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Objectives. We discuss the problem of computing the standard errors of functions
involving estimated parameters and provide the relevant computer code for three
different computational approaches using two popular computer packages.
Study Design. We show how to compute the standard errors of several functions of
interest: the predicted value of the dependent variable for a particular subject, and the
effect of a change in an explanatory variable on the predicted value of the dependent
variable for an individual subject and average effect for a sample of subjects.
Empirical Application. Using a publicly available dataset, we explain three different
methods of computing standard errors: the delta method, Krinsky–Robb, and boot-
strapping.We provide computer code for Stata 12 and LIMDEP 10/NLOGIT 5.
Conclusions. In most applications, choice of the computational method for standard
errors of functions of estimated parameters is a matter of convenience. However, when
computing standard errors of the sample average of functions that involve both esti-
mated parameters and nonstochastic explanatory variables, it is important to consider
the sources of variation in the function’s values.
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The questions posed by standard analyses in health services research often
require evaluation not only of estimated parameters (e.g., regression coeffi-
cients) but also functions of estimated parameters. Common examples of func-
tions of estimated parameters include the predicted value of the dependent
variable for a particular subject or set of subjects in the data, and the effect of a
change in an explanatory variable on the predicted value of the dependent
variable (sometimes referred to as a partial effect, marginal effect, or incre-
mental effect) and elasticities.

While the computation of the function itself often is straightforward,
establishing confidence intervals for the function’s value can be more difficult.
Confidence intervals allow the analyst to test hypotheses about the value of
the function—for example, to evaluate the proportion of the function’s values
that would fall within a given range, if the “experiment” were repeated
multiple times.
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The construction of confidence intervals requires estimation of the vari-
ance of the function, which in turn requires careful consideration of the
sources of variation in the function’s value. For example, is the variation of
interest the variance that arises from inserting different values of the explana-
tory variables into the function; the fact that coefficients in the function are
estimated parameters; or both?

The article begins with a brief note on the distinction between a stan-
dard deviation and a standard error. This is a central issue in the question
raised in the previous paragraph. We then discuss standard errors in the
context of a simple linear model, before turning to more complex nonlin-
ear models. We discuss three methods of computing the standard errors of
functions of interest:

• The delta method (Greene 2012)

• Krinsky and Robb or K–R (Krinsky and Robb 1986, 1990)

• Bootstrapping (Efron 1979)1

There are other ways to compute standard errors. Some methods are
integral to the estimation of the coefficients that subsequently appear in
the function of interest, such as the method of moments and Gibbs sam-
pling. In our experience, the three methods that we have chosen to discuss
are the most common in the health services research literature and can be
applied regardless of the method used to estimate the coefficients in the
function of interest.

We discuss the advantages and disadvantages of each method and pro-
vide sample computer code for two popular software packages in the Appen-
dix. We end by considering the special case of sample averages of functions of
interest.

STANDARD DEVIATIONS AND STANDARD ERRORS

We begin by defining the population standard deviation of a random variable Z,
denoted rZ, as the square root of the variance of Z:
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rZ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXQ
m¼1

ProbðZmÞ � ðZm � lÞ2
vuut

where Zm are the Q values that the variable Z can take, l is the expected value
of Z, and Prob (Zm) are the associated probabilities. When Z is a continuous
variable, such as income, summation is replaced by integration and the proba-
bilities are replaced by the appropriate density function.

The standard deviation is a measure of the dispersion of the values of Z
around its population mean l. We will focus on functions computed from a
random sample of N observations on the variable Z, which will be denoted
Zi, i = 1,…, N. It is customary to refer to the variable Z as a random variable
and each element of the sample of Zs as a random variable. The term random
can be confused with the term stochastic. One of our main objectives is to dis-
tinguish a stochastic dependent variable in a regression context (which is sto-
chastic due to the influence of a stochastic error term u) from the nonstochastic
explanatory variables whose values are assumed to be fixed in repeated sam-
ples. This matters because when the function of interest contains both esti-
mated parameters and the values of explanatory variables, the explanatory
variable values are not treated as random (stochastic), but fixed in repeated
samples unless explicitly modeled as stochastic variables through measure-
ment error, endogeneity, lagged values of dependent variable, etc.

Estimates of the population mean and standard deviation of Z can be
obtained from samples of data. For example, a common estimator of the popu-
lation mean of Z, denoted �Z , is:

�Z ¼ 1
N

XN
i¼1

Zi

and a common estimator of the population standard deviation is:

r̂Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N � 1

XN
i¼1

ðZi � �Z Þ2
vuut :

Estimators also are variables, but the standard deviation of an estimator
is referred to as the standard error. For example, the standard error of �Z
(denoted r�Z ) is an estimate of the variation in �Z that would arise across many
samples. Assuming that the observed values of Z are independently and iden-
tically distributed, the standard error of �Z is equal to:
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r̂�Z ¼
ffiffiffiffiffiffi
r̂2Z
N

s
¼ r̂Zffiffiffiffiffi

N
p

Note that the standard deviation of Z, rZ, is a fixed parameter. The stan-
dard error of �Z being an estimator of this fixed parameter divided by the sample
size, converges to zero as the sample size grows. The sample estimator of the
standard deviation of Z, r̂Z , converges to the parameter that it estimates, the
population standard deviation, rZ, a property known as consistency. What is
true of estimators also is true of functions of estimated parameters, as
explained in the next section.

FAMILIAR EXAMPLES FROM THE LINEAR REGRESSION
MODEL

Regression Coefficients

In this section, we expand the discussion of standard errors with a simple
application: a single regression coefficient. We then consider two common
functions of estimated parameters: (a) the estimator of the expected value of
the dependent variable conditional on specific values of the explanatory vari-
ables and (b) the estimator of the partial effect of an explanatory variable on
the expected value of the dependent variable.

Consider analysis of a simple linear regression equation based on data
fromN individual subjects denoted i = 1,…,N:

yi ¼ x0
ibþ ui ð1Þ

where yi is the dependent variable value for the i th subject, xi is a vector of
explanatory variables (possibly including a constant term), b is the vector of
regression coefficients, ui is the stochastic error, usually assumed to be nor-
mally distributed with mean 0 and variance r2, and ru is the standard devia-
tion of u.

In the regression setting, it is common to assume that the values of the
variables in xi are not stochastic but instead are “fixed in repeated samples.”2

That assumption implies that the analyst could collect new data with the same
distribution of xi values, but the new data would have different values of yi,
because, and only because, the values of ui would be different in the new data.
This conceptual experiment is used to understand the nature of and source of
variation in the estimators of the parameters of the model.
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The coefficients b are estimated from sample data according to some
objective function, such as minimization of the sum of squared residuals,PN
i¼1

û2i ¼ yi � x0
i b̂

� �2
. Minimizing the sum of squared residuals yields the

familiar ordinary least squares (OLS) estimator of b. This result can be written
in matrix notation as:

b̂OLS ¼ ðX0XÞ�1X0y ¼ ðX0XÞ�1X0ðXbþ uÞ ¼ bþ ðX0XÞ�1X0u ð2Þ
where the rows of the N9KmatrixX are xi′, where K is the number of explan-
atory variables in equation (1) including the constant term, indexed by k = 1,
…, K, and y and u are defined likewise by collecting the values of yi and ui in
column vectors. Thus, the OLS estimator of b is a function of both u and X.

The standard errors of the individual elements of b̂OLS , denoted r̂b̂OLS
are the

diagonal elements of the variance-covariance matrix:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2uðX 0X Þ�1

q
. After the

model is estimated, r2uis replaced by a consistent estimator:

r̂2u ¼
PN
i¼1

û2i

N � K

The estimated standard errors of b̂, denoted r̂b̂ are the diagonal elements of
the estimated covariance matrix,

r̂b̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂2uðX0XÞ�1

kk

q
ð3Þ

The estimated standard errors of b̂ are functions of both û(via r̂2u) andX.

Predicted Value of yi

In a simple linear regression setting, the predicted value of the dependent vari-
able y, denoted ŷi , for a given set of explanatory variable values xi is:

ŷi ¼ x0
i b̂ ð4aÞ

Assuming that the regression contains a constant term, which is the usual
case, this predictor also can be written as:

ŷi ¼ �y þ ðxi � �xÞ0b̂ ð4bÞ
In the linear model, we ordinarily have no information to justify assum-

ing the expected value of ûi is anything other than zero,3 so ŷi is the value of y
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that lies on the estimated regression line at point xi. Nevertheless, when deriv-
ing an estimator for the sampling variance of ŷi , it is necessary to account for
the variation due to ui.

4 The estimator of the standard error of the predicted
value of y, conditional on a specific vector of x values (xi), is

r̂ŷ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂2u þ

r̂2u
N

þ r̂2u
XK�1

k¼1

XK�1

l¼1

xik � �xkð Þ xil � �xlð Þ X0
0X0½ ��1

kl

vuut ð5Þ

where the summations are over all variables save for the constant term andX0

is the matrix of variables in X, not including the constant term, expressed in
deviations from their means. (See Greene [2012] for this derivation.) The esti-
mated standard error of ŷi combines four factors:

1 The deviation of ŷi from the sample regression line due to unobserved
factors ui;

2 The deviation of the sample regression line itself from the true regres-
sion line;

3 The sampling variation of x; and
4 The distance of xi from the sample mean, �x.

These points are illustrated in Figure 1. The horizontal axis represents
one of the explanatory variables xk holding all the other explanatory variables
constant at their specific values xi.

Partial Effects

The partial effect of a specific xk on a function of interest is the change in the
function as xk changes by one unit. For example, if xk is a continuous variable,
and the function of interest is ŷi , then the partial effect is referred to in some
literatures as a marginal effect. In the linear model with no interaction terms or
higher-order terms, the marginal effect is equal to

@ŷi
@xi ;k

¼ b̂k ð6Þ

If xk is a binary (dummy or dichotomous) variable, the partial effect is
often referred to as an incremental effect and is equal (again, if the model has no
interaction terms with that binary variable) to the arithmetic difference

Dŷi
Dxi ;k

¼ ðŷi jxi ;k ¼ 1Þ � ðŷi jxi ;k ¼ 0Þ ð7Þ
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with all the other explanatory variables held constant at their xi values. In a
linear regression context, this will, once again, be the regression coefficient b̂k .
In case of both discrete and continuous x variables with no interaction or
higher-order terms, the standard error of the partial effect is given by equa-
tion (3) because the marginal or incremental effect is just the coefficient.

MORE COMPLEX EXAMPLES

Now suppose that instead of a single coefficient we have a function of estimated
parameters, and the function might be nonlinear. There are many types of
such functions that are common in health services research applications, for
which computation of standard errors is more challenging. We consider the
following four types of functions:

1. A nonlinear function for a single observation from a single equation
2. The sample mean of a function
3. Functions of parameters frommultiple equations
4. Functions for which the correct covariance matrix of the parameters

is not readily available.

We describe each of these in turn. Then we explain how to compute the
standard errors of these functions by the delta method, K–R, and bootstrapping.

Figure 1: Four Sources of Variation in the Predicted Value of yi
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Nonlinear Functions for a Single Observation from a Single Equation

There are two senses in which a function can be nonlinear. It can be nonlinear
in the variables (covariates) and/or nonlinear in the parameters. For example,
if the linear regression equation contained a vector of explanatory variables xj
plus a variable xk and its squared term, then the equation would be written:

yi ¼ xi ;jbj þ xi ;kbk þ x2i ;kbk2 þ ui ð8Þ

This function is nonlinear in the variable xk, but linear in the parameters.
Post-estimation, the marginal effect of a continuous xkwould be:

@ŷi
@xk

¼ b̂k þ 2xi ;k b̂k2 ð9Þ

and the estimated standard error of the marginal effect would be:

SE
@ŷi
@xk

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varb̂k þ 4x2i ;kvarb̂k2 þ 4xi ;kcovðb̂k ; b̂k2Þ

q
ð10Þ

Alternatively, the function may be nonlinear in the parameters. Suppose
that one has estimated a model and subsequently has calculated the value of a
function of interest, gi for the i th subject that involves both the explanatory
variables xi and the estimated parameters b̂, which we write as g xi ; b̂

� �
. There

is a vast array of models that are used frequently in health services research
that are nonlinear in the parameters, including: logit, probit, tobit, semi-log,
double-log, count data, survival models, and multipart model for health
expenditures. In nonlinear models, most of the functions of interest involving
estimated parameters will be nonlinear as well.

For example, the predicted probability that yi = 1, conditional on xi, in a
logit or probit model is: Estimated Probability

yi ¼ 1jxi
� � ¼ F x0

i b̂
� �

ð11Þ

where F is the logistic (logit) or normal (probit) cumulative distribution func-
tion. The marginal effect of a continuous xk on the probability that yi = 1 is:

@F x0
i b̂

� �
@xik

¼ f x0
i b̂

� �
b̂k ; ð12Þ

where f is the corresponding logistic or normal probability density function.
The expressions in equations (11) and (12) are nonlinear functions of both the
variables and the coefficients. Notice that the marginal effects are evaluated
for specific values of x = xi. The values of and derivatives of nonlinear func-
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tions generally will be different when evaluated at different values of x. Com-
puting a standard error for a nonlinear function such as that in equation (12)
involves more steps than adding up a weighted sum of variances and covari-
ances. We will develop this in detail in the section on computation.

The Sample Mean of a Function

Thus far, we have discussed only functions of interest evaluated for an individ-
ual (i th) subject. In nonlinear models, the value of the function of interest usu-
ally is different for subjects who have different values of the explanatory
variables, and analysts frequently are interested in the values of a function
averaged across all subjects in the sample, for example, the average incremen-
tal effect of having health insurance on the health expenditures or health
outcomes. The sample average of the function g x0i ;b̂

� �
is:

�g X; b̂
� �

¼ 1
N

XN
i¼1

g x0
i ; b̂

� �
ð13Þ

If �g X; b̂
� �

is the average of a function across the observations in the
sample, as in equation (13), then the computation of standard errors becomes
more complex, as discussed in the section on computation.

Function of Parameters fromMultiple Equations

In some cases, the function of interest combines the results from more than
one estimated equation. A common extension of the logit or probit model in
health services research is a two-part model for health expenditures, where the
first equation is a probit or logit equation modeling the probability that the
subject has some positive value of health care spending, and the second equa-
tion models the expected value of health care spending conditional on having
a positive level of spending (e.g., a linear or generalized linear model). The
predicted value of spending for the i th subject is obtained by multiplying the
probability having of a positive level of spending times the expected value of
spending given that is positive. The partial effect of an xk on the expected value
of spending for the i th subject involves the estimated parameters from both
equations and perhaps an estimated retransformation parameter, as well, if the
dependent variable in the second equation is the natural log of health expendi-
tures, for example, as is commonly the case.

If the function’s parameters come from multiple equations so that com-
putation of the standard errors requires multiple variance-covariance matri-
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ces, then bootstrap methods may be the simplest approach, even though the
delta method or K–R estimation also would be appropriate.

Functions for Which the Correct Covariance Matrix of the Parameters Is Not Readily
Available

As shown in equation (3), in a regression setting, an important ingredient to
the calculation of standard errors is the variation in unobserved factors (u).
However, to obtain consistent estimators of parameters of interest, it may be
necessary to use estimation techniques that result in biased estimates of u, and
thus biased estimates of the standard errors of the function of interest.

A simple and familiar example is two-stage least squares (2SLS).
Consider the following two equations:

xi ¼ z0icþ vi ð14Þ
and

yi ¼ xibþ ui ð15Þ
where equation (15) is the equation of main interest. If ui and vi are correlated,
then xi and ui in equation (15) are correlated, resulting in biased and inconsis-
tent least squares estimates of b. 2SLS proceeds by estimating equation (14)
by least squares, then using the predicted values of xi as an instrument for the
original x in estimation of b in equation (15). Algebraically, the right result is
obtained by replacing the endogenous x in equation (15) with the exogenous
prediction. However, the conceptually correct error terms (u) are the devia-
tions of the actual values of y from the actual (not predicted) values of x, which
if uncorrected results in a bias in the computation of the covariance matrix of
the estimator. This change is made easily and automatically in most software
packages once the user alerts the program that 2SLS estimation is required.

Other examples of this type of error term correction are not yet part
of familiar statistical software, however. An example is two-stage residual
inclusion—another approach to endogenous explanatory variables—in
which the estimated residuals (v̂i ) from equation (14) are added to equa-
tion (15), alongside the endogenous x (Terza 2008; Terza, Bradford, and
Dismuke 2008). The standard errors produced from simple OLS estima-
tion of this augmented version of equation (15) will fail to account for the
fact that v̂i is an estimated variable, and thus the resulting standard errors
will be biased.
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If the correct variance-covariance matrix of the parameters is readily
available, then any of the three methods can be used to compute the stan-
dard errors. If the estimation method does not produce the correct vari-
ance-covariance matrix of the parameters, then the analyst must obtain the
correct variance-covariance matrix from another source or turn to boot-
strap methods.

COMPUTATION

Having described the types of nonlinear functions of estimated parameters
that arise frequently in health services research applications, we now describe
three approaches to computing the standard errors of those functions: the
delta method, Krinsky and Robb, and bootstrapping. (See Hole [2007] for a
comparison of methods applied to willingness to pay measures.) The choice
often depends on the application. It generally is not the case that one method
is appropriate and the others are not. In the most common applications, the
choice among these three is based on programming or computational conve-
nience. However, the assumptions underlying each method are important.
The properties of the estimators discussed in this section are asymptotic prop-
erties and the behavior of the estimators in finite samples can be compromised
if the assumptions underlying the estimator are not satisfied.

The discussion in this section is limited to functions involving a single
subject, that is, a single vector of variable values g xi ; b̂

� �
. Functions involving

averages of a function’s values across all subjects in the sample are discussed
in the following section.

The Delta Method

The delta method is the most common method of calculating the standard
errors of partial effects in most software packages. The delta method uses a

first-order Taylor series expansion around g xi ; b̂
� �

evaluated at specific values

of x = xi to estimate the standard error (Greene 2012, pp. 1083–1084). The
computational formula is:

SEg xi ; b̂
� �

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@g xi ; b̂

� �
@b̂

2
4

3
5
0

R̂
� � �1

@g xi ; b̂
� �
@b̂

2
4

3
5

vuuut ð16Þ
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where R̂ is the estimated variance covariance matrix of b̂. Equation (16) is
derived from the true population values of b and Σ. Empirically, however, b
andΣ are replaced with their consistent estimates b̂ and R̂.

An advantage of the delta method, shared by K–R, is that the model
is estimated only once. We explain this advantage further in the discussion
of bootstrap methods, below. There are two disadvantages. First, the delta
method assumes that the function g xi ; b̂

� �
is “locally linear” in the neigh-

borhood of the specific values of the explanatory variables at which the
standard error is being computed. If that assumption is not met, then the
results can be inaccurate. In practical terms, this problem appears to be
extremely uncommon. Second, for some models in some software pack-
ages, such as two-stage residual inclusion, the code for @g xi ; b̂

� �
=@b̂ must

be supplied by the analyst, introducing the possibility of programming
errors. Computing the standard error of the predicted probability that
y ¼ 1j x ¼ xið Þ manually would require the analyst to supply the proper
derivatives, which in this case are @F ðx0

i b̂Þ
@b̂k

¼ f ðx0
i b̂Þxi ;k for each of the

k = 1,…, K parameters, and then assemble the derivatives into the expres-
sion in equation (16). This part of the analysis is automated in some mod-
ern programs.

Krinsky and Robb

The K–R method is based on the assumption that the estimators of the model
parameters are consistent and have an asymptotically normal multivariate dis-
tribution. The K–Rmethod draws multiple vectors of b = bs, s = 1,…,S coeffi-
cients from the multivariate normal distribution that has a mean vector equal
to the original estimated coefficient vector b̂ and the same estimated variance-
covariance matrix R̂. Each new vector of coefficients, bs, is used to compute a
new value of g xi ; b̂

� �
equal to g xi ; b̂s

� �
. The standard deviation of the result-

ing sample of draws of g xi ; b̂s

� �
across all values of b̂s provides an estimate of

the standard error of g xi ; b̂
� �

.
A reporting issue arises in the K–R method. One might consider

reporting the mean of the N different values of g xi ; b̂
� �

obtained from
the K–R draws as the value of g xi ; b̂

� �
. However, assuming that one has

used a consistent estimator to obtain the initial value of g xi ; b̂
� �

, that is
the value that should be reported. We note as well that because of differ-
ences in the way different programs generate samples, it often will be
impossible to replicate exactly the results obtained from different
computer programs.
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Bootstrap Methods

The bootstrap approach (Efron 1979) also applies many “draws” of coeffi-
cient vectors bb, to the sample observations, but variation in the coefficient
vectors is obtained by re-estimating the model many times on different data
samples. Each new data sample is obtained by drawing N observations with
replacement from the original sample of data.6 The size of the new sample is
set to be equal to the size of the original sample. The model then is re-esti-
mated on the new sample of data, resulting in a new vector of estimated
coefficients. Each new coefficient vector then is applied to produce a new
value of g xi ; b̂b

� �
. Again, the standard deviation of the resulting distribu-

tion of g xi ; b̂b

� �
across all values of b̂b provides an estimate of the stan-

dard error of g xi ; b̂
� �

.
An important advantage of the bootstrap method is that it is simple to

implement and is preprogrammed in many software packages.
A disadvantage is that the model must be re-estimated on a different data
sample to obtain each new coefficient vector. Maximum likelihood
estimation is used for many nonlinear models, and some likelihood func-
tions can have flat areas, making it difficult for the maximization algorithm
to find the function maximizing values of the parameters. If the maximiza-
tion algorithm is unable to find an optimum for any bootstrap sample, the
program usually terminates. Even if termination occurs on the last of 1,000
bootstrap samples, the analyst must start over. That possibility alone makes
the delta and K–R methods more attractive for some applications.

WHEN THE FUNCTION OF INTEREST IS A SAMPLE
AVERAGE

As noted earlier, when the function of interest is the sample average, �g X; b̂
� �

1
N

PN
i¼1

g xi ; b̂
� �

, the analyst must give careful consideration to the sources of

variation in that function. For example, it would be incorrect to compute the

standard error of 1
N

PN
i¼1

g xi ; b̂
� �

, simply by computing the standard deviation

of g xi ; b̂
� �

across the sample values then dividing by N. That approach

ignores the sampling variation in b̂ and the fact that the N terms in the sum are
obviously not independent— they all use the same b̂:
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If 1
N

PN
i¼1

g xi ; b̂
� �

is treated simply as a function and the delta method is

applied, then:

@ 1
N

PN
i¼1

g xi ; b̂
� �

;

� �
@b̂

¼ 1
N

@
PN
i¼1

g xi ; b̂
� �
@b̂

¼
@g x; b̂

� �
@b̂

2
4

3
5 ð17Þ

And the delta method estimate of the standard error of 1
N

PN
i¼1

g xi ; b̂
� �

is:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@g x; b̂

� �
@b̂

2
4

3
5
0

R̂
	 
 @g x; b̂

� �
@b̂

2
4

3
5

vuuuut ð18Þ

Instead of
@ 1

N

PN
i¼1

g xi ;b̂ð Þ
� �

@b̂
in equation (18), analysts often substitute the

sample means of xi as follows:

SADeriv ¼
@g �x; b̂

� �
@b̂

ð19Þ

This approach is unsatisfying for two reasons. First,
@ 1

N

PN
i¼1

g xi ;b̂ð Þ
� �

@b̂
and

@g �x;b̂ð Þ
@b̂

are not equivalent because the expected value of a function (e.g.,

g xi ; b̂
� �

) generally is not equal to the function evaluated at the expected val-

ues of its arguments if the function is nonlinear. Second, substituting the means
of x results in the function and the standard error being computed at a point in
the data that may not exist or may not be substantively meaningful. For exam-
ple, no one in the data set will be 60 percent female or 20 percent pregnant.

A question has arisen in the literature regarding the role of the variation
in X in equation (18). For example, Basu and Rathouz (2005) add the variance
over xi of g xi ; b̂

� �
to equation (18). This addition seems incorrect to us. First,

it is unclear if the additional term is appropriate. The additional variance term,
per se, does not account for the nonlinearity of the function with respect to x.

Second, the function 1
N

PN
i¼1

g xi ; b̂
� �

simply is another function of xi and b̂ and

application of the delta method to 1
N

PN
i¼1

g xi ; b̂
� �

produces equation (18).

While it is true that 1
N

PN
i¼1

g xi ; b̂
� �

is computed over multiple values of x, the
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values of x are fixed in repeated samples. Adding more terms to the function
does not change the nature of x.

A related issue arises if the standard error of the sample average of a
function is calculated by bootstrapping. The earliest work on bootstrap estima-
tion by Efron (1979) recognized the problem of balancing x values that were
fixed in repeated samples with the analyst’s desire to generate a distribution of
parameter values and subsequent functions of those parameters. The response
to the problem is a family of bootstraps that come under the headings “boot-
strapping regressions” or “resampling residuals.” In the simplest case of homo-
scedasticity and no autocorrelation, resampling residuals proceeds as follows:

1. Estimate the model on the original sample of data.
2. Compute and save both the predicted values of y ¼ ŷ

	 

and the com-

puted residuals û.
3. For each ŷi , draw, with replacement, a value of ûi , denoted ^̂ui from

the distribution of computed û.
4. For each observation, construct a new value of yi, denoted ^̂yi equal to

ŷi þ ^̂ui .
5. Construct a new dataset consisting of ^̂yi paired with its original values

of xi.
6. Re-estimate the model, producing a new set of parameter estimates

and new values of 1
N

PN
i¼1

g xi ; b̂
� �

.

7. Repeat steps 3 through 6 to obtain a distribution of 1
N

PN
i¼1

g xi ; b̂
� �

across multiple samples. The standard deviation of 1
N

PN
i¼1

g xi ; b̂
� �

across the samples now provides an estimate of the standard error of

1
N

PN
i¼1

g xi ; b̂
� �

.

Notice how this approach differs from standard (paired) bootstrap sam-
pling. The standard bootstrap estimator draws samples of both x and y from
the original sample and re-estimates the model. The distribution of x in each
sample differs from the distribution of x on which the original estimates of b̂
were based. In the “resampling residuals” approach above, the distribution
of x is held constant (i.e., “fixed in repeated samples”). The bootstrap
sampling is limited to the residuals—the true source of random variation in y.

If û is heteroscedastic or autocorrelated, then simple residual resampling
will not preserve the correct variances and dependencies among the residuals.
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Both problems have been considered in the bootstrap literature. Wu (1986)
describes a generalized approach to resampling residuals. Moulton and Zeger
(1991) discuss resampling in models with heteroscedasticity, and Politis
and Romano (1994) propose a “blocks of blocks” resampling strategy for
autocorrelated errors. In those cases, it may be that K–R provides a simpler
approach, because the problems of heteroscedasticity and autocorrelation are
dealt with “up front” in the initial estimation of b̂ and R̂.

The K–R method for computing the standard error of the sample aver-
age of g xi ; b̂

� �
proceeds by drawing a vector of parameters b̂s , computing

g xi ; b̂s

� �
for each subject, and then computing the average value of g xi ; b̂s

� �
across the entire sample. Those steps are repeated for each new draw of b̂s .
The standard deviation of the resulting sample averages is the estimated stan-
dard error of g xi ; b̂s

� �
.

Despite the speed of modern computers, there can be significant
differences in the time required to compute standard errors of sample aver-
ages of g xi ; b̂s

� �
. For example, if one is computing the incremental effect

of a binary variable (xk) on the predicted value of yi, using the K–R
method, and there are 1,000 subjects in the sample, the program must com-
pute two values of the predicted value of yi for each subject—one with xi,
k = 1 and another with xi,k = 0, holding the values of the other variables
constant at their values for that subject. Thus, one iteration through the
data sample requires 2,000 computations, and 1,000 K–R coefficient draws
would result in a total of 2,000,000 computations. The bootstrap approach
would take even longer, because the entire model must be re-estimated for
each of the 1,000 replications before the computation of the difference
g xi ; b̂
� �

jxi ;k¼1 � g xi ; b̂
� �

jxi ;k¼0 for each subject can begin. In general, the
quickest estimation approach will be the delta method.

COMPUTERCODE

The Appendix contains computer code for calculating the standard errors of
some nonlinear functions of estimated parameters. We illustrate the three dif-
ferent methods of computing the standard errors of nonlinear functions of
estimated parameters using a fictitious, publicly available dataset—mar-
gex.dta.5 The data contain a dichotomous binary {0,1} dependent variable
and various demographic explanatory variables for 3,000 observations. The
dependent variable is equal to one for about 17 percent of observations. Age
ranges from 20 to 60, with a mean of 40. Half the people in the sample are
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women (female = 1). The interaction between age and female (equal to
age 9 female and denoted agefem) has a mean of 21.8 and ranges from zero to
60. We include only age and female and the interaction of age and female in our
model to keep the example simple. The resulting regression equation is:

y� ¼ b0 þ b1female þ b2age þ b3agefem þ u

The observed variable Y is equal to 1 if Y* > 0 and zero if Y* ≤ 0. We
assume that u has a logistic distribution and thus the coefficients are estimated
by the logit likelihood function:

lnL ¼
XN
i¼1

ln ½F ðx0
ibÞ�yi ½1� F ðx0

ibÞ�ð1�yi Þ
n o

where F is the logistic cumulative distribution function ¼ 1
1þe�x0 i b. The pre-

dicted value of the probability that y = 1|(x = xi) is:

F x0
i b̂

� �
ð20Þ

and the marginal effect of age, for example, on the probability that y = 1 is:

@probðy ¼ 1Þ
@age

j x ¼ xið Þ ¼ @F ðx0
ibÞ

@age
j x ¼ xið Þ ¼ f ðx0

ibÞðb2 þ b3femaleiÞ

ð21Þ
where f is the logistic probability density function. These functions are nonlin-
ear in both the estimated parameters and the explanatory variables. Thus, the
analyst must specify the values of the explanatory variables at which the func-
tion is computed. All the point estimates below are calculated for 50-year-old
women; there are no other variables in the equation.

We provide the code for two popular software packages, NLOGIT and
Stata.7 The choice of these two packages was based primarily on the authors’
interests. The calculations can be done with other programs as well, although
the degree of difficulty is highly variable. To our knowledge, there are no
counterparts to the simulate/partials (NLOGIT) and margins (Stata) com-

Table 1: The Predicted Value of the Probability That y = 1 for a
50-Year-OldWoman

Delta Method Krinsky–Robb Bootstrap

NLOGIT 0.33800 (0.01449) 0.33800 (0.01423) 0.33800 (0.01483)
Stata 0.3380009 (0.0144851) 0.3380009 (0.0144782) 0.3380009 (0.0128234)

Note. Point estimate (standard error).
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mands in other popular statistical packages. However, the computations can
be done in less compact fashion with other programs such as SAS.

The packages and the methods produce similar results (see Tables 1–4).
The results for the delta method are virtually identical across the two software
packages, as expected. The results for K–R and bootstrap differ because the
two packages are drawing different samples of coefficients and data.

SUMMARYAND CONCLUSIONS

Nonlinear functions of estimated parameters are of great interest in health
services research applications. Examples include predicted values of the depen-
dent variable and partial effects. Because the coefficients in these functions are
estimated, the functions exhibit sampling variation and the confidence intervals

Table 2: The Partial Effect of Age on the Expected Value of the Probability
That y = 1 for a 50-Year-OldWoman

Delta Method Krinsky–Robb Bootstrap

NLOGIT 0.02241 (0.00180) 0.02241 (0.00170) 0.02241 (0.00199)
Stata 0.022407 (0.0017955) 0.022407 (0.0018381) 0.022407 (0.0017938)

Note. Point estimate (standard error).

Table 3: The Predicted Value of the Probability That y = 1 Averaged over
the Sample

Delta Method Krinsky–Robb Bootstrap

NLOGIT 0.16967 (0.00617) 0.16967 (0.00620) 0.16967 (0.00717)
Stata 0.1696667 (0.0061658) 0.1696667 (0.0061082) 0.1696667 (0.0066586)

Note. Point estimate (standard error).

Table 4: The Partial Effect of Age on the Expected Value of the Probability
That y = 1 Averaged over the Sample

Delta Method Krinsky–Robb Bootstrap

NLOGIT 0.01176 (0.00060) 0.01176 (0.00055) 0.01176 (0.00074)
Stata 0.0117612 (0.0006029) 0.0117612 (0.0007607) 0.0117612 (0.0006403)

Note. Point estimate (standard error).
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for the estimated values of the function allow the researcher to make determina-
tions regarding clinical or policy significance of the estimate. Confidence
intervals, in turn, require estimates of the standard error of the function’s esti-
mated value. Statistical packages have made computation of standard errors rel-
atively simple, and the methods give similar results. Thus, the choice generally
is based on programming and computational convenience.

We have discussed several of the most common models that generate
nonlinear functions of estimated parameters that are of interest to researchers,
and three different ways of computing the standard errors of those functions.
We hope that this discussion and the accompanying examples of computer
code for NLOGIT and Stata provide useful information to health services
researchers and other analysts.
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NOTES

1. The jackknife method, which is related to bootstrapping, occasionally is used, as
well. We focus on the more commonly used bootstrap approach.

2. Examples of stochastic explanatory variables include variables subject to stochastic
measurement error, lagged values of the dependent variable that appear among the
explanatory variables, and causally endogenous explanatory variables arising, for
example, from omitted variable bias or reverse causality. An example of an obvi-
ously nonstochastic explanatory variable is a time trend.

3. A counter-example is a sample selection model, in which the expected value of ûi
given the sample selection rule, is not zero.

4. The variance in ûienters the problem in the following way:
ûi ¼ yi � x0i b̂ ¼ x0ibþ ui � x0iðb� b̂Þ þ ui which leads to equation (5).

5. The way in which repeated samples of data are drawn must reflect the original
sampling process, which could be complex in the case of clustered samples, for
example.

6. This is the same dataset used in Karaca-Mandic, Norton, and Dowd (2012). The data
can be downloaded from http://www.stata-press.com/data/r11/margex.dta.

7. NLOGIT is available from Econometric Software (http://www.limdep.com/). Stata
is available from http://www.stata.com).
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SUPPORTING INFORMATION

Additional supporting information may be found in the online version of this
article:

Appendix SA1: Computation of Standard Errors Using Two Packages.
Appendix SA2: AuthorMatrix.
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