
F1000Research

Article Status Summary

Referee Responses

, St. George's Hospital andJeremy Stern

Medical School UK

, Hannover MedicalKirsten R Müller-Vahl

School Germany

Latest Comments

No Comments Yet

2

1

RESEARCH ARTICLE

A pilot study of basal ganglia and thalamus structure by high
 dimensional mapping in children with Tourette syndrome [v1; ref

status: indexed, http://f1000r.es/1yu]

Alton C. Williams , Marie E. McNeely , Deanna J. Greene , Jessica A. Church ,1 2,3 4-6 6,7

Stacie L. Warren , Johanna M. Hartlein , Bradley L. Schlaggar , Kevin J.4,8 4,6 5,6,9,10

Black , Lei Wang4-6,9 4,11,12

Washington University School of Medicine, St. Louis, MO 63110, USA1

Division of Biology and Biomedical Sciences, Washington University, St. Louis, MO 63110, USA2

Current affiliation: Centene Corporation, St. Louis, MO 63105, USA3

Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA4

Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA5

Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA6

Current affiliation: Department of Psychology in The College of Liberal, University of Texas- Austin, Austin, TX 78712, USA7

Current affiliation: Department of Mental Health, St. Louis VA Medical Center, St. Louis, MO 63110, USA8

Department of Anatomy & Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA9

Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA10

Current affiliation: Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine Chicago,11

Chicago, IL 60611, USA
Current affiliation: Department of Radiology, Northwestern University Feinberg School of Medicine Chicago, Chicago, IL 60611, USA12

Abstract
Prior brain imaging and autopsy studies have suggested that: Background  

structural abnormalities of the basal ganglia (BG) nuclei may be present in
Tourette Syndrome (TS). These studies have focused mainly on the volume
differences of the BG structures and not their anatomical shapes.  Shape
differences of various brain structures have been demonstrated in other
neuropsychiatric disorders using large-deformation, high dimensional brain
mapping (HDBM-LD).  A previous study of a small sample of adult TS patients
demonstrated the validity of the method, but did not find significant differences
compared to controls. Since TS usually begins in childhood and adult studies
may show structure differences due to adaptations, we hypothesized that
differences in BG and thalamus structure geometry and volume due to
etiological changes in TS might be better characterized in children.

Pilot the HDBM-LD method in children and estimate effect sizes.: Objective
 In this pilot study, T1-weighted MRIs were collected in 13 children:Methods

with TS and 16 healthy, tic-free, control children. The groups were well
matched for age.  The primary outcome measures were the first 10
eigenvectors which are derived using HDBM-LD methods and represent the
majority of the geometric shape of each structure, and the volumes of each
structure adjusted for whole brain volume. We also compared hemispheric
right/left asymmetry and estimated effect sizes for both volume and shape
differences between groups.

 We found no statistically significant differences between the TS:Results
subjects and controls in volume, shape, or right/left asymmetry.  Effect sizes
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subjects and controls in volume, shape, or right/left asymmetry.  Effect sizes
were greater for shape analysis than for volume.

 This study represents one of the first efforts to study the shape as:Conclusion
opposed to the volume of the BG in TS, but power was limited by sample size.
Shape analysis by the HDBM-LD method may prove more sensitive to group
differences.

 Kevin J. Black ( )Corresponding author: kevin@wustl.edu
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Introduction
Tourette syndrome (TS) is a chronic idiopathic syndrome character-
ized by the appearance of both vocal and motor tics during child-
hood or adolescence1,2. Tics are repetitive, stereotyped, suppressible 
movements or vocalizations that may include blinking, abdominal 
tensing, sniffing, or throat clearing3. TS affects approximately 0.5% 
of school-age children, but its causes and pathophysiology are not 
yet well understood4.

It has been suggested that problems with activity modulation in the 
basal ganglia and thalamus may contribute to the inability of TS pa-
tients to exercise behavioral inhibition5,6 as a result of these structures’ 
effects on behavioral inhibition via the prefrontal, parietal, temporal, 
and cingulate cortices7. The basal ganglia and thalamus modulate cor-
tical activity through cortico-basal ganglia-thalamo-cortical loops, 
composed of connections from the frontal cortex to the striatum, 
the striatum to the globus pallidus, substantia nigra, and thalamus, 
and the thalamus back to the cortex8.

Several lines of evidence support the presence of structural abnor-
malities in basal ganglia nuclei in individuals with TS4. Autopsy 
studies have found abnormalities within the basal ganglia, includ-
ing increased number of neurons in the globus pallidus interna, de-
creased density and number of neurons in the globus pallidus pars 
externa, and decreased parvalbumin and choline acetyltransferase 
staining cholinergic interneurons in the caudate nucleus and puta-
men9,10. However, since TS is rarely a fatal disease, the number of 
autopsied cases is limited11. Case studies of focal brain lesions have 
demonstrated new tic onset after lesions to the prefrontal cortex, 
thalamus, and basal ganglia12. In addition, encephalitis lethargica, 
frontal lobe degeneration, Huntington disease, Wilson disease, and 
other degenerative illnesses are associated with tics12. Further, some 
TS patients have benefitted from deep brain stimulation of the globus 
pallidus and thalamus in TS13–16. Collectively, these observations sug-
gest a role for the basal ganglia, thalamus, and frontal cortex in tics.

Neuroimaging studies can be especially beneficial for studying 
structural abnormalities because they allow longitudinal study de-
sign, reduced investigator and sampling bias, and are relatively 
non-invasive. A number of MRI studies have examined anatomical 
volumes and cortical thickness in children and adults with TS and re-
ported significant differences in various brain regions, including the 
caudate, sensorimotor and prefrontal cortex, and corpus callosum17. 
Most consistently, basal ganglia volumes were found to be smaller 
in TS subjects compared with healthy controls, but neuroanatomi-
cal shape differences and asymmetry abnormalities have not yet 
been consistently described18–24.

Large-deformation high dimensional brain mapping (HDBM-LD) is 
a computational anatomy tool that reduces the potential for human 
error in image analysis by further automating elements of image 
analysis. It has been successfully employed in characterizing shape 
and volume abnormalities of the hippocampus in neuropsychiatric 
disorders such as schizophrenia25–27, dementia of the Alzheimer 
type28–31, depression32 and epilepsy33. It has also been applied to ex-
amine the thalamus in schizophrenia34.

HDBM-LD was applied to assess volume and shape differences 
in putamen, caudate nucleus, nucleus accumbens, globus pallidus, 
and thalamus in 15 adults with TS and 15 matched controls. No 
differences in volume or shape were found35. However, TS begins 
before adulthood. Several structural imaging studies in TS have 
found an interaction between regional brain volumes and age21,22. 
It has been suggested that differences seen in adult studies may 
reflect adaptations or selection bias rather than changes etiologi-
cally relevant to TS20. Thus the present study applied HDBM-LD 
to investigate the volume and shape of these structures in children. 
We hypothesized that we would find reduced volume, abnormal 
shape, or abnormal right-to-left asymmetry in one or more of these 
structures, compared to age-matched controls. Given that there 
were no prior studies using the HDBM-LD method to analyze 
brain structures of children with TS in the literature, another goal 
of this pilot study was to estimate the effect size of these measures 
in this population.

Materials and methods
Ethics statement
A parent of each subject gave written informed consent to partici-
pate in the study, and each subject assented to participation. The 
study was approved by the Washington University Human Studies 
Committee (approval # 03-1282).

Participants
This study included 13 children with TS (mean age (SD) = 12.44 
(2.22), 3 female, 12 right-handed) and 16 healthy controls (mean 
age (SD) = 12.39 (1.92), 2 female, 15 right-handed). A movement 
disorders-trained physician examined all TS subjects and 10 of the 
control subjects. The remaining control subjects underwent neu-
ropsychological evaluation as described previously36. Exclusion 
criteria were: inability to give informed consent, contraindication to 
MRI, currently symptomatic major depression, or lifetime history 
of mental retardation, autism, psychosis, mania, anorexia, bulimia, 
or drug abuse. All TS subjects met DSM-IV-TR criteria either for 
Tourette’s Disorder or Chronic Tic Disorder. Disease duration and 
severity and other clinical characteristics are summarized in Table 1.

Image acquisition and preprocessing
A 1.5 T Siemens Vision system with a standard head receiver coil 
was used to collect T1-weighted MR structural images. Prior to 
scanning sessions, the transmitter was tuned and the main field 
was shimmed. Anatomic images used a 3D T1-weighted sequences 
(MPRAGE, 1x1x1.25 mm3 voxels)37. Individual MPRAGE collec-
tions lasted approximately 6.5 minutes.

Initial image processing was done as described previously35,38. Us-
ing AnalyzeTM software (Rochester, Minnesota), images were lin-
early rescaled so that voxels with intensity two standard deviations 
above the mean in the corpus callosum were mapped to 255, and 
voxels with intensity levels two standard deviations below the mean 
in the lateral ventricles were mapped to 0.

Whole-brain volume for each subject, excluding the ventricles, was 
obtained from FreeSurfer (http://surfer.nmr.mgh.harvard.edu/)39.
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Large-Deformation High-Dimensional Brain Mapping 
(HDBM-LD)
HDBM-LD was used to determine the volume and shape of the 
brain structures of interest in all subject scans, as described in de-
tail elsewhere35. Briefly, on each subject’s brain image, a single rater 
(MEMcN) marked 27 points on the boundaries of the basal ganglia 
and thalamus in each hemisphere, which were used as an initial step 
to roughly align the brain image to a labeled standard brain image 
(template). From this starting point a differentiable, invertible trans-
formation was computed that mapped all voxels of the subject’s im-
age to the template. Using this transformation, the labels on the tem-
plate image are automatically assigned to the corresponding voxels of 
each subject’s image. The authors checked the segmentation of each 
subject’s MR image by visual inspection. This method is extremely 
reliable and has been validated against expert manual tracings35.

Brain structure volume and shape analysis
All brain structure volume and shape analysis methods were con-
ducted as described previously35. We examined five structures: cau-
date nucleus, nucleus accumbens, globus pallidus, putamen, and 
thalamus. Volume for each structure was analyzed using a repeated 

measures ANCOVA, with diagnostic group as the between-subjects 
factor, brain hemisphere as the within-subjects factor, and age and 
whole brain volume as covariates. The degree of volumetric asym-
metry was examined with the hemisphere effect, and group differ-
ences in volumetric asymmetry were assessed by examining the 
group-by-hemisphere interactions. We also analyzed the total (left 
and right hemisphere) structure volumes using an ANCOVA. The 
volume ANCOVAs were repeated with other covariates and factors, 
including estimated total intracranial volume, sex and handedness, 
none of which substantively changed the results.

Brain structure shapes were determined from the inter-subject de-
formation vector fields provided by the HDBM-LD transforma-
tions. Eigenvalues and a complete orthonormal set of eigenvectors 
representing shape variation were obtained using singular value 
decomposition (SVD) of the pooled covariance in the population 
studied. The coefficients (eigenscores) associated with the eigen-
values and eigenvectors were calculated for each subject and for 
each structure in each hemisphere35,40. We used the eigenscores 
based on the first ten eigenvectors for each structure in each hemi-
sphere in a multivariate ANCOVA to test for group differences in 

Table 1. Subject characteristics.

TS group Control group

n 13 16

Age at scan (mean ± sd) 12.44 ± 2.22 12.39 ± 1.92

Sex 3F/10M 2F/14M

Handedness 12R/1A 15R/1L

Years since onset of tics ± sd 4.31 ± 2.69 NA

YGTSS total tic score* ± sd 19.00 ± 11.66 NA

Number with ADHD diagnosis 4 0

Number with OCD diagnosis 5 0

Number who reported currently taking medication:

Atypical neuroleptics 1 0

Typical neuroleptics 1 0

Stimulants 1 0

Benzodiazepines 0 0

Selective serotonin reuptake inhibitors 3 0

alpha-2 agonists 5 0

Tricyclic antidepressants 2 0

Tetracyclic antidepressants 1 0

1st generation antihistamines 2 0

Number who reported past use of medication:

Atypical neuroleptics 1 0

Typical neuroleptics 1 0

Stimulants 3 0

Benzodiazepines 1 0

Selective serotonin reuptake inhibitors 1 0

alpha-2 agonists 5 0

Tricyclic antidepressants 0 0

Tetracyclic antidepressants 0 0

*YGTSS total tic score includes only the motor tic and vocal tic subscores for a maximum of 50 
points. R = right-handed, L = left-handed, A = ambidextrous.
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shape. These first ten eigenscores explained 81–92% of the total 
variance for each structure.

Data file (subject characteristics, volume and shape)

1 Data File

http://dx.doi.org/10.6084/m9.figshare.811811

Results
Volume
Repeated-measures ANCOVAs showed no significant group effect 
for any structure. Structural volumes and ANCOVA statistics are 
shown in Table 2. Additionally, no significant hemisphere effects 
or group by hemisphere interactions were seen for any of the five 
structures examined (see Table 2).

Shape
MANCOVAs (using the first ten eigenscores as dependent vari-
ables) for each structure in each hemisphere showed no significant 
group effect (see Table 3). Effect sizes (Cohen’s ƒ2) for both volume 
and shape are provided in Table 4; the effect sizes for the shape 
comparisons were larger than those for the volume comparisons.

Discussion
Using HDBM-LD, a validated method for automatic, high- 
dimensional mapping of basal ganglia and thalamic structures, we 
found no significant differences in basal ganglia volumes or shape 
between children with TS and matched control children. For most 
basal ganglia regions, this reflects the conclusions of a recent re-
view17. For instance, two groups found increased putamen volume 
in TS41,42, but a larger study found decreased volume43. However, the 
majority of these studies found no abnormality in putamen, similar 
to the current study. Three other studies, including the HDBM-LD 

Table 2. Volumes of the structures of interest (mm3).

TS (n = 13) Control (n = 16) ANCOVA statistics 
(hemisphere by dx)

Mean (std) [95% CIs] mm3 Mean (std) [95% CIs] mm3 F df P

Caudate
L 
R 
T

3736 (271) 
3712 (545) 
7448 (731)

[3581, 3890] 
[3401, 4023] 
[7030, 7865]

3667 (270) 
3678 (543) 
7345 (729)

[3528, 3806] 
[3398, 3957] 
[6969, 7720]

 
0.040

 
1,25

 
0.84

Nucleus 
accumbens

L 
R 
T

460 (46) 
455 (50) 
915 (74)

[434, 487] 
[426, 483] 
[873, 957]

462 (46) 
456 (50) 
918 (73)

[438, 485] 
[430, 481] 
[880, 955]

 
0.000

 
1,25

 
0.996

Globus pallidus
L 
R 
T

1826 (126) 
1859 (145) 
3685 (248)

[1754, 1898] 
[1776, 1942] 
[3544, 3827]

1804 (125) 
1800 (144) 
3603 (247)

[1739, 1868] 
[1726, 1874] 
[3476, 3730]

 
0.768

 
1,25

 
0.39

Putamen
L 
R 
T

5925 (367) 
5822 (401) 
11748 (724)

[5716, 6135] 
[5593, 6052] 
[11334, 12161]

5705 (365) 
5671 (399) 
11376 (721)

[5517, 5893] 
[5465, 5877] 
[11005, 11748]

 
0.487

 
1,25

 
0.49

Thalamus
L 
R 
T

8076 (557) 
8143 (480) 
16219 (805)

[7757, 8394] 
[7869, 8418] 
[15759,16679]

7931(555) 
7888 (478) 
15819 (802)

[7645, 8217] 
[7642, 8134] 
[15406,16232]

 
0.196

 
1,25

 
0.66

L = left, R = right, T = total volume. Repeated-measures ANOVA of each structure showed no significant group effect. Further, we found no 
hemisphere effect or group by hemisphere interactions for any of the structures (age and whole brain volume w/out ventricles as covariates).

Table 3. Shape comparison of the thalamus and basal ganglia 
structures (TS vs. control).

MANCOVA 
statistics

Structure F df P

Nucleus accumbens L 
R

1.63 
1.91

10,17 
10,17

0.18 
0.11

Caudate L 
R

1.31 
.739

10,17 
10,17

0.30 
0.68

Globus pallidus L 
R

.231 

.848
10,17 
10,17

0.99 
0.59

Putamen L 
R

.285 

.740
10,17 
10,17

0.98 
0.68

Thalamus L 
R

.705 

.893
10,17 
10,17

0.71 
0.56

L = left, R = right, T = total volume. Multivariate analysis of the first 10 
eigenvectors of each structure showed no significant group effect (age as 
covariate).
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study in adults with TS, found no volumetric change in any basal 
ganglia structure35,44–46. Possibly there is no true difference in these 
structures in TS when groups are matched carefully for age, sex 
and handedness. Alternatively, structural abnormalities in TS may 
be limited to certain subgroups, such as those with more severe tics 
or with ADHD.

On the other hand, the largest published MRI study of basal gan-
glia volume compared 154 adults and children with TS to 130 tic-
free control subjects, and found that the caudate was 4.9% smaller 

in the TS group (p<0.01)43. Two other groups also found lower  
caudate volume in samples of 18–23 TS subjects and a similar num-
ber of controls23,24,47,48. The possible etiologic relevance of this find-
ing is highlighted by the observation that a smaller caudate nucleus 
in adolescents with TS predicts more severe symptoms in early 
adulthood49. The largest of the studies that did not find significant 
decreases in caudate volume was that of Roessner et al.42, which 
compared 55 subjects with TS to 42 control subjects. The other 
studies with negative findings regarding caudate volume, including 
the present one, had fewer than 20 TS subjects each. It is possible 
these negative results represent a Type II error.

The present study and the HDBM-LD study in adults represent 
some of the first efforts to study the shape (as opposed to the  
volume) of basal ganglia nuclei in TS, and provide effect size esti-
mates for planning a study with larger samples.
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Table 4. Effect sizes.

Partial η Cohen’s ƒ2 

Volumes (total structure volumes)

Caudate 5.51 × 10-3 5.54 × 10-3 

Nucleus accumbens 2.77 × 10-4 2.78 × 10-4 

Globus pallidus 2.94 × 10-2 3.03 × 10-2 

Putamen 6.79 × 10-2 7.29 × 10-2 

Thalamus 6.42 × 10-2 6.86 × 10-2 

Volumes (hemisphere * dx effects)

Caudate 2.00 × 10-3 2.00 × 10-3 

Nucleus accumbens 1.22 × 10-6 1.22 × 10-6 

Globus pallidus 3.00 × 10-2 3.09 × 10-2 

Putamen 1.90 × 10-2 1.94 × 10-2 

Thalamus 8.00 × 10-3 8.06 × 10-3 

Shapes (principal components):

Left

Caudate 0.436 0.773

Nucleus accumbens 0.490 0.961

Globus pallidus 0.120 0.136

Putamen 0.144 0.168

Thalamus 0.293 0.414

Right

Caudate 0.303 0.435

Nucleus accumbens 0.530 1.128

Globus pallidus 0.333 0.499

Putamen 0.303 0.435

Thalamus 0.344 0.524
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In this study a relatively new and sophisticated method (using large-deformation, high dimensional brain
mapping (HDBM-LD)) has been used to investigate for the first time structure geometry and volume of
basal ganglia and thalamus in 13 children with Tourette syndrome (TS) compared to 16 healthy controls.
Comparable to a prior study in adults with TS performed by the same group, no significant differences
could be detected in volume, shape, or right/left asymmetry.
 
These findings are in contrast to several other studies suggesting a reduction of the volume of the
caudate in both children and adults with TS. The major limitation of this study is the small sample size and
the heterogeneity of the patients’ group with respect to comorbidities and medication. In particular,
medication with neuroleptic drugs might have influenced the results, since there is evidence that exposure
to antipsychotic medication may cause basal ganglia enlargement. However, the study has also several
strengths including the well experienced team of researchers, low age range and inclusion of children
only, and excellent matching for age, sex, and handedness. I enjoyed reading the discussion, because
results obtained in children were not mixed with those in adults.
 
The introduction would benefit from a more precise clinical description. For example: tics are no longer
characterized as “stereotyped” movements, abdominal tension is an untypical example for a motor tic,
and tics “may” be associated with other disorders such as Wilson’s and Huntington’s disease. The title
and abstract are appropriate.
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small number of subjects with heterogeneity of comorbidities and medication history the negative result
here cannot be definitive, as suggested in the discussion.

A common group of core authors in a small number of sites published the previous HDBM-LD work and
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alone.
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