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Abstract
Conditional Poisson models have been used to analyze vaccine safety data from self-controlled
case series (SCCS) design. In this paper, we derived the likelihood function of fixed effects
models in analyzing SCCS data and showed that the likelihoods from fixed effects models and
conditional Poisson models were proportional. Thus, the maximum likelihood estimates (MLEs)
of time-varying variables including vaccination effect from fixed effects model and conditional
Poisson model were equal. We performed a simulation study to compare empirical type I errors,
means and standard errors of vaccination effect coefficient, and empirical powers among
conditional Poisson models, fixed effects models, and generalized estimating equations (GEE),
which has been commonly used for analyzing longitudinal data. Simulation study showed that
both fixed effect models and conditional Poisson models generated the same estimates and
standard errors for time-varying variables while GEE approach produced different results for some
data sets. We also analyzed SCCS data from a vaccine safety study examining the association
between measles mumps-rubella (MMR) vaccination and idiopathic thrombocytopenic purpura
(ITP). In analyzing MMR-ITP data, likelihood-based statistical tests were employed to test the
impact of time-invariant variable on vaccination effect. In addition a complex semi-parametric
model was fitted by simply treating unique event days as indicator variables in the fixed effects
model. We conclude that theoretically fixed effects models provide identical MLEs as conditional
Poisson models. Because fixed effect models are likelihood based, they have potentials to address
methodological issues in vaccine safety studies such as how to identify optimal risk window and
how to analyze SCCS data with misclassification of adverse events
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Introduction
The association between particular adverse events following immunization (AEFI) and
receipt of a specific vaccine has been studied using large electronically-linked health care
utilization databases [1–8]. As an example, the Vaccine Safety Datalink (VSD) project uses
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electronic data, including vaccination and diagnosis data, on 8.8 million managed care
enrollees to study not only common AEFIs (eg, fever, soreness), but also rare AEFIs (eg,
death, seizures, idiopathic thrombocytopenic purpura (ITP)).

Since individuals in observational settings such as the VSD are not randomly chosen to be
vaccinated, vaccinated and unvaccinated individuals may differ greatly and possibly in ways
related to the outcome of interest. This confounding bias, if not accounted for properly, may
invalidate analytic results of cohort studies. In addition, traditional study designs such as
matched cohort and case-control designs may not even be feasible for studying vaccine
safety because 1) the coverage of some vaccines is nearly 100%, so there are not enough
unvaccinated individuals to use for the control group; and 2) data are not collected in safety
surveillance system for those who did not experience/report an adverse event (eg, the
Vaccine Adverse Event Reporting System). For these reasons, a method known as the self-
controlled case series (SCCS) has been developed and widely used for vaccine safety studies
[7–11]. The SCCS is a case-only method in which a subject’s follow-up period is partitioned
into risk and control intervals. SCCS data are typically analyzed using conditional Poisson
models by conditioning on the marginal total number of adverse events that occurred in an
individual. The resulting likelihood kernel does not contain the individual-specific random
coefficients that explain each individual’s baseline risk for the event count of interest
(Farrington, 1995). By making within-person comparisons of incidence rates between
vaccine exposed and unexposed time intervals, conditional Poisson models implicitly adjust
for all time-invariant individual-level risk factors and potential confounders (measured and
not measured).

Several statistical software packages (i.e. STATA, SAS, GENSTAT) can be used for the
Poisson process to analyze SCCS data [10,12,13]. Although not explicitly mentioned, fixed
effects models were used to analyze SCCS data in a tutorial paper by Whitaker et al. [10].
SCCS data have a longitudinal data structure in which multiple observations are those
intervals defined by vaccination exposure status and time-varying covariates on an
individual. The number of observations depends on the number of risk levels and levels of
time-varying covariates. Fixed effects models have been used for analyzing data with
multiple observations on an individual in cohort studies, randomized or observational [14].
They do not assume distributions for the individual-specific random coefficients. The
random coefficients are instead estimated from the data as fixed effects in the fixed effects
models.

In this paper, we demonstrate that the likelihoods from the fixed effects model and the
conditional Poisson model are proportional when analyzing SCCS data. We show that by
simulation, fixed effects models and conditional Poisson models typically used for SCCS
data analysis are equivalent in estimating vaccination effects. We also compared these two
approaches to a generalized estimating equation approach (GEE) [15,16], which is widely
used for longitudinal data analysis. We furthermore demonstrate that fixed effects models
have numerous advantages over the conditional Poisson models when analyzing a SCCS
example.

Methods
Conditional Poisson models for self-controlled case series design

If a Poisson process is assumed for the unrestricted population in a cohort design, the
likelihood function, conditioning on each individual’s total number of adverse events is a
multinomial kernel, containing only the parameters βs for time-varying covariates including
the exposure effect β1. Since the individual effects are canceled out in this analysis, it is not
to be expected that any assumption of their distribution would influence the inference of βs.
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The multinomial term is zero for all individuals with no adverse event. Thus, individuals
without adverse events do not contribute in parameter estimation.

Suppose we have a sample of n individuals with adverse events. Let R = exp(β1) denote the
incidence rate ratio for the vaccination effect where β1 is the model coefficient for the
vaccination effect. Farrington (1995) proposed a conditional Poisson model that uses only
cases, vaccinated and unvaccinated. The conditional Poisson likelihood kernel is the product
of the likelihood kernel across subjects which is of the following form for the ith subject

(1)

Here, Xij is the row vector of time-varying covariates including indicator variables for age
effects and vaccination effect, β is a column vector of corresponding coefficients including
β1, tij is the person-time (in days) for subject i in interval j, and yij is the corresponding
number of adverse events for subject i in interval j which is binary when the adverse event is
rare. The conditional Poisson regression model (1) allows for more than one risk levels in
the risk window [10].

Fixed effects models for SCCS data: parametric and semi-parametric models
SCCS data have longitudinal data structures where analytic units are intervals of each
subject. Each interval represents a unique combination of time-varying covariates. Although
each individual has at least one adverse event, some intervals of an individual do not have an
adverse event. In this paper it is assumed that the observations in an SCCS data set follow a
Poisson distribution in which the individual effects may be represented by a random
coefficient. As a consequence, the likelihood function from the fixed effects model is the
full likelihood function for SCCS data. Let ξi represent the individual-specific random
coefficient for individual i who experienced at least one adverse event during the follow-up
period Ti, and ξi does not assume any defined distribution such as a normal distribution.

We consider fitting the fixed effects models for SCCS data,

(2)

where uij=tij mi λij, mi=exp(α+ξi) and λij =exp(Xijβ), α represents the intercept coefficient
for the overall case sample, ξi is the unknown individual-specific random effect, Xij and β
have the same meanings as defined previously for model (1), and exp(α) is the baseline
incidence rate for the adverse events for each unit of unvaccinated period of time (eg, each
day) in the case sample. Similar to the likelihood function for cohort data [14], the
likelihood function of the fixed effects model for individual i when using case-only data is,

where Ji is the number of observations on individual i. Substituting uij= tij mi λij,
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Taking the natural logarithm of LFE(i), differentiating with respect to mi and setting to zero
we have,

Substituting into LFE(i), the likelihood function for the ith individual is

Substitute λij = exp(Xijβ) into LFE(i)

(3)

We show that the likelihood function from a fixed effects model as in (3) is proportional to
that from a conditional Poisson model as in (1). As a result, the maximum likelihood
estimates of βs are same for the two models.

Age is an important confounder in vaccine safety studies because of its possible association
with both the probability of vaccination and the occurrence of adverse events. A model with
a defined age effect form such as the age groups used in the MMR-ITP example is called a
parametric model while a model without defining age effect form is called a semi-parametric
model [10,12]. Fixed effects models as in (3) can be easily modified to fit the semi-
parametric model in which the form of age effects is not specified. Each event age is treated
as a dummy variable, so essentially the length of an age group is only one day, and the
number of age effect levels is the number of unique days of adverse events.
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Results
Simulation study and results

We performed simulations to evaluate the performance of a fixed effects model in its ability
to analyze SCCS data. We also compared estimates from a fixed effects model and
conditional Poisson model to those obtained using generalized estimating equations (GEE)
[15,16], which has been widely used to analyze longitudinal data including normally
distributed data, binary and Poisson data. GEE is not a likelihood-based approach and is
used to estimate population average parameters and correlation among observations on the
same individual is accounted for.

Simulation—Dependent Poisson data were simulated according to model (2) with ξi
independent and identically distributed N (0, σ2) or a uniform distribution (0, 1). σ was
chosen to be 1 and 1.5. Each of 100 individuals was assumed to have a follow-up period of
365 days, consisting of both risk and control periods. Typically, there are three periods for
each subject: the control period before vaccination, the risk period after vaccination, and the
control period after the risk period. Vaccination times were assumed to follow a normal
distribution with a mean of 140 days and a standard deviation of 42 days. The values of the
overall intercept coefficient, α, were set to be −5, −6, −7, and −8 to achieve baseline
incidence rates ranging from 0.00034 to 0.00674 per day in the simulated data. Time-
varying covariates included in the model were age effects and an indicator variable for risk
and control periods. The chosen coefficients for age effects were 0.3 for days 91–270 and
0.1 for days 271–365 with days 1–90 as the reference group. The coefficient for vaccination
effect, β1, was chosen to be 0.69, 1.39, and 1.79, which represents incidence rate ratios of 2,
4 and 6, respectively. 1,000 datasets were simulated and analyzed for each combination of
parameters.

Evaluation measures—We analyzed each simulated dataset with three methods, a
conditional Poisson model, a fixed effects model and GEE. Means of vaccination effects and
their standard errors for each of the three methods in each simulated data setting were
calculated. We also calculated the means of absolute difference between conditional Poisson
models and GEE, and reported the maximum absolute difference. We conducted this last
step because it is possible that the means of the vaccination effect estimates are same
between the conditional Poisson models and GEE, but vaccination effect estimates may
differ in each simulated data set. Empirical powers were calculated as percent of data sets
with significant vaccination effect (p-value<0.05) under the alternative hypothesis. Type I
error rates were also reported for data simulated under the null hypothesis, β1=0.

Simulation results—Table 1 shows that conditional Poisson models, fixed effects
models, and GEE have acceptable type I error rates (i.e. about 5%) for the parameters
examined when the individual-specific random errors are simulated from a normal
distribution. The GEE approach produces slightly different estimates and their standard
errors for vaccination effect than conditional Poisson models and fixed effects models
(Table 2). Empirical powers are also similar among the three approaches under the
alternative hypothesis β1 ≠ 0. Although there is little difference on average in parameter
estimation between GEE and conditional Poisson models, the means of absolute difference
between conditional Poisson models and GEE reveal that they can produce very different
results for some simulated data sets. For example, the maximum absolute difference in
estimated coefficient for the vaccine effects is 0.339 in a simulated data set while the mean
of the absolute difference is only 0.0127 (Table 3). Similar results are observed for β1=1.39
and 1.79 (data not shown). When the individual-specific random errors are simulated from a
uniform distribution, similar results are observed as well (data not shown).
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An example
To demonstrate how a fixed effects model approach can be used for SCCS data, we re-
analyzed the data from a SCCS study examining the association between MMR vaccination
and ITP among a US pediatric population [7]. They excluded the 42-day healthy period
immediately preceding MMR vaccination and used a pre-specified 42-day risk window after
MMR vaccination, which has subsequently been confirmed by a data-driven approach to be
an optimal choice of risk window length [17]. They found an incidence rate ratio of 7.06 for
those vaccinated at an age between 366 and 690 days old. In this paper, for the purpose of
demonstrating the use of fixed effects models in analyzing SCCS data, we defined six age
groups as in Xu et al. [17]: 366–426 days, 427–487 days, 488–548 days, 549–609 days,
610–670 days, and 671–730 days (the reference group). Days outside of a 42-day post-
vaccination risk window were considered to be the control window. We also included all
subjects with follow-up of 366–730 days regardless of vaccination status and without
excluding the healthy period before MMR vaccination.

The first step in applying a fixed effects model to SCCS data involves manipulating the data
to a more usable format. Specifically, the analytic data can be expanded as described in Xu
et al. [13]. Briefly, the follow-up period for each individual in the SCCS sample was
expanded into daily observations with an exposure status indicator (risk versus control),
indicators for age effects (defined age effects group for parametric model or undefined age
effects form for semi-parametric model), an indicator variable for adverse events, and any
other time-invariant and time-varying covariates. Data in this expanded form facilitate
simple calculations of the person time (in days) and number of adverse events by exposure
status, age groups, and any other time-varying covariates for each individual. The result is a
data set with multiple observations for each individual, which can be analyzed using a fixed
effects model with most statistical software packages (eg, PROC GENMOD in SAS).

Table 4 shows that conditional Poisson models and fixed effects models give the same
estimates and standard errors for both the vaccination effect and the age effects when using
the parametric method for age effects. Estimates and standard errors obtained using a GEE
approach differ only slightly. For the semi-parametric method, the conditional Poisson
model and fixed effects model yield the same estimates for the vaccination effect (1.97) and
standard error (0.37). Estimates using GEE are not available when using the semi-parametric
model because the individual-specific coefficients cannot be modeled as both fixed and
random effects in the same model.

To show one of many potential utilities of using a fixed effects model for SCCS data, we
also compared the risk of ITP after MMR vaccination between male and female patients. If
conditional Poisson models are employed, gender subgroup analyses must be carried out to
make this comparison, and a direct statistical comparison (test) is not readily available.
However, if a fixed effects model is used, we can statistically compare the risk of ITP
between genders by fitting a model with two interactions 1) between exposure and gender
and 2) between age groups and gender (Table 5). The test statistic and p-value for this
comparison is readily available in results of standard statistical software (eg, using estimate
and contrast statements in PROC GENMOD in SAS). Additionally, the fixed effects model
can accommodate the same age effects for both male and female patients by replacing the
interaction between age groups and gender with age groups only (Table 5). This model
produced smaller gender difference in risks of ITP after MMR vaccination than the model
with different age coefficients for male and female patients although the conclusion is same
(p-value = 0.76 versus 0.31). In this way, the fixed effects modeling approach offers
considerable additional flexibility beyond what a conditional Poisson approach can provide.
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Discussion
Fixed effects models were first implicitly recommended for analyzing SCCS data by
Whitaker et al. [10]. They included a factor for each individual to ensure the fitted individual
totals equal the observed values but did not study the relation between the conditional
Poisson models and fixed effects models. In this paper, we demonstrate that theoretically
and by simulation the parameters estimates and their standard errors are equivalent between
the conditional Poisson models and fixed effects models. On average, GEE approach
produces very similar estimates and their standard errors for vaccination effects although for
some simulated data sets it can produce very different results than the conditional Poisson
models. We do not recommend using GEE approach to analyze SCCS data due to possible
bias in estimation.

There are numerous of advantages for statistical analysts in vaccine safety research to use
fixed effects models to analyze SCCS data. First, likelihood-based statistical tests may be
employed. For example, a likelihood ratio test was used to investigate the effect of gender
on the association between oral polio vaccine and intussusception [10]. Second, statistical
analysts may find fitting fixed effects models for SCCS data more intuitive than fitting
conditional Poisson models in standard statistical software packages because they are
already familiar with procedures for fitting Poisson models (eg, PROC GENMOD in SAS).
Third, fitting a complex semi-parametric model is achieved by simply treating event days as
indicator variables in preparing summary data for person time and number of events and
later including them in the fixed effects model.

Although we examined a wide variety of simulated data settings, we only studied normal
and uniform distributions for the individual-specific random effects in simulations. Results
should remain equivalent for conditional Poisson models and fixed effects models for
different distributions since their likelihoods are proportional. Inconsistent estimation may
be a potential issue when fitting fixed effects models if the number of random effects
approaches infinity. However, in SCCS vaccine safety studies, the number of random effects
to be estimated depends on the number of individuals with adverse events, which is usually
small. Thus, inconsistency should not often be a problem when analyzing SCCS data. For
relatively large number of cases, the fixed effects models may take relatively long time to
fit. In this case Whitaker et al. [10] suggested the use of absorbing factors to fit the models
efficiently without estimating individual-specific random effects explicitly.

In summary, for vaccine safety studies involving SCCS data, we recommend using a fixed
effects modeling framework to estimate incidence rate ratios as this approach offers many
advantages compared to the traditionally-used conditional Poisson model. More broadly,
existing longitudinal data analysis tools may provide opportunities to better address research
questions that arise in SCCS vaccination studies such as how to use likelihood-based
statistical method to identify optimal risk windows for a given SCCS data set [17] how to
analyze SCCS data with misclassification of adverse events when adverse events are
partially chart reviewed due to resource limitation [18–20].
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Table 1

Type I error rates from 1000 simulations under the null hypothesis, β1=0, when individual-specific random
coefficients have a normal distribution.

Simulation parameters Average number of cases Type I error rates (%)

α σ CPa/FEb GEEc

−5 1 488 4.0 4.3

1.5 896 4.3 4.0

−6 1 179 3.7 4.0

1.5 336 5.0 5.1

−7 1 66 4.4 4.3

1.5 124 2.8 2.5

−8 1 25 6.2 6.0

1.5 46 4.1 4.0

a
CP, conditional Poisson model.

b
FE, fixed effects model.

c
GEE, generalized estimation equations.
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Table 3

Mean of absolute difference of vaccination effect coefficient from 1000 simulations with true β1=0.693 when
individual-specific random effects have a normal distribution.

Simulation parameters Mean of absolute difference (maximum)

α σ CPa/FEb versus GEEc

−5 1 0.0081 (0.0671)

1.5 0.0086 (0.0873)

−6 1 0.0064 (0.1576)

1.5 0.0080 (0.1931)

−7 1 0.0060 (0.1175)

1.5 0.0099 (0.2884)

−8 1 0.0068 (0.2174)

1.5 0.0127 (0.3393)

a
CP, conditional Poisson model.

b
FE, fixed effects model.

c
GEE, generalized estimation equations.
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Table 4

Estimated coefficients (standard error) using parametric method from US MMR-ITP data.

CPa/FEb GEEc

Vaccination 2.00 (0.36) 2.04 (0.38)

366–426 −1.50 (0.55) −1.55 (0.61)

Age (days)

 427–487 −0.39 (0.44) −0.39 (0.42)

 488–548 −0.30 (0.42) −0.31 (0.44)

 549–609 −0.27 (0.42) −0.31 (0.43)

 610–670 −0.14 (0.41) −0.16 (0.42)

a
CP, conditional Poisson model.

b
FE, fixed effects model.

c
GEE, generalized estimation equations.
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Table 5

Estimated coefficients (standard error) by gender using parametric method from US MMR-ITP data.

Subgroup CPa/FEb with gender*age and exposure*gender FE with exposure*gender and age

Female Male Female Male

Vaccination 2.64 (0.64) 1.85 (0.45) 1.90 (0.51) 2.01 (0.44)

Age (days)

366–426 −3.11 (1.00) −0.42 (0.75) −1.49 (0.56)

427–487 −0.84 (0.60) 0.15 (0.68) −0.39 (0.44)

488–548 −1.37 (0.66) 0.62 (0.63) −0.28 (0.42)

549–609 −0.40 (0.53) −0.06 (0.69) −0.28 (0.42)

610–670 −0.58 (0.57) −0.43 (0.64) −0.14 (0.41)

a
CP, conditional Poisson model.

b
FE, fixed effects model.
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