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Abstract
Sepsis is commonly caused by community-acquired pneumonia (CAP) and may develop into
severe sepsis, characterized by multiple organ failure. The risk of severe sepsis among CAP
patients and subsequent mortality increases sharply after the age of 65. The molecular mechanisms
associated with this age-related risk are not fully understood. To better understand factors
involved with increased incidence and mortality of severe sepsis in the elderly, we used a nested
case-control study of patients enrolled in a multicenter observational cohort of 2,320 participants
with CAP. We identified a total of 39 CAP patients 50-65 and 70-85 years old who did or did not
develop severe sepsis. Plasma samples were obtained on presentation to the emergency
department and prior to therapeutic interventions. A semi-quantitative plasma proteomics
workflow was applied which incorporated tandem immunoaffinity depletion, iTRAQ labeling,
strong cation exchange fractionation, and nanoflow-liquid chromatography coupled to high
resolution mass spectrometry. In total, 772 proteins were identified, of which, 58 proteins exhibit
statistically significant differences in expression levels amongst patients with severe sepsis as a
function of age. Differentially-expressed proteins are involved in pathways such as acute phase
response, coagulation signaling, atherosclerosis signaling, lipid metabolism, and production of
nitric oxide and reactive oxygen species. This study provides insight into factors that may explain
age-related differences in incidence of severe sepsis in the elderly.
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Introduction
Sepsis is a systematic inflammatory state triggered by infection. The additional diagnosis of
multiple organ failure and hypoperfusion (e.g., hypotension, decreased urine output) along
with sepsis results in severe sepsis1. One of the leading causes of sepsis is community-
acquired pneumonia (CAP)2-4. The presence and severity of organ failure is one of the most
important determinants of mortality following sepsis5-10. Severe sepsis affects ∼750,000
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persons annually in the United States6-11 and is one of the most common causes of death in
intensive care units6-10.

Kellum and coworkers have shown that the incidence of severe sepsis and mortality rate
increases sharply after the age of 6512, 13. For example, CAP patients ≥85 years old have a
2.8fold increased risk of severe sepsis and a 17-fold increased mortality rate compared to
patients ≤50 years old2. The notable age-related differences in severe sepsis risk may be
explained in part by immunosenescence underlying chronic disease. Immunosenescence is
manifested in the elderly through decreased numbers of T cells, impaired B-cell function,
increased apoptosis of neutrophils, and reduced bactericidal response of macrophages13-15.
Most studies that examine age-related differences in immune response using animal models
and humans have largely focused on either the adaptive immune response or select pathways
(inflammatory, coagulation, and fibrinolysis markers) in the innate immune response14-20. A
comprehensive assessment of differences in the immune response has not been conducted.
Trials testing immunomodulating therapies for sepsis in broad populations have failed to
consistently improve outcomes of sepsis patients21. An alternative approach is to personalize
sepsis therapies based on host characteristics, such as age. To further the development of
such a personalized approach, a better understanding of the differences in immune response
due to age is necessary.

Herein, we conducted a nested case-control study using patients enrolled in an observational
cohort of CAP. A semi-quantitative plasma proteomics workflow previously developed in
our laboratory22, which included tandem immunoaffinity depletion, isobaric tags for relative
and absolute quantitation (iTRAQ) labeling, strong cation exchange (SCX) fractionation,
and nanoflow liquid chromatography (LC) coupled to high resolution mass spectrometry
(MS), was applied to patient samples. We analyzed plasma proteins on presentation to the
emergency department to compare the acute immune response. First, proteins were
identified that differed between those who did or did not develop severe sepsis (within 90
days of hospitalization) among younger and older adults separately. We hypothesized that
there may be differentially-expressed proteins that are unique to the younger or older adults
which would help to explain the increased risk of severe sepsis in older adults. In addition to
identifying these sets of proteins, differentially-expressed proteins that are common to the
younger and older adult groups were also identified. Interestingly, the direction of fold-
change observed for these common proteins varies depending on patient age and thus may
explain higher risk of severe sepsis in older adults. These results and the implications of this
study are presented herein.

Experimental procedures
Ethics statement

The Institutional Review Boards at the following hospitals approved the study:
Pennsylvania: Allegheny General Hospital, Jefferson Hospital/SHHS, Mercy Hospital, St.
Clair Memorial Hospital, St. Francis Medical Center, Sewickley Valley Hospital, University
of Pittsburgh Medical Center (UPMC) Braddock, UPMC Horizon, UPMC Lee, UPMC
McKeesport, UPMC Passavant, UPMC Presbyterian, UPMC Shadyside, UPMC Southside,
UPMC St. Margaret, West Penn Hospital; Connecticut: Bridgeport Hospital, Hartford
Hospital, Milford Hospital, New Britain General Hospital, Norwalk Hospital, Yale-New
Haven Hospital; Tennessee: Methodist Health Care (single IRB approval for three Methodist
University sites); Michigan: Henry Ford Health System, Detroit Receving/Sinai-Grace,
Wayne State. Written, informed consent was obtained from all participants or by proxy.
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Study design and patients
We conducted a nested case-control study using patients enrolled in the GenIMS study23.
GenIMS is a prospective multicenter observational cohort of patients with CAP enrolled in
emergency departments (EDs) of 28 academic and community hospitals in four US regions,
including southwestern Pennsylvania, Connecticut, southern Michigan and western
Tennessee. Details of this study including eligibility criteria have been described
previously2, 23.

To compare differences in immune response across different age groups and between
patients with and without severe sepsis, we identified a total of 39 patients from four groups.
These included: 1) patients 50-65 years old who did not develop severe (hereafter referred to
as young controls [YC]), 2) patients 70-85 years old who did not develop severe sepsis
(hereafter referred to as old controls [OC]), 3) patients 50-65 years old who developed
severe sepsis within 90 days after presentation to the ED (hereafter referred to as young
severe sepsis [YS]), and 4) patients 70-85 years old who developed severe sepsis within 90
days after presentation to the ED (hereafter referred to as old severe sepsis [OS]). To ensure
that differences in immune response are attributed to age and not to ethnic differences or
underlying chronic diseases, only whites and matched patients according to chronic disease
burden were included (Table S1). Approval for the participation of human patients was
obtained by the Institutional Review Board of the University of Pittsburgh and other
participating sites.

Plasma samples and tandem MARS depletion
Plasma samples were obtained on Day 1 when the CAP patients were admitted to the ED
and prior to most interventions to ensure that differences in immune response are not
affected by therapeutic strategies. Negative results were obtained in the blood culture test
used to identify the pathogenic source of the samples obtained from CAP patients. The Hu 6
MARS column (Agilent; Santa Clara, CA) depletes serum albumin, IgG, α1-antitrypsin,
IgA, transferrin, and haptoglobin proteins. An injection amount of 60 μL of crude plasma
was applied to the MARS column and after the initial depletion flow-through fractions were
concentrated with a 5K molecular weight cutoff concentrator (Agilent) at 4695 g at 4°C for
1.5 hours. Samples were then stored at -80 °C or re-injected onto the MARS column for
tandem MARS depletion. The second flow-through fractions (hereafter referred to as TMD)
were concentrated and protein concentrations were measured using the BCA protein assay.

Protein digestion
Protein was denatured with an extraction buffer (0.2 M Tris, 8 M urea, 10 mM CaCl2, pH
8.0), reduced with 1:40 molar excess of dithiothreitol (DTT) for 2 h at 37 °C, and then
alkylated with 1:80 molar excess of iodoacetamide (IAM) for 2 h on ice. The alkylation
reaction was quenched by adding 1:40 molar excess of Cysteine and the mixture was
incubated at room temperature for 30 min. Tris buffer (0.2 M Tris, 10 mM CaCl2, pH 8.0)
was added to dilute the urea concentration to 2 M. Each sample was incubated with bovine
TPCK-heated trypsin at 1:50 substrate: enzyme ratio for 24 h at 37 °C.

iTRAQ labeling
Digested samples were desalted with an HLB cartridge (Waters; Milford, MA) and dried by
centrifugal evaporation. Each sample was labeled with an iTRAQ reagent following the
manufacturer's protocol (Applied Biosystems; Foster City, CA) with slight modifications.
Briefly, each iTRAQ reagent was solubilized with 70 μL ethanol and transferred to peptide
mixtures. After 1.5 h of incubation, the reaction was quenched with water. Labeled samples
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were mixed in 1:1:1:1 ratios for iTRAQ reagents that generate reporter ions at m/z
114:115:116:117, respectively.

SCX fractionation
SCX fractionation was carried out on a PolySulfoethyl A 100 mm × 2.1 mm, 5 μm, 200 Å
column (The Nest Group, Inc.; Southborough, MA) with buffers as follows: mobile phase A
was 5 mM monopotassium phosphate (25% v/v acetonitrile, pH 3.0), and mobile phase B
was 5 mM phosphate, 350 mM potassium chloride, (25% v/v acetonitrile, pH 3.0). Dried
iTRAQ labeled samples were resuspended in 300 μL of mobile phase A and injected onto
the SCX column. The gradient for SCX was: 0-3 min, 0% B; 3-45 min, 0-75% B; 45-50
min, 75-100% B; 50-55 min, 100% mobile phase B; 55-56 min, 100-0% B; 56-106 min, 0%
B. Thirteen SCX fractions were collected and each fraction was desalted with an HLB
cartridge (Waters).

LC-MS/MS analysis
Online desalting and reversed phase chromatography was performed with a Nano2D-LC
system equipped with an autosampler (Eksigent; Dublin, CA). Mobile phase A and B for
these analyses were 3% (v/v) acetonitrile with 0.1% formic acid and 100% (v/v) acetonitrile
with 0.1% formic acid, respectively. SCX fractions (5 μL)were loaded onto a trapping
column (100 μm i.d. × 2 cm), which was packed in-house with C18 200 Å 3μm stationary
phase material (Michrom Bioresource Inc.; Auburn, CA) at 3 μL.min−1 in 3% mobile phase
B for 3 min. After desalting, the sample was loaded onto an analytical column (75 μm i.d. ×
13.2 cm), which was packed in-house with C18 100 Å 3μm stationary phase material
(Michrom Bioresource Inc.). The gradient was as follows: 0-5 min, 10% mobile phase B;
5-75 min, 10-30% B; 75-95 min, 30-60% B; 95-100 min, 60-90% B; 100-105 min, 90-10%
B; 110-120 min, 10% B. The LC eluent was analyzed with positive ion nanoflow
electrospray using a LTQ-Orbitrap Velos mass spectrometer (Thermo-Fisher Scientific,
Waltham, MA). Data-dependent acquisition parameters were as follows: the MS survey scan
in the Orbitrap was 60,000 resolution over 300-1800 m/z; the top six most intense peaks in
the MS survey scan were isolated and fragmented with CID and HCD; CID was performed
in the ion trap with normalized collision energy 35%; HCD was recorded in the Orbitrap
with normalized collision energy 45% and 7,500 resolution; dynamic exclusion was enabled
and a repeat count of 2 for a duration of 60 seconds was allowed and selected ions were
placed on an exclusion list for 61seconds. Each SCX fraction was subject to triplicate LC-
MS/MS analysis.

Data analysis
RAW files were analyzed with Proteome Discoverer 1.2 software (Thermo). Both CID and
HCD spectra were used to obtain sequence information against the Uniprot human database
(04/25/2010, 20295 sequences). Sequest search parameters were as follows: two maximum
trypsin miscleavages; precursor mass tolerance 10 ppm; fragment mass tolerance 0.8 Da;
static modifications were iTRAQ-4plex/+144.102 Da (N-terminus, Lys), and
carbamidomethyl modification/+57.021 Da (Cys); dynamic modification of iTRAQ-4plex/
+144.102 Da (Tyr). Decoy database searching was employed to generate medium (p<0.05)
and high (p<0.01) confidence peptide lists. All the peptides with medium and high
confidence were used to identify and quantify proteins. The reporter ions (i.e., m/z 114-117)
were identified with the following parameters: centroid with smallest delta mass, 20 ppm for
reporter ion mass tolerance. The isotope correction was employed according to the
manufacturer's protocol (AB Sciex). Additionally, protein ratios in each experiment were
normalized based on the protein median ratio option in the software (i.e., individual protein
value is normalized against the median ratio value obtained across all proteins identified in a
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given experiment). Only proteins with at least two spectral counts in a technical replicate
were considered for further analysis.

Statistics
Coefficient of variation (CV) values were calculated for reporter ion ratios (e.g., 115/114,
116/114, and 117/114) of proteins quantified in at least six iTRAQ experiments. The mean
CV value across the iTRAQ experiments was calculated and used as the total biological
variation, Sb, which was 0.60 in this study. The technical variation, St, was calculated for
proteins quantified in at least two LC-MS/MS analyses within an individual iTRAQ
experiment, which was 0.11 in this study. The relation between the fold change (F), random
variation (S), biological variation (Sb), and technical variation St is expressed by the
formula24

(1)

(2)

The quantities Z and T depend on the power of the test and the significance level,
respectively. When the power of the test and significance level are set as 0.8 and 0.05,
respectively, the value of (Z+T)2 will be ∼ 1024. n and m (i.e., m is set as 3 in these studies)
are the number of biological and technical replicates, respectively. Such that formula (1)
approximates to24

(3)

Solve formulas (2) and (3),

(4)

From this power analysis, fold-change cutoff was calculated based on the number of
biological replicates (i.e., n) in which the proteins were quantified. Stringent filter criteria
were applied to generate a list of statistically significant differentially-expressed proteins as
follows: 1) proteins identified and quantified in at least six biological replicates, 2) CV
values ≤ 0.60, and 3) fold-change cutoff dependent upon n as such a) ≥ 1.27 or ≤ 0.79
(n=10), b) ≥ 1.28 or ≤ 0.78 (n=9), c) ≥ 1.30 or ≤ 0.77 (n=8), d) ≥ 1.32 or ≤ 0.76 (n=9), e) ≥
1.35 or ≤ 0.74 (n=6).

Western blotting analyses
The changes in the expression of C-reactive protein (CRP), apolipoprotein CIII (ApoCIII),
and fibrinogen alpha chain (FAC) were subject to Western blotting analysis. Twenty μg of
TMD proteins was denatured in an appropriate sample buffer and electrophoretically
separated on a Criterion precast gel (Biorad Laboratories; Hercules, CA) at 140 V. Proteins
from the gel were transferred onto a nitrocellulose membrane paper using a Fast-Transfer
Blot System (Biorad). Blots were washed three times in Wash blot. BSA blocking solution
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(3%) was added to the membrane and incubated on a rocker for 2 h. A 1:5000 dilution of
mouse monoclonal anti-CRP primary antibody (Sigma Aldrich; St. Louis, MO), 1:5000
dilution of rabbit polyclonal anti-Apo CIII primary antibody (Abcam; Cambridge, MA), or
1:2500 dilution of rabbit monoclonal anti-FAC primary antibody (Abcam) was added and
incubated at 4 °C overnight. The blot was rinsed and incubated with a 1:7500 dilution of
anti-mouse or anti-rabbit IgG alkaline phosphatase secondary antibody (Sigma Aldrich) for
1 h on a rocker. The blot was rinsed and colorometrically developed using 0.51mM 5-
bromo-4-chloro-3′-indolyphosphate p-toluidine salt (BCIP) and 0.24 mM nitrotetrazolium
blue (NBT). The dried blot was scanned using a Canon scanner, saved as a .TIFF file, and
densitometry analyses carried out with Scion Image Software. Within each experiment, the
intensity for the sample from each group was normalized to the total blot intensity and used
to generate mean and standard deviation values.

Ingenuity pathway analysis
Differentially-expressed proteins were analyzed using Ingenuity Pathway Analysis (IPA,
www.ingenuity.com) to generate a list of pathways that are statistically relevant (p< 0.05).

Results
Data characterization and statistical analysis

An iTRAQ-based semi-quantitative proteomics workflow22 was employed to identify
differentially-expressed proteins in 50-65 and 70-85 year old CAP patients who developed
severe sepsis compared to those patients that did not (Table S1). The workflow employs
tandem MARS depletion on a MARS Hu-6 column to effectively remove high abundance
proteins and has been demonstrated to allow deeper probing into the plasma proteome22.
Patient samples from the four groups (i.e., YC, YS, OC and OS) were randomly assigned to
iTRAQ reagents in a blind fashion across ten SCX-LC-MS/MS experiments (Table 1).

Figure 1a shows an example of LC chromatograms for 13 SCX fractions of pooled iTRAQ
4-plex samples. The triplicate LC-MS/MS runs for each fraction are reproducible. Figures
1b-g show example spectra for peaks isolated and fragmented. Doubly-charged peptides at
m/z 748.9046 (Figure 1b) and 742.9010 (Figure 1c) in SCX fractions seven and six were
eluted from the column at tr57.20 min and 37.26 min, respectively. The CID MS/MS spectra
(Figures 1d and e) display a consecutive series of b- and y-fragment ions used to assign the
peptides as [YYTYLIMNK+2H]2+ of protein Complement C3 and [GWVTDGFSSLK
+2H]2+of protein ApoCIII, respectively. A mass increase of 145 Da was observed for b1 and
y1ions for each of the two peptides, indicating iTRAQ labeling at the N-terminus and the
presence of lysine at the C-terminus. HCD MS/MS spectra (Figures 1f and g) also contain a
series of b- and y- ions used to confirm the sequence of peptides. The lower m/z region of
the HCD MS/MS spectra (inserts in Figure 1f and g) shows the intensity of the reporter ions
which is used to quantify the peptides. As shown in Figures 1f and g, the ratios across the
four groups are 1.0:0.9:1.0:1.0 and 1.0:1.9:2.3:1.4 for reporter ions 114:115:116:117 from
Complement C3 and ApoCIII, respectively.

Figure 2 shows a bar graph of the number of proteins and spectral counts (SCs) identified in
each of ten biological replicate experiments. Also, the cumulative number of proteins
identified in all of the ten experiments is also shown in Figure 2. An average of 283±14
proteins and 59645±4129 spectral counts were identified and similar results were obtained
across individual experiments. The total number of proteins identified increases with each
pooled sample experiment such that a total of 772 unique proteins were identified from all
plasma samples. With more stringent criteria for protein filtering (i.e., at least two unique
peptides), a total of 509 proteins were identified. A list of all identified proteins and peptides
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is provided in Supplementary Tables S2 and S3, respectively. Based on SCs, the three most
abundant proteins are Complement C3 (49,749 SCs), α-2-macroglobulin (47,273 SCs) and
ApoAI (28,261 SCs).

Western analysis verification
Western blotting analysis was employed to generate a secondary measurement for several
differentially expressed proteins. Proteins involved in the acute phase response (i.e., CRP),
coagulation pathway (i.e., FAC) pathway and lipid metabolism (i.e., ApoCIII) were selected.
Figures 3a-c display Western blot data for CRP, FAC, ApoCIII, respectively. The histogram
plots represent the normalized intensities corresponding to the density of the band spots for
each group. The relative abundances (YS:YC:OS:OC) obtained from the Western blotting
analysis of CRP, FAC and ApoCIII were 1.0:0.4:0.4:1.8, 1:0.3:0.1:0.5, and 1.0:1.9:2.5:1.2,
respectively. These observed Western data were similar to the measured iTRAQ results for
these proteins (Table 2). However, suppression of iTRAQ protein ratios in MS/MS
experiments is a noted limitation of this quantitative approach25. Proteomics workflows to
handle suppression issues at the MS3 level have been recently reported26-30.

Differentially-expressed proteins
Proteins ratios were obtained from the two age groups: YS/YC in 50-65 years old group and
OS/OC in 70-85 years old group using YC and OC as reference channels, respectively.
Fifty-eight differentially-expressed proteins (Table 2) were identified in comparisons from
both age groups (i.e., YS/YC and OS/OC). Proteins differentially expressed between
younger and older adults within each disease group (i.e., OC/YC and OS/YS) are provided
in Supplemental Table S5 for interested readers. The measured fold-change values reported
in the table include the mean and SD for each protein based on the ratios averaged across all
biological replicates. As shown in the Venn diagram (Figure 4), 28 proteins are
differentially-expressed in the population of 50-65 year olds (i.e., YS/YC) in which 14 have
higher levels and 14 have lower levels in patients with severe sepsis compared to those with
CAP. In the population of 70-85 year olds (i.e., OS/OC), 23 proteins are differentially-
expressed, in which 16 and seven have higher and lower levels in patients with severe
sepsis, respectively. Of the 58 total differentially-expressed proteins, eight are in common
amongst both age groups. Interestingly, however the direction of the fold change differs in
younger and older adults. Specifically, α-1-antichymotrypsin (A1ACT), ApoE, fibrinogen α
chain, C-reactive protein (CRP), and LPS binding protein (LBP) levels were higher in
younger adults with severe sepsis but lower in older adults with severe sepsis relative to age-
matched controls, suggesting that lower levels of these proteins is associated with increased
risk and incidence of severe sepsis in older adults. On the other hand, Apo AII, Apo CIII,
and N-acetylmuranoyl-L-alanineamidase have lower and higher levels in younger and older
with severe sepsis, respectively, suggesting that higher levels of these proteins may be
factors for increased severe sepsis risk in older adults.

Pathway analysis
Using IPA analysis, 19 biological pathways (Figure 5) are significantly over-represented
(p<0.05) for the 58 differentially-expressed proteins identified in these studies. The most
represented pathways include LXR/RXR activation and acute phase response signaling
where by 18 proteins are associated with each of these pathways. Next many differentially-
expressed proteins are involved in atherosclerosis signaling, interleukin (IL)-12 signaling
and production of NO and reactive oxygen species in macrophages, and endocytosis
signaling. Fewer proteins are involved in the remaining biological pathways shown in Figure
5 such as actin cytoskeleton and IL-6 signaling. A list of the proteins associated with
specific pathways is provided in Supplemental Table S4.
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Discussion
This work investigates the effects of aging on the risk of severe sepsis in the acute plasma
proteome of elderly CAP patients. While sepsis can occur as early as the neonatal
stage31, 32, incidence and morbidity increases with age and rises sharply after 65
years13, 33, 34 presumably due to immunosenescence14, 34, 35 and high levels of
inflammatory proteins17-20, 36. However, no significant differences with age have been
reported for inflammatory and coagulation proteins and cell surface markers in patients with
severe sepsis2.

Our plasma proteomics study identified 58 differentially-expressed proteins in CAP patients
that subsequently developed severe sepsis relative to those who did not in groups of elderly
adults (Table 2). We note that some of the differences observed may be due to both a
mixture of pre-existing conditions and differences in the initial acute phase response, as our
study groups did not include a nonseptic subset. Below is a discussion of the proteins
involved the biological pathways such as acute phase signaling, coagulation pathway, and
lipid metabolism. Other pathways are briefly discussed and the implications of these
changes for understanding aging and severe sepsis in the elderly are presented.

Acute phase response
Sepsis is a pro-inflammatory state which is characterized by elevated levels of pro-
inflammatory cytokines, such as IL-6, IL-10 and tumor necrosis factor (TNF)-α11. These
pro-inflammatory cytokines regulate acute phase responses and the expression of acute
phase proteins (APPs)37. Altered expression of APPs has been demonstrated in
sepsis16, 38-42. For example, increased levels of α-1-acid glycoprotein (A1AG), A1ACT, and
LBP and decreased levels of transthyretin (TTR) are observed in 65 year old sepsis
patients39, 40 and cecal ligand and puncture (CLP) mouse41 and pig models42. It also appears
that acute phase response increases with the disease severity. For example, sepsis patients
have higher levels of CRP and lower levels of serum amyloid A4 relative to patients with
systemic inflammatory response syndrome (SIRS), another precursor to sepsis16, 38.

In our studies, 18 differentially-expressed proteins including CRP, LBP, A1ACT, and TTR
are involved in acute phase response (Figure 5 and Table S4) and the levels in younger
adults are consistent with other studies16, 38-42. For example, CRP (fold-change YS/YC
3.268±1.070), LBP (2.201±0.502), A1ACT (1.577±0.867), and A1AG (2.033±0.426) have
higher concentrations while TTR (0.440±0.094) has lower concentrations in younger adults
who developed severe sepsis compared to those did not. Also evidenced in our results is that
acute phase response also varies depending on patient age. The proteins CRP (0.521±0.221),
LBP (0.762±0.321), and A1ACT (0.683±0.183) have lower concentrations in older adults
who later developed severe sepsis suggesting that lower expression of these proteins at older
age leads to severe sepsis. CRP and LBP have protective effects by neutralizing the toxicity
of pathogens39, 43-46, such that decreased expression of these proteins in older patients may
help explain higher risk and mortality of severe sepsis. Both aging and severe sepsis alter the
immune system and response to infection47. Taken together, these results of acute phase
response imply that a hypoinflammatory response in older adults may increase risk of severe
sepsis, consistent with other literature reports11, 48, 49.

Coagulation pathway
Pro-inflammatory cytokines can also activate the coagulation pathway. Briefly, the
activation of a series of coagulation factors cleave prothrombin to thrombin, which in turn
converts soluble fibrinogen into fibrin, upon which cross-linked fibrin forms blood
clots11, 50.In sepsis patients, pro-coagulation overwhelms fibrinolysis (or anti-coagulation)
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leading to the presence of more blood clots11, 50.This has been demonstrated by decreased
levels of anti- coagulant proteins [e.g., antithrombin III (ATIII), and heparin cofactor II] and
increased levels of pro-coagulant proteins [e.g., fibrinogen, Von Willebrand factor (VWF)]
in sepsis patients41, 51-53.

In these studies, elevated levels of fibrinogen alpha chain (2.441±0.579), fibrinogen beta
chain (2.102±0.579), fibrinogen gamma chain (2.077±0.720) and VWF (2.047±0.340) were
found in younger adults who developed severe sepsis. Fibrinogen has higher concentrations
and ATIII has lower concentrations in sepsis41, 51. Higher levels of VWF are associated with
mortality in sepsis52. Higher levels of fibrinogen and VWF may indicate the presence of
more blood clots in younger patients, consistent with literature reports53-55, whom
developed severe sepsis. This notion is further supported by decreased concentrations of
ATIII (0.596±0.064) and heparin cofactor II (0.707±0.255) in these studies. Interestingly,
fibrinogen (0.597±0.129) had lower levels in older adults who developed severe sepsis. Our
proteomics results support the notion that an acute response of reduced coagulation activity
may be a contributing factor to higher incidence and mortality of severe sepsis found in
older adults.

Lipid metabolism
Apolipoproteins play important roles in liver X receptor/retinoid X receptor (LXR/RXR)
activation and atherosclerosis signaling. For example, Apo B-100 can suppress the
activation of LXR/RXR56. The activated LXR/RXR complex enhances the process of
reverse cholesterol transport and cholesterol efflux, which transfers accumulated cholesterol
from the blood vessel walls to the liver for excretion57, 58. Additionally, activated LXR/
RXR can reduce the expression of pro-inflammatory cytokines (e.g., IL-6, IL-1β) by
inhibition of the activity of transcription factor NF-κB59. The acute phase response which is
activated during aging and severe sepsis can inhibit LXR/RXR activation60. Failed
activation of the LXR/RXR complex may lead to atherosclerosis61, 62, which is associated
with severe sepsis63, 64. Apolipoproteins may have various biological functions by forming
different lipoproteins [e.g., low density lipoproteins (LDL) and high density lipoproteins
(HDL)]. For example, Apo B-100 is the protein component for LDL which is a cholesterol
transporter65. Whereas HDL formed by Apo A and Apo CIII can inhibit oxidation and
inflammation66.

Altered levels of apoliproteins have been reported in sepsis. For example, elevated levels of
ApoB-10067 and lower concentrations of Apo CIII in response to inflammation68 have been
reported. Consistent with this, we observed increased expression of ApoB-100
(1.523±0.253) and decreased expression of Apo CIII (0.690±0.294) in younger adults who
developed severe sepsis. These changes may suggest suppressed activation of the LXR/RXR
pathway and subsequent higher risk of atherosclerosis in younger adults (although we do not
have data to support this notion). Additionally, Apo CIII has different isoforms based on the
number (i.e., 0, 1, 2, and 3) of sialic acids per protein: Apo CIII-0, Apo CIII-1, Apo CIII-2,
and Apo CIII-369. The Apo CIII isoform ratios have been demonstrated to be correlated with
mortality in younger severe sepsis patients (∼ 49 years old)69. For example, the ratio of Apo
CIII-2/Apo CIII-1 higher than 1.25 may indicate increased risk of death in the younger
severe sepsis patients69. ApoE also has different isoforms: Apo E2, Apo E3, Apo E4. It has
been shown that the levels of Apo E2 correlate positively with that of factor VIII, which is
necessary for blood clotting70. Also, higher levels of Apo E3 may reduce the risk of severe
sepsis70. In this study, higher levels of Apo E (2.105±0.301) were found in younger adults
consistent with a rat model71, however lower levels (0.646±0.170) were detected in older
adults in our study. Also, higher levels of Apo CI (2.165±1.022) and Apo M (1.438±0.483)
were detected in older adults who developed severe sepsis. Although Apo CI levels correlate
with the survivorship in ∼25 year old severe sepsis patients72, higher concentration of Apo
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CI has been reported to promote atherosclerosis73, 74. Apo M has also been reported to have
lower concentrations in young adults severe sepsis patients 75, 76 and contributes to the anti-
inflammatory response in sepsis76. Higher levels of Apo M in older adults who developed
severe sepsis in our studies suggest that these patients have a reduced inflammatory state
during acute response. That lipid metabolism is altered in these studies points to
atherosclerosis as a contributing factor of severe sepsis incidence; however further analyses
are necessary to support this hypothesis.

Other pathways
Other key pathways identified in these studies such as IL-12 and IL-6 signaling support a
hypoinflammatory response in older adults (Table S4, Table 2)77.Enhanced production of
nitric oxide (NO) and reactive oxygen species (ROS) in macrophages has been previously
reported in aging and sepsis78, 79. We detect differentially-expressed proteins involved in the
production of NO and ROS (i.e., retinol binding protein 1, lysozyme C and clusterin) which
support elevated oxidative stress in the elderly79, 80 and severe sepsis patients78, 81.

The nested-case control study design employed herein has identified many potential factors
that may contribute to higher incidence of severe sepsis in adults older than 65 years old.
There is a substantial role of inflammation and coagulation processes in acute host response
and our proteomics results suggest that older individuals have hypoinflammatory and
reduced coagulation responses. While other factors such as lipid metabolism and production
of ROS are implicated, additional experiments are necessary in order to determine better the
effects of age on these processes. For example, it would be worthwhile in future studies to
measure oxidative stress markers in this CAP cohort and to examine the correlation between
incidence of severe sepsis and age with atherosclerosis. A limitation to these studies is the
small sample populations (N=10) used to measure a wide range of proteins that are known to
vary substantially in plasma tissue82. Future studies include selecting key proteins to follow
their expression levels in a larger cohort using an independent method, such as ELISA.

Conclusions
The incidence and mortality of severe sepsis increases with aging, especially after 65 years.
This study investigated the effects of aging on initial host response to sepsis in CAP patients
who eventually develop severe sepsis after hospitalization. Using a proteomics approach,
several altered biological pathways were identified. Acute phase response and coagulation
were highly represented in these studies, and novel pathways such as lipid metabolism,
atherosclerosis, and production of NO and ROS were observed. Interestingly, differentially-
expressed proteins involved in these pathways show opposite expression levels of change
dependent on patient age (i.e., 50-65 and 70-85 years old). These findings provide more
insight to factors that may explain higher risk, increased incidence, and mortality in older
adults with severe sepsis. Future studies on a larger cohort of patients (e.g., N>50) will be
performed to further understand our results and to assess proteins with low concentrations
and important biological roles (e.g., acute phase response, coagulation, and lipid
metabolism). Such insight will be helpful for the development of age-specific and
personalized severe sepsis treatments.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
a) LC chromatograms for individual SCX fractions analyzed in triplicate. Example mass
spectra of peptides eluted from b) SCX fraction 7 tr = 57.20 min with m/z 748.8046 and c)
SCX fraction 6 tr= 37.26 min with m/z 742.9010. CID MS/MS spectra are shown in d) and
e), respectively. HCD MS/MS are shown in f) and g). The inserts are zoom-ins of the f) and
g) low m/z region.
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Figure 2.
The number of proteins ( ) and spectral counts ( ) identified in each experiments. The
cumulative number of proteins identified with each subsequent experiment ( ) is also
shown.
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Figure 3.
Western blotting images for a) C-reactive protein, b) fibrinogen alpha chain, and c) Apo
CIII. The histogram under the images displays the normalized intensity ± standard deviation
(n=6) of the proteins across each group. The intensity for each individual band is normalized
to the total intensity of the blot.
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Figure 4.
Venn diagram of differentially-expressed proteins for each age group (i.e., YS/YC 50-65
years old and OS/OC 70-85 years old). The number of proteins that have higher (↑) or lower
(↓) fold-change values in each comparison are also shown.
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Figure 5.
Histogram plot of biological pathways associated with differentially expressed proteins as a
function of severity of sepsis (N=58). The p value cutoff for the IPA pathways is p<0.05.
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Table 1
Experimental design and iTRAQ quantitation channel assignment

Experiment
Reporter ions

114 115 116 117

1 YSa YCb OSc OCd

2 YS YC OS OC

3 YS YC OS OC

4 YS YC OS OC

5 YC OS OC YS

6 YC OS OC YS

7 YC OS OC YS

8 OS OC YS YC

9 OS OC YS YC

10 OS OC YS YC

a
Patients 50-65 years old who developed severe sepsis.

b
Patients 50-65 years old who did not develop severe sepsis.

c
Patients 70-85 years old who developed severe sepsis.

d
Patients 70-85 years old who did not develop severe sepsis.
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Table 2

The list of proteins which are differently expressed between groups.

Acc. No.a Protein Name YS/YC (mean ± SDb) OS/OC (mean ± SD) nc

O14791 Apolipoprotein L1 / 1.39 ± 0.70 10

O95445 Apolipoprotein M / 1.44 ± 0.48 8

P01008 Antithrombin-III 0.60 ± 0.06 / 10

P01011 Alpha-1-antichymotrypsin 1.58 ± 0.87 0.68 ± 0.18 10

P02649 Apolipoprotein E 2.11 ± 0.30 0.65 ± 0.17 10

P02652 Apolipoprotein A-II 0.50 ± 0.08 1.45 ± 0.46 10

P02654 Apolipoprotein C-I / 2.17 ± 1.02 10

P02656 Apolipoprotein C-III 0.69 ± 0.29 1.43 ± 0.77 10

P02671 Fibrinogen alpha chain 2.44 ± 0.72 0.60 ± 0.13 10

P02675 Fibrinogen beta chain 2.10 ± 0.58 / 10

P02679 Fibrinogen gamma chain 2.08 ± 0.72 / 10

P02735 Serum amyloid A protein 3.06 ± 1.09 / 10

P02741 C-reactive protein 3.27 ± 1.07 0.52 ± 0.22 10

P02749 Beta-2-glycoprotein 1 / 1.58 ± 0.61 10

P02750 Leucine-rich alpha-2-glycoprotein 2.14 ± 0.30 / 10

P02751 Fibronectin / 0.62 ± 0.31 10

P02753 Retinol-binding protein 4 0.53 ± 0.09 / 10

P02763 Alpha-1-acid glycoprotein 1 2.03 ± 0.43 / 10

P02766 Transthyretin 0.44 ± 0.09 / 10

P02774 Vitamin D-binding protein 0.57 ± 0.08 / 10

P02775 Platelet basic protein / 0.76 ± 0.21 9

P04114 Apolipoprotein B-100 1.52 ± 0.25 / 7

P04259 Keratin, type II cytoskeletal 6B 0.52 ± 0.06 / 7

P04275 von Willebrand factor 2.05 ± 0.34 / 10

P04278 Sex hormone-binding globulin 0.70 ± 0.26 / 7

P05090 Apolipoprotein D / 1.47 ± 0.32 10

P05154 Plasma serine protease inhibitor 0.73 ± 0.46 / 6

P05452 Tetranectin 0.64 ± 0.10 / 10

P05546 Heparin cofactor 2 0.71 ± 0.26 / 10

P06276 Cholinesterase / 1.45 ± 0.47 9

P06396 Gelsolin 0.55 ± 0.10 / 10

P07996 Thrombospondin-1 / 0.65 ± 0.34 6

P10909 Clusterin 0.73 ± 0.30 / 10

P13645 Keratin, type I cytoskeletal 10 0.58 ± 0.06 / 10

P15169 Carboxypeptidase N catalytic chain 1.31 ± 0.36 / 10

P16070 CD44 antigen 1.62 ± 0.55 / 7

P18428 Lipopolysaccharide-binding protein 2.20 ± 0.50 0.76 ± 0.32 10

P19652 Alpha-1-acid glycoprotein 2 2.17 ± 0.60 / 10

P19823 Inter-alpha-trypsin inhibitor heavy chain H2 / 1.40 ± 0.53 10
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Acc. No.a Protein Name YS/YC (mean ± SDb) OS/OC (mean ± SD) nc

P19827 Inter-alpha-trypsin inhibitor heavy chain H1 / 1.58 ± 0.58 10

P20851 C4b-binding protein beta chain 1.39 ± 0.46 / 6

P29622 Kallistatin / 1.69 ± 0.57 10

P35542 Serum amyloid A-4 protein 0.48 ± 0.04 / 10

P35858 Insulin-like growth factor-binding protein complex acid labile subunit / 1.39 ± 0.46 9

P61626 Lysozyme C 1.91 ± 0.96 / 8

P61769 Beta-2-microglobulin 1.89 ± 1.02 / 6

P80108 Phosphatidylinositol-glycan-specific phospholipase D 0.39 ± 0.06 / 9

Q03591 Complement factor H-related protein 1 1.31 ± 0.60 / 10

Q04756 Hepatocyte growth factor activator / 1.81 ± 0.68 10

Q15431 Synaptonemal complex protein 1 / 1.37 ± 0.62 6

Q6UXB8 Peptidase inhibitor 16 / 2.03 ± 0.78 6

Q86UD1 Out at first protein homolog / 0.74 ± 0.19 6

Q86UV6 Tripartite motif-containing protein 74 / 1.85 ± 0.79 6

Q96KN2 Beta-Ala-His dipeptidase / 2.06 ± 0.93 6

Q96PD5 N-acetylmuramoyl-L-alanine amidase 0.58 ± 0.06 1.35 ± 0.39 10

Q9BXR6 Complement factor H-related protein 5 / 0.72 ± 0.18 10

Q9NXD2 Myotubularin-related protein 10 / 1.78 ± 0.69 7

Q9Y6R7 IgGFc-binding protein / 0.70 ± 0.26 9

a
accession number provided from the uniprot human database (04/25/2010, 20295 sequences).

b
mean and SD values are calculated based on the reporter ion ratios for proteins quantified in at least 6 experiments.

c
the number of experiments in which the corresponding proteins are quantified.
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