group. The CCl4-induced

histological changes, oxidative/nitrative processes and pro-inflammatory responses were

markedly attenuated in PARP1-/- mice, indicating that PARP1 plays a pathogenic role in

CCl4 induced chronic liver injury (Fig. 1A-D).
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Absence of PARP1 protects against chronic CCl4 -induced liver fibrosis in mice

4 weeks of chronic CCl4 treatment induced development of significant liver fibrosis and

stellate cell activation, as evidenced by enhanced Sirius red staining (Fig. 2A) and

expression of alpha smooth muscle actin (α-SMA), markers of fibrosis and hepatic stellate

action, respectively (Suppl. Fig. 4A,B), and mRNA expression of the prototypical pro-

fibrotic markers such as collagen-1, connective tissue growth factor (CTGF), transforming

growth factor-β (TGF-β) and fibronectin (Fig. 2B). The liver fibrosis was also evidenced by

a significant increase in hydroxyproline levels, another marker of fibrosis (Fig. 2C). All of

the above-mentioned pro-fibrotic changes were significantly abrogated in PARP1-/- mice

(Fig. 2 and Suppl. Fig. 4A), suggesting that PARP1 plays a pathogenetic role in liver

fibrosis.

Pharmacological inhibition of PARP ameliorates CCl4-induced chronic liver injury,
inflammation, mitochondrial injury/dysfunction, metabolic dysregulation, and fibrosis

Similar to the effect of PARP1 genetic deficiency, treatment of mice with either of the two

structurally distinct PARP inhibitors used (PJ34 and AIQ), markedly attenuated the 4 weeks

of chronic CCl4 treatment-induced hepatic injury (evidenced by less histological injury and

reduced serum ALT levels) (Fig. 3A), as well as attenuated inflammation (diminished

hepatic myeloperoxidase (MPO) activity and reduced mRNA levels of the pro-inflammatory

cytokines/chemokines) (Fig. 3B).

Because, as mentioned in the introduction, PARP1 and PARP2 were recently implicated in

regulation of key metabolic functions, including adipogenesis in the liver, we investigated

the potential role of these effects in our 4 weeks CCl4 treatment-induced hepatic injury

model. Following CCl4 administration we could not find significant changes in liver lipid

accumulation as determining by Oil Red O staining and triglyceride content measurements

neither with or without treatments with PARP inhibitors AIQ and PJ34 (Suppl. Fig. 6A,B),

in contrast to the positive control livers from a chronic alcohol feeding model. Thus, the

beneficial effect of PARP inhibition on adipogenesis is not likely to be involved in the anti-

inflammatory and anti-fibrotic effects of PARP inhibitors observed in our study.

However, we found that chronic CCl4 treatment induced marked attenuation of

mitochondrial DNA (mtDNA) number and mitochondrial function measured by complex 1,

2 and 4 activities from the livers (Fig. 3C). These pathological changes were attenuated by

PARP inhibition.

Chronic CCl4 treatment was also associated with dysregulation of numerous genes involved

in metabolism (e.g. mitochondrial respiration, fatty acid oxidation, and glucose metabolism;

Fig. 3 D,E); and some of these pathological changes could be attenuated by PARP inhibitors

(Fig 3 D,E, and Suppl, Methods for description of genes), supporting an important role of

PARP in cellular metabolism, particularly in the mitochondria, which is in agreement with a

recent study using worms and AML12 hepatocytes (13).

Moreover, PARP inhibition attenuated the chronic CCl4 treatment-induced fibrosis and

stellate cell activation, as evidenced by attenuated Sirius red staining, reduced α-SMA

protein expression (Fig. 4A; Suppl. Fig. 4B) and mRNA expressions of the pro-fibrotic
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markers collagen-1, connective tissue growth factor, TGF-β, fibronectin and α-SMA protein

(Fig. 4B,C).

PARP inhibition or genetic deficiency of PARP1 protects against oxidant-induced cell
death in primary hepatocytes in vitro

To gain functional insight into the mode of the regulation of hepatocyte death by PARP1,

primary hepatocytes were isolated from WT (PARP1+/+) or PARP1-/- mice and treated with

H2O2 either in the absence or presence of PARP inhibitors. Then cell death was determined

by flow cytometry at 16h. Genetic deletion of PARP1 or its pharmacological inhibition

provided marked protection, predominantly by reducing the percentage of H2O2 induced

necrotic cell population (Fig. 5A), while only slightly affecting the percentage of the

apoptotic cell population (Fig. 5A).

PARP inhibition or genetic deficiency of PARP1 attenuates murine hepatic stellate cell
activation (HSC) in vitro

Activation of HSC and proliferation plays significant role in the liver fibrosis. Because

previous studies suggested that PARP1 activation leads to up-regulation of the production of

pro-fibrotic markers such as CTGF and TGF-β in kidney tubular epithelial and vascular

smooth muscle cells (14, 15), and we found attenuation of chronic CCl4-induced fibrosis

and expression of α-SMA by either PARP inhibition or deletion of PARP1, we examined

role of PARP1 in the process of HSC activation. HSCs were isolated from murine livers and

maintained for 7 days alone or in the presence or absence of PARP inhibitors, followed by

the determination of HSC activation markers by reverse transcription - quantitative PCR and

Western blotting. Both PARP inhibition with AIQ and PJ34 or genetic deletion of PARP1

significantly attenuated stellate cell activation, as evidenced by the significant attenuation of

the mRNA expression of the HSC activation markers α-SMA, CTGF, collagen-1,

fibronectin and TGFβ (Fig. 5B), and protein expression of α-SMA and collagen-1 (Fig.

5C). These data suggest that PARP1 plays an important role in the HSC activation.

Pharmacological inhibition of PARP reverses chronic CCl4-induced liver injury and
fibrosis

In the next series of experiments we have delayed the start of PARP inhibitor treatment to 4

weeks after the start of CCl4 administration. This is a time point when significant fibrosis

and stellate cell activation are already developed (Figs. 2,4; Suppl. Fig. 4). PARP inhibitor

treatment continued for an additional 4-week period in the presence of CCl4. Using this

protocol we were able to determine whether the development of fibrosis could be attenuated

when PARP inhibition is applied to an on-going pro-fibrotic process. Treatment of mice

with CCl4 for 8 weeks induced significant histopathological liver injury (Fig. 6A) and

fibrosis (Fig. 6B-D), characterized by a significant elevation in ALT levels (Fig. 6A),

increased Sirius red staining and α-SMA expression (Fig. 6B,C; Suppl. Fig. 5), as well as an

enhanced mRNA expression of the pro-fibrotic markers collagen-1, CTGF, TGF-β and

fibronectin (Fig. 6D) and hydroxyproline (Fig. 6E), all quantified at 8 weeks. When 4 weeks

of chronic CCl4 treatment was followed by 4 weeks of CCl4 in the presence of either of the

two PARP inhibitors (PJ34 or AIQ), the degree of liver injury, quantified at the end of the

experiments (8 weeks after the start of CCl4) was markedly attenuated compared to the
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group that received CCl4 for 8 weeks without PARP inhibitors (Fig. 6). These findings

indicate that PARP inhibition enhances the recovery of liner injury and attenuates the

development of further fibrosis even when it is administered at a stage of the disease where

established fibrosis is present and all relevant pro-fibrotic pathological processes continue.

Pharmacological inhibition of PARP attenuates the bile duct ligation (BDL)-induced liver
fibrosis

The limitation of the CCl4-induced hepatic fibrosis model is that it largely depends on

repetitive parenchymal injury evoked by multiple doses of CCl4. Therefore, we also

investigated the effects of PARP inhibition using the bile duct ligation (BDL) -induced liver

fibrosis model, which is characterized by less parenchymal injury (Fig. 7). Two weeks

following BDL there was marked increase in hepatic periductal fibrosis (Sirius red staining,

Fig. 7A) and mRNA expressions of various pro-fibrotic mediators (Fig. 7B). These

pathological changes were largely attenuated by treatment with PARP inhibitors (Fig.

7A,B), suggesting that PARP inhibition also exerts direct inhibitory effects on fibrotic

process, in addition to attenuating parenchymal injury.

PARP activity is elevated in human subjects with alcoholic and viral hepatitis-induced
cirrhosis

To determine whether human liver fibrosis is also associated with PARP-1 activation, we

have measured PARP-1 activation in hepatic tissues obtained from subjects with either

alcoholic- or viral hepatitis-induced cirrhosis (Fig. 8A). There was a significant increase in

PARP activity (∼3 fold) in these tissues, when compared with control subjects, which was

also associated with increased tissue levels of 3-NT (Fig. 8B). The increased PARP activity

was also corroborated by the detection of increased amounts of poly(ADPribosyl)ated

proteins in hepatic tissue lysates from subjects with liver fibrosis (Fig. 8C).

Discussion

The novel findings arising from our study are: (a) pharmacological inhibition of PARP or

genetic deletion of PARP1 ameliorates the acute and chronic CCl4 treatment-induced

oxidative stress, liver injury and inflammation in murine models; (b) pharmacological

inhibition of PARP or genetic ablation of PARP1 also attenuates liver fibrosis induced by

chronic CCl4 exposure; (c) inhibition of PARP or genetic deletion of PARP1 in hepatocytes

protects these cells from oxidant induced cell necrosis; (d) inhibition of PARP or genetic

deletion of PARP1 abrogates HSCs activation; (e) PARP inhibitors facilitate the recovery of

the liver after established liver fibrosis and also attenuate the development of fibrosis

induced by BDL, which is less dependent on parenchymal injury; (f) PARP inhibitors

facilitate the recovery of mitochondrial and various metabolic functions; (g) PARP1 activity

and PAR accumulation is markedly enhanced in hepatic tissues obtained from patients with

liver cirrhosis. These results indicate that oxidative stress and PARP1 play important

pathogenetic roles in liver injury, metabolism, inflammation and fibrosis.

Shiobara and colleagues have reported increased PARP1 expression, activity and PAR

accumulation in hepatic tissues from patients with liver cirrhosis and hepatocellular
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carcinoma (17), which is in agreement with our results. The pathogenetic mechanisms

involved in liver fibrogenesis, include oxidative stress and demise of hepatocytes,

involvement of an inflammatory cascade resulting in Kupffer cells and HSCs activation,

deposition of extracellular matrix, infiltration of inflammatory cells(3, 18). Given the

important role of PARP1 in the promotion of oxidative stress-induced cell death,

metabolic(9-12) and inflammatory processes(5-7) we hypothesized that PARP1 may

represent a key checkpoint in liver fibrosis, and its inhibition could be of therapeutic

potential. To gain functional insights on the role of PARP1 in hepatic inflammation,

metabolism, and fibrogenesis, we have employed a well-established liver injury models

induced by CCl4, and investigated whether PARP inhibition or genetic deletion of PARP1

ameliorates liver inflammation, extracellular matrix deposition and hepatic cellular injury

resulting in fibrosis.

CCl4 is metabolized in the liver by cytochrome P450 to generate corresponding free

radicals, that attacks the hepatocytes, induces the necrosis of parenchymal cells, augmenting

the inflammatory cascade in the liver(18). Consistent with previous studies, we observed

that CCl4 administration induced marked hepatic injury, oxidative stress, inflammatory cell

infiltration, and impaired liver function. In line with the aforementioned role of PARP1 in

mediating cell death and pro-inflammatory responses, here we found that loss of PARP1 or

its inhibition was associated with attenuated CCl4-induced hepatic injury and inflammation.

Hepatic fibrogenesis develops on the basis of pre-existent and continuous liver injury, in

part due to inflammatory cell infiltration(19). Chronic alterations in hepatic homeostasis are

believed to transduce various pro-inflammatory and pro-oxidant signals involved in

fibrogenesis(20). Activation of HSC are generally triggered by various cytokines/

chemokines and oxidants, including potent mitogens such as platelet derived growth factor

and epidermal growth factor(21, 22). Activated Kupffer cells also secret TGF-β, which

causes HSC activation(3). Recently, the pivotal role linking PARP1 activation and the pro-

fibrotic gene expression such as TGF-β and CTGF has been documented in vascular smooth

muscle cells and renal proximal tubular epithelial cells in vitro(14, 15). Furthermore, PARP1

inhibition has been found to abrogate, unilateral ureter obstruction induced CTGF

expression and renal interstitial fibrosis(14). CTGF and TGF-β have been also shown to be

pivotal mediators of hepatic fibrogenesis(23, 24). Consistent with these observations, we

have observed that PARP inhibition/genetic deletion abrogated the CCl4 induced HSC

activation and fibrogenesis.

Necrosis of hepatic parenchymal cells is both the consequence of liver injury, as well as an

active player in the promotion of local pro-inflammatory processes, which may contribute to

the activation of HSCs(2). Profibrotic responses can also be triggered by hepatocyte cell

death(25). Thus, pharmacological agents, which could selectively block the death of

hepatocytes, may also prevent Kupffer cell and HSC activation and consequent fibrosis. In

fact, our in vitro and in vivo experiments show that PARP inhibition or genetic deletion of

PARP1 attenuates hepatocyte necrosis and inflammatory response. It is likely that the net

effect of these processes is the interruption of multiple positive feed-forward cycles of pro-

inflammatory mediator production, pro-fibrotic mediator production, cell death and

oxidative and metabolic stress. The attenuation of oxidative and nitrative markers by PARP1
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deficiency and by PARP1 inhibitors, in fact, points to the existence of such feed-forward

cycles, and their interruption in the absence of functional PARP1. However, our results,

demonstrating that PARP inhibition also attenuates the BDL-induced hepatic fibrosis in

vivo, which is less dependent on parenchymal injury, coupled with attenuation of stellate cell

activation by genetic deletion of PARP1 or its pharmacological inhibition in vitro, strongly

suggest that PARP1 may also have direct regulatory effects on fibrotic processes,

independent on protecting from parenchymal injury and inflammation.

Recently studies also revealed an important role of PARP1, and the significantly less

abundant PARP2, in regulating cellular metabolism (e.g. mitochondrial function,

mitochondrial biogenesis, adipogenesis, among others) in multiple organ systems (including

in the liver) via modulation of cellular NAD+ supply, and consequently NAD+-dependent

deacetylase enzyme functions(9-12). Our observation that PARP inhibition attenuated the

CCl4-induced mitochondrial dysfunction, decline in mitochondrial number, dysregulation of

various key genes involved in metabolism, also in agreement with important role of PARP1

in metabolic regulation. Furthermore, these results also provide the in vivo proof of the

concept support for an elegant recent study demonstrating that PARP inhibition through

increased cellular NAD+ levels led to improved mitochondrial homeostasis in worms and

various mammalian cells, which was dependent on the activation of the worm sirtuin

homolog sir-2.1 and involved induction of mitonuclear protein imbalance, as well as

activation of stress signaling via the mitochondrial unfolded protein response with

consequent nuclear translocation and activation of FOXO transcription factor DAF-16,

promoting longevity(13).

PARP inhibitors also exert beneficial effects in preclinical and clinical models of cancers via

multiple mechanisms involving attenuation of cancer cell proliferation and migration,

decrease of angiogenesis, modulation of the tumor pro-inflammatory environment, and

promotion of cancer cell demise. The selective promotion of apoptotic cell death in cancer,

but not in normal cells by PARP inhibitors is based on the novel approach of “ synthetic

lethality ” in cancer therapy, because in certain cancers with selective defects in homologous

recombination repair (cancer cells frequently harbor defects in DNA repair pathways leading

to genomic instability) inactivation of PARP1, and possibly other minor isoforms of PARP,

directly causes cell death. Because of this, several classes of ultrapotent PARP inhibitors are

currently in clinical trials for the experimental therapy of various malignancies, including

triple-negative breast and ovarian cancers(26). The initial concern with chronic PARP

inhibition was the potential genomic instability and “ premature aging ” of cells. However,

the recent study demonstrating that reduced PARP activity extends lifespan in worms(13),

coupled with improved cardiovascular function and energetics in aging rats chronically

treated with PARP inhibitors(27, 28), argues that PARP inhibitors will be well tolerated

even during prolonged use in humans.

Our results, demonstrating the pivotal pathogenetic role of PARP1 in liver fibrosis, and the

potential of PARP1 inhibitors in restoring liver function after fibrosis, coupled with the

clinical availability of PARP1 inhibitors, suggest that re-purposing of PARP1 inhibitors for

the treatment of liver diseases associated with injury, inflammation and fibrosis may be of

future potential clinical utility.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Genetic ablation of PARP1 attenuates CCl4-induced chronic liver injury and inflammation
Livers of mice treated exposed to CCl4 for 4 weeks were excised and processed for histological and biochemical investigations.

Part (A) shows representative H&E stained images of liver sections. The scale depicts 100 μm. (B): Serum ALT levels in the

respective groups, n=6-8/group, *P<0.05 vs. WT (PARP1+/+)/PARP1-/- mice treated with vehicle; #P<0.05 vs. WT+CCl4. Part

(C) depicts oxidative/nitrative stress markers 4-HNE and 3-NT, n=8/group, *P<0.05 vs. WT/PARP1-/- mice treated with vehicle;

#P<0.05 vs. WT+CCl4. Part (D) shows the mRNA expression of pro-inflammatory cytokines (TNF- α, IL1- β) and chemokines

(MIP1- α, MIP2, MCP-1) in hepatic tissues following 4 weeks of CCl4 administration. n=8/group, *P<0.05 vs. WT/PARP1-/-

mice treated with vehicle; #P<0.05 vs. WT+CCl4.
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Fig. 2. Genetic ablation of PARP1 attenuates CCl4 induced chronic liver fibrosis
Part (A) shows representative images of paraffin embedded liver sections stained with Sirius red, a marker of fibrosis, and its

quantification from n=4-7 livers/group. The scale depicts 100 μm. Part (B) shows mRNA expression of fibrosis markers

(collagen-1, CTGF, TGF- β, and fibronectin) and part (C) denotes the levels of hydroxyproline in hepatic tissues from respective

groups of mice exposed to CCl4 for 4 weeks, n=8/group, *P<0.05 vs. WT(PARP1+/+)/PARP1-/- mice treated with vehicle; #

P<0.05 vs. WT+CCl4.
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Fig. 3. Pharmacological inhibition of PARP ameliorates CCl4-induced chronic liver injury, mitochondrial dysfunction, metabolic
dysregulation and inflammation

Part (A) shows representative H&E images from the respective groups (the scale depicts 100 μm) and serum ALT levels. Part

(B) shows hepatic myeloperoxidase (MPO) activities (marker of neutrophil infiltration) and mRNA expression of pro-

inflammatory cytokines (TNF-α, IL1-β) and chemokines (MIP1-α, MIP2, MCP-1) in hepatic tissues following 4 weeks of

chronic CCl4 exposure, respectively. Part (C) shows determination of mitochondrial DNA content(left) and quantification of

mitochondrial complex 1(I), 2(II) and 4(IV) activities(right). Part (D) shows expression of several mitochondrial respiration and

uncoupling genes by Realtime PCR. Part (E) shows quantification of fatty acid oxidation (left), fatty acid synthesis (middle) and

glucose metabolism (right) genes. All mRNA level is measured by Realtime PCR. n=6-12/group for experiments in panels A-E.

*P<0.05 vs. vehicle; #P<0.05 CCl4 vs. CCl4+PJ34/AIQ.
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Fig. 4. Pharmacological inhibition of PARP mitigates CCl4-induced chronic liver fibrosis
Part (A) shows representative images of paraffin embedded liver sections stained with Sirius red, a marker of fibrosis, and its

quantification from n=4-7 livers/group. The scale depicts 100 μm. Part (B) shows mRNA expression of fibrosis markers

(collagen-1, CTGF, TGF-β, and fibronectin) in the hepatic tissues following 4 weeks of chronic CCl4 exposure, n=8/group,

*P<0.05 vs. vehicle/PJ34/AIQ alone; #P<0.05 CCl4 vs. CCl4+PJ34/AIQ. Part (C) is a representative immunoblot of α-SMA

(marker of stellate cell activation) in the hepatic tissue lysates from the respective groups.
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Fig.5. PARP inhibition or genetic deficiency of PARP1 protects against oxidant induced cell death in primary mouse hepatocytes and
attenuates hepatic stellate cell activation

Part (A): isolated mouse primary hepatocytes from either WT (PARP1+/+) or PARP1-/- mice were treated with hydrogen

peroxide (H2O2; 3 mM) in the presence or absence of PARP inhibitors (AIQ and PJ34, 10 μM) for 16hr and normal cell

population and populations of cells exhibiting the marks of either necrotic or apoptotic death were simultaneously determined by

flow cytometry as described in Supplemental Methods. n=6-8/group, *P<0.05 vs. vehicle/PJ34/AIQ alone or PARP1+/+ cells

treated with vehicle; #P<0.05 H2O2 vs. H2O2+PJ34/AIQ, respectively. (B): Hepatic stellate cells were isolated from WT

(PARP1+/+) or PARP1-/- mice, and were maintained in the 10% FBS medium alone or with PARP inhibitors for 7 days and

mRNA expression (Fig. 5B) or protein (Fig. 5C) of stellate cell activation and fibrosis markers (collagen-1, CTGF, TGF-β, and

fibronectin) were determined, n=6-8/group, *P<0.05 vs. vehicle at Day 1 vs. Day 7 with or without PARP inhibitors; #P<0.05

vehicle at 7 days vs. AIQ/PJ34 at 7 days or PARP+/+ vs. PARP-/- cells at Day 7.
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Fig. 6. Pharmacological inhibition of PARP attenuates the established liver injury and fibrosis
Initially mice were treated with CCl4 or vehicle for 4 weeks. After reaching 4 weeks of CCl4 or vehicle treatment mice

continued to receive CCl4, vehicle, PARP inhibitors alone or PARP inhibitors in combination with CCl4 for additional 4 weeks.

(A): Representative H&E images of liver sections and serum ALT levels. The scale depicts 100 μm. Part (B) shows the

representative liver sections stained for Sirius red. The scale depicts 100 μm. Part (C) shows quantification of fibrosis based on

Sirius red staining from 4-7livers/group. Part (D) depicts mRNA expression of fibrotic markers (collagen-1, CTGF, TGF-β, and

fibronectin) and part (E) demonstrates the changes in hydroxyproline content in the hepatic tissues of mice exposed to CCl4 for

8 weeks or CCl4 for 8 weeks+PARP inhibitors (AIQ/PJ34) during the last 4 weeks of the CCl4 administration, n=8/group,

*P<0.05 vs. vehicle/PJ34/AIQ alone; # P< 0.05 CCl4 vs. CCl4 + PJ34/AIQ.
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Fig. 7. Pharmacological inhibition of PARP attenuates the bile duct ligation (BDL)-induced liver fibrosis
(A): Representative liver sections stained for Sirius red 2 weeks following the induction of BDL (left) and quantification of

fibrosis staining (right) from n=4-7 livers/group. The scale depicts 100 μm. Part (B) depicts mRNA expression of fibrotic

markers (collagen-1, CTGF, TGF-β, and fibronectin) in the hepatic tissues of mice exposed to BDL for 2 weeks or BDL for 2

weeks+PARP inhibitors (AIQ/PJ34) during the 2 weeks period, n=8/group, *P<0.05 vs. vehicle; # P< 0.05 BDL vs. BDL+ PJ34/

AIQ.
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Fig. 8. PARP activation in hepatic tissues from human subjects with alcoholic and viral hepatitis B-induced cirrhosis
Part (A) shows PARP activation in hepatic tissues obtained from human subjects with HBV-induced or alcoholic cirrhosis, n=6/

group, P<0.05 vs control subjects. Part (B) depicts the amounts of the oxidative/nitrative marker 3-NT levels in the respective

groups, n=6, P<0.05 vs. control subjects. Part (C) shows a representative immunoblot for poly(ADP-ribose) [PAR] proteins of

the hepatic tissue lysates from the respective groups. Note the enhanced PAR proteins in the samples obtained from subjects

with alcoholic cirrhosis or viral hepatitis.
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