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Membrane Fluctuations Destabilize Clathrin Protein Lattice Order
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ABSTRACT We develop a theoretical model of a clathrin protein lattice on a flexible cell membrane. The clathrin subunit is
modeled as a three-legged pinwheel with elastic deformation modes and intersubunit binding interactions. The pinwheels are
constrained to lie on the surface of an elastic sheet that opposes bending deformation and is subjected to tension. Through
Monte Carlo simulations, we predict the equilibrium phase behavior of clathrin lattices at various levels of tension. High mem-
brane tensions, which correspond to suppressed membrane fluctuations, tend to stabilize large, flat crystalline structures similar
to plaques that have been observed in vivo on cell membranes that are adhered to rigid surfaces. Low tensions, on the other
hand, give rise to disordered, defect-ridden lattices that behave in a fluidlike manner. The principles of two-dimensional melting
theory are applied to our model system to further clarify how high tensions can stabilize crystalline order on flexible membranes.
These results demonstrate the importance of environmental physical cues in dictating the collective behavior of self-assembled
protein structures.
INTRODUCTION
The assembly of biological subunits into larger, useful
structures is a vital function within all organisms. The pro-
tein-complex clathrin is one example of a component that
assembles to serve a necessary function in eukaryotes
(1–4). Clathrin facilitates inter- and intracellular transport
by assembling into cagelike structures (5,6) that coat and
stabilize cargo-laden vesicles (7–9). This process is central
in clathrin-mediated endocytosis—an essential transmem-
brane cellular transport mechanism (10–12) that also relies
on a collection of ancillary proteins (3,13,14). Coated mem-
brane buds and vesicles have also been observed in vitro
without these additional components (15), demonstrating
clathrin’s robust tendency to form ordered structures on
flexible membranes.

The attributes of clathrin structures in vivo are highly
dependent on physical and biological conditions, with
various sizes, shapes, and lifetimes exhibited depending
on cell type and environmental conditions (16–20). A fluo-
rescence microscopy study by Saffarian et al. (21) has
parsed through these structural variations to identify two
distinct classes within which they fall: curved pits and flat
plaques. Small, curved pits are the canonical structures
that coat membrane buds, whereas large, flat plaques are
internalized at a much slower rate than pits and only with
the help of a reorganizing actin cytoskeleton (20–22). No
evidence has been found of a unique advantage of slow
cargo internalization via plaques, suggesting that such struc-
tures arise incidentally as a result of environmental factors
and that any prevalence of plaques corresponds to hindered
cellular transport (21). Furthermore, plaques are almost
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exclusively observed on cell membranes that are adhered
to a rigid substrate (e.g., a glass coverslip), whereas pits
exist on both the adherent and the free cell surface (21).
This raises the question: which physical or chemical proper-
ties make plaques achievable on adhered membranes but not
on free, unadhered ones?

In this article, we develop a physical model for clathrin
self-assembly on a flexible membrane. Through simulations
of our model system, we show that a simple modification of
the physical behavior of a cell membrane is sufficient to
stabilize plaque assemblies. Specifically, when the out-of-
plane membrane fluctuations are suppressed by an elevated
membrane tension, the clathrin lattice adopts an ordered
crystalline structure. Alternatively, a highly fluctuating
membrane at low tension destabilizes the crystalline struc-
ture in favor of a disordered, fluidlike phase. We supplement
numerical simulations with arguments based on two-dimen-
sional defect-mediated melting theory to delineate a transi-
tion between the crystalline and fluid phases at a critical
tension, which is greater than typical physiological values
and perhaps brought about by anomalous environmental
conditions such as adherence to a solid substrate. These pre-
dictions highlight the important role that subtle changes in
environmental conditions play in altering the collective
behavior of biological assemblies.
MODEL DESCRIPTION

In this section, we describe the components of our theoret-
ical model, reserving some mathematical details for the
Appendix. Our simplified representations of clathrin sub-
units as elastic pinwheels and the cell membrane as an
elastic sheet enable us to address biologically relevant
behavior without enduring intractably long computation
http://dx.doi.org/10.1016/j.bpj.2013.11.4505
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times, which would arise from models with atomic-level
detail.
Clathrin model

A clathrin subunit has a total molecular mass of ~645 kDa
and adopts a three-legged triskelion structure (23). Each
of the three flexible legs consists of one heavy chain and
one light chain (24), extending outward from a central hub
in a puckered pinwheel configuration that is ~50 nm in
diameter (25). We model a clathrin triskelion as a puckered
pinwheel consisting of three straight legs emanating from a
central hub, as shown in Fig. 1.

The model legs are capable of forming and breaking
bonds with one another, represented as struts between
pairs of hubs. This is a simplification from the physiolog-
ical scenario. In real clathrin assemblies, each flexible
clathrin leg not only binds to the legs of its nearest-
neighbor hub with its proximal domain, but its distal
domain extends past the near neighbor along an adjacent
edge of the assembled structure to interact with additional
clathrin legs. In this manner, each edge of a clathrin
assembly includes four interwound legs (26). Also, exper-
iments have shown that the multiple coordinated weak
interactions between trimerized legs are essential for
assembly, as individual leg-leg affinities are too weak to
stably dimerize. This would lead to cooperative dynamics
within the clathrin lattice assembly, but the omission of
these features in the model assembly mechanism will not
affect our conclusions on equilibrium condensed lattice
phase behavior. We choose a singular leg-leg affinity
e ¼ 6.5 kBT that results in consistently condensed assem-
blies. This value exceeds a predicted minimum binding
strength for stabilizing vesicles in vivo (27) and is half
as strong as an estimate based on fitting a thermodynamic
model to cage-size distributions in vitro (28). It is also
close to an order-of-magnitude estimate of 10 kBT based
on atomic force measurements of triskelion removal
from assembled structures (29). Given the approximations
inherent in each of these experimental fits and the depen-
FIGURE 1 Schematic of two model clathrin triskelia bound to one

another and coupled to a deformable membrane. Clathrin and membrane

deformation modes are labeled. To see this figure in color, go online.
dence of the affinity on environmental conditions, our
chosen value of 6.5 kBT is within a realistic range.

Displacement of hubs when they are bound to each other
causes the legs to deviate from their minimum-energy
configuration, incurring elastic stresses on the pinwheels
through four harmonic modes. The stretching modulus ks
gives the resistance to elongation or compression of the
inter-hub bonds relative to their equilibrium length r0, and
the twisting modulus kt governs the resistance to torsion
of these bonds. The in-plane bending modulus kb governs
the resistance to distortion of the legs away from an in-plane
angle of 120�, and the out-of-plane bending modulus ko
gives the resistance to deformation of the triskelion pucker
angle away from an intrinsic value a0.

In our simulations, we assign ks ¼ 85 kBT/r0
2 and kb ¼

ko¼ kt¼ ksr0
2/10, where kBT is the thermal energy. Our pre-

vious work shows these elasticities result in a crystalline
lattice on a flat membrane (30). Studies of clathrin confor-
mations using electron micrographs (31,32) indicate that
the subunit elastic moduli ks, kb, ko, and kt are slightly larger
than our chosen values (see Mehraeen (33) for details). The
fundamental physical phenomena presented in this article
are not affected by this discrepancy. We set a0 to be 101�,
giving the equilibrium angle between the normal of the
hub (defined in the Appendix) and the leg. This value is
slightly smaller than those compatible with measurements
of lone triskelia radii through dynamic light scattering
(34), as well as electron cryomicroscopy measurements of
triskelia shape in certain in vitro cages (35,36). However,
three-dimensional self-assembly simulations of rigid sub-
units geometrically similar to ours (a0 ¼ 101�) have shown
aggregation into cages that include ~50–70 triskelia (37),
which is fewer than in most experimentally observed cages
(17). This indicates that a ¼ 101� is a degree of puckering
that is greater than what is observed in most self-assembled
cages, suggesting that a0 may in fact be smaller than 101�.
Our choice of the clathrin natural pucker angle is therefore
within this range of experimentally based estimates.

Unbound legs are assumed to adopt the minimum energy
configuration, allowing us to fully define the state of our
clathrin assemblies by the position and orientation of each
central hub and the connectivity of each leg. The clathrin
deformation energies are quadratic in the deviation from
the undeformed state (i.e., Hookean deformation energy).
A full mathematical description of our model appears in
the Appendix.

This formulation builds upon our two-dimensional model
(30) by adding a three-dimensional position and orientation
to the triskelion degrees of freedom. A variation of this
model is also employed to study in vitro assembly in the
absence of cell membranes (38). Other researchers have
developed alternative models for clathrin that provide
insight into experimental findings (37,39–41). These models
rely largely on patchiness of the individual legs, which are
modeled explicitly. Unbound individual legs do not
Biophysical Journal 106(7) 1476–1488
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contribute to large-scale lattice stiffness, so we do not treat
them as separate degrees of freedom. This reduces the
computational load while still predicting experimentally
observed structures, as shown in our previous publications
(30,38).
Membrane model

The clathrin triskelia self-assemble on a cell membrane,
which is modeled as a continuous, elastic sheet of size Lx
and Ly in the x and y coordinates, with periodic boundaries.
This representation is a valid approximation for studying
undulations over length scales significantly greater than
the membrane thickness (42,43). We use the Canham-
Helfrich Hamiltonian (44–46) and assume the membrane
locally exhibits small height fluctuations that are single-
valued in the x�y plane, thus employing the Monge repre-
sentation. The membrane configuration is characterized by
a height field hð~rÞ that quantifies its deviation in the z
direction from the neutral plane at the x-y coordinate ~r.
The bending modulus k gives the resistance to bending
curvature, and the tension s endues a resistance to the
generation of area. The membrane energy for a projected
area A ¼ LxLy is given by

Emem ¼
ZZ

A

d~r
nk
2

�
V2hð~rÞ�2 þ s

2

�/
V hð~rÞ�2o: (1)

We discretize the membrane as a rectangular mesh. The
distance between mesh points in the x direction is equal to
r0/2, and we set the number of uniformly spaced mesh points
in the y direction equal to that in the x direction. This discre-
tization is fine enough to represent short-length membrane
deformations that influence clathrin assemblies. First- and
second-order central difference formulas are used to
compute the gradient and Laplacian terms, respectively, in
Eq. 1.

The importance that k and s play in dictating the response
of hð~rÞ to thermal fluctuations and other external forces
(e.g., from associated protein lattices) can be understood
by considering the sizes of out-of-plane fluctuations as
predicted by the equipartition theorem (46),

���h~q��2� ¼ kBTA

kq4 þ sq2
; (2)

where h~q is the two-dimensional Fourier transform of hð~rÞ
as a function of the discrete allowable wave vectors ~q in
our periodic system, and q ¼ j~qj. As shown in Eq. 2, the
short wavelength (i.e., high q) undulations of membranes
are dictated by k, whereas the long wavelength undulations
are dictated by s. The length scale at which the contribu-
tions from both properties are approximately equal is
Lc ¼

ffiffiffiffiffiffiffiffi
k=s

p
. This is an important length scale to consider

when adjusting model membrane properties. Undulations
Biophysical Journal 106(7) 1476–1488
with a characteristic wavelength much shorter than Lc are
not sensitive to changes in tension, whereas long wave-
length undulations are insensitive to the bending modulus.

In our simulations, we examine a range of six finite
tensions spaced logarithmically between 0.19 kBT/r0

2

and 19,000 kBT/r0
2. Using the estimate of r0 ¼ 16 nm

from electron micrographs (17), this range includes some
of the lowest measured physiological tension values
(0.003 pN/nm in neuronal growth cones (47)) and exceeds
the higher values by more than an order of magnitude
(48). We also examine a perfectly flat membrane, represent-
ing infinite tension.

The bending modulus of all simulated membranes is kept
constant throughout our simulations at a value of 4.7 kBT,
which is on the lower end of the physiological spectrum
(49,50). These membrane parameters result in values of Lc
in our simulations ranging between 0.02r0 to 5r0 at our finite
tensions (Lc ¼ 0 at infinite tension). Therefore, across our
set of chosen parameters, the membrane undula-
tions separating two neighboring clathrin hubs range
from bending-dominated (Lc > r0) to tension-dominated
(Lc < r0). The decision to vary tension but not bending
modulus is based on the fact that resistance to curvature is
an inherent physical property, whereas effective tension
can be externally modulated. For example, tension is altered
by pressure differences across the membrane or by attach-
ment to rigid surfaces (51) such as the glass coverslips
used in the observations made by Saffarian et al. (21).
Clathrin-membrane coupling

The final component of our model system is the constraint
that clathrin assemblies are attached to the membrane
surface. We achieve this in our simulations by fixing the
position of each clathrin hub in the z direction to be equal
to the height of the membrane mesh point to which it is
closest. In this way, membrane conformations directly
influence the elastic strain of clathrin lattices by dictating
the orientations and positions of the hubs.

The geometric coupling between the membrane shape
and the clathrin deformation leads to two important effects
that influence the thermodynamic behavior of our clathrin-
membrane model. First, the clathrin lattice may have a local
honeycomb structure that adopts a flat conformation that
is commensurate with the energetically preferred flat
membrane conformation, thus increasing the effective
rigidity of the membrane. Second, if the local clathrin lattice
has defects associated with five- and seven-member ring
structures, the clathrin locally prefers to form curved regions
that impart a deformation on the membrane. The resulting
membrane shape is therefore determined by the local
clathrin lattice structure and the balance of deformation
energies of the clathrin and membrane. These effects are
explored further later in this article and discussed in the
context of the thermodynamic behavior of our model.
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The physiological mechanism by which clathrin attaches
to a cell membrane is in fact very complex and involves
dozens of auxiliary proteins (e.g., adaptor protein 2) to
both form the reversible membrane-clathrin linkages and
localize other endocytic machinery (3,13). Direct linkages
between clathrin and these membrane-bound adaptor pro-
teins are formed through weak multivalent interactions,
the most typical of which exhibit dissociation constants
of ~10 mM (10 kBT binding affinity) (52,53). Clathrin in
membrane-bound pits in vivo have been observed to ex-
change regularly with those in the cytoplasm through an
ATP-dependent process (e.g., the activity of the ATPase
Hsc70) that may be essential for full pit invagination (54).

The ability of clathrin to reversibly associate and disso-
ciate with the membrane will likely affect dynamic predic-
tions of pit or vesicle assembly. In this article, we address
the equilibrium behavior of our clathrin model for a fixed
number of clathrin on the membrane. A clathrin-binding
model can be developed that includes a clathrin reservoir
with a fixed chemical potential, effectively converting our
equilibrium model to an open ensemble. Results from
both the closed and open ensembles would give the same
prediction for the equilibrium behavior, so we focus on
the more easily implemented closed ensemble in this
work. Future work addressing the dynamics of pit formation
will incorporate binding and unbinding events as part of the
assembly process.
Simulation methodology

We use Monte Carlo (MC) simulations to determine the
equilibrium phase behavior of clathrin lattices on mem-
branes at various tensions. The initial configuration is
chosen to be a flat, periodic honeycomb lattice of 1972
pinwheels (N ¼ 1972) with perfectly satisfied bonds and
nearly square dimensions of 51r0 � 50.23r0. A lattice of
this size is sufficiently large to avoid size-dependent results,
because the observed phase behavior over our tested range
of tensions is no different than test cases on a lattice of
significantly larger size (N ¼ 2508).

Within each MC step, three types of moves are attempted.
The Metropolis algorithm is used to determine the
probability of acceptance of each move using Boltzmann-
weighted acceptance criteria (55). Specifically, if the
resulting total energy change from each individual move
DE ¼ DEclath þ DEmem is negative, then the move is
accepted; whereas if DE > 0, the acceptance probability
Paccept is given by Paccept ¼ exp(�DE/kBT).

The first move selects a randomly chosen membrane
mesh point to move up or down in the z direction, shifting
the locally attached clathrin hubs with it so that each hub
remains coupled to the membrane in the manner described
in the last subsection. The orientations of nearby hubs are
also adjusted according to the convention described in the
Appendix.
The second move translocates a randomly chosen hub in
the x-y plane while adhering to the z position of the mem-
brane and updating the orientations of other associated hubs.

The third move alters the binding state of a randomly cho-
sen clathrin leg. If it is bound to another hub, that bond is
broken. Alternatively, if the leg is unbound, a new bond is
formed with a free leg of another hub that is randomly cho-
sen from the collection of hubs located within a distance of
1.5r0 from the original hub. The selection probabilities of all
membrane moves are influenced by the resulting adjust-
ments to the clathrin lattice configuration, and clathrin
moves are influenced by the membrane configuration.
Thus, this process ensures that the membrane and clathrin
are thermodynamically coupled to each other.

On our system of 1972 triskelia, we carry out 4 � 109 to-
tal Monte Carlo steps, for an average of ~2 � 106 steps per
hub. We deem this procedure to be adequate to reach the
equilibrium behavior for our model systems, because no
discernible changes in the ensemble-averaged clathrin phase
behavior occur beyond this many steps. An adaptive-step
algorithm is employed to ensure rapid convergence to
equilibrium, in which attempted displacement of the mem-
brane grid points and the clathrin hubs are independently
adjusted after every 1000 steps if the ratio of accepted
moves to total moves over that simulated time frame is less
than 0.45 or greater than 0.55. This ensures a roughly 50%
overall acceptance ratio, so the hubs are effectively probing
both thermodynamically improbable configurations and the
varied configurations energetically close to the ground state.
Each parameter set is tested by 10 independent MC
simulations.
RESULTS

We use our clathrin-membrane model to explore the phase
behavior of clathrin lattices on a fluctuating membrane.
Clathrin assemblies on membranes exhibit relatively small
local out-of-plane fluctuations, resulting in an effectively
two-dimensional system capable of possessing long-range
crystalline order. Such crystalline order is seen in large
clathrin plaques on adhered membrane surfaces (21). These
structures are also predicted in our two-dimensional clathrin
model (30). Alternatively, a disordered fluid phase would
enable the topological reorganization of subunits that can
dynamically coat endocytic pits.

To predict the equilibrium phases of clathrin lattices, we
examine our systems through the lens of two-dimensional
defect-mediated melting theory. This theory states that
phase behavior in two dimensions is governed by the
creation and interaction of topological defects (56–58).
Essentially, systems with high densities of defects that are
uncoupled to one another are in a fluid phase, whereas
fewer, coupled defects are the trademark of a crystalline
phase. A detailed discussion of this theory’s application to
our simulated results is presented in the Discussion.
Biophysical Journal 106(7) 1476–1488
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Our clathrin model adopts a perfect lattice of hexagons in
the ground state. Defects, induced by thermal excitation,
include non-six-sided rings, which are typically pentagons
or heptagons. We analyze our results by examining the
density and arrangement of these shapes in our lattices.
Visualizations of the different macroscale lattice structures,
as well as zoomed-in images highlighting lattice structure,
are shown in Fig. 2. The crystalline phase contains a few
defects that are closely coupled to each other in groups of
two heptagons and two pentagons, allowing the bulk of
the lattice to adopt an ordered honeycomb structure. In
contrast, the fluid phase contains many more defects that
are apparently not arranged in any definitive structures,
and the lattice only exhibits order over short length scales.

The identification of defects allows us to visually discern
a systematic effect of tension on our model systems. Repre-
sentative snapshots of our equilibrated simulations with
different tensions are shown in Fig. 3. When the membrane
tension is very high relative to most physiological values
(s ¼ 190 kBT/r0

2 and above), the associated lattice includes
only a few defects, many of which exist as closely coupled
sets of two pentagons and two heptagons. Overall, it resem-
bles a honeycomb crystalline state with a few small devia-
tions. As tension decreases and membrane fluctuations
increase in magnitude, the prevalence of defects also
increases. At s¼ 19 kBT/r0

2, there are defect-ridden patches
FIGURE 2 Example images of a crystalline (top) and fluid (bottom)

clathrin lattice, with portions magnified to highlight the differences in local

order and defect structure. (Yellow spheres) Seven-sided clathrin rings;

(cyan spheres) five-sided rings. (White spheres) Eight-sided rings are

only observed in the fluid example here. (Red and green) Clathrin legs

that are, respectively, bound and unbound to other legs. To see this figure

in color, go online.

FIGURE 3 Snapshots of our simulations after 4 � 109 total MC

steps (~2 � 106 MC steps per hub), at different membrane tensions.

Defects and free legs are colored as in Fig. 2. To see this figure in color,

go online.
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within a mostly connected bulk honeycomb lattice, as well
as a greater number of void spaces and free legs. Tensions
of 1.9 kBT/r0

2 or lower result in lattices that are signif-
icantly different from the ground state. Small patches of
regular hexagons appear immersed in a larger population
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of pentagons, heptagons, other ring structures, and void
spaces. These visual observations make it clear that our
model clathrin assemblies are qualitatively altered by the
size of underlying membrane fluctuations.

To gain insight into the length-scale dependent membrane
fluctuations, Fig. 4 shows the effect that a lattice has on the
underlying membrane behavior. For s ¼ 19 kBT/r0

2 and 1.9
kBT/r0

2, we show the simulated average values of the
squared difference in membrane height h[Dh(P)]2i between
two membrane points separated by a distance P in the x-y
plane with and without associated clathrin lattices. An
analytical prediction based on bare membrane parameters
(given in Safran (59)) is also shown for comparison.

As analytically predicted, the size of membrane fluctua-
tions at all length scales are larger at the low tension than
at the high tension. Simulations without clathrin match the
analytical predictions at separations greater than several
leg lengths. The slight small-separation discrepancy is due
to the discretization of our membrane, which is limited to
roughly two gridpoints per leg length for ease of computa-
tion. When clathrin is associated to the membrane, the simu-
lated fluctuations are smaller than the analytical predictions,
due to the stiffening effect that associated clathrin lattices
have on membrane elastic parameters. This effect is clearly
demonstrated in Fig. 4 at a tension of 1.9 kBT/r0

2 (orange
data set), and is discussed in more detail in Melting with
Membrane Deformations, found in the Discussion.
FIGURE 4 Plot of squared difference in membrane height versus separa-

tion in x-y plane. (Light-orange and dark-orange data) s ¼ 1.9 kBT/r0
2;

(light-green and dark-green data) s ¼ 19 kBT/r0
2. (Dark-colored dots)

Results of simulations with no clathrin attached to the membrane. (Light-

colored dots) Simulation results with clathrin. The lines are analytical

predictions of the equilibrium height fluctuations in the absence of clathrin,

as given in Safran (59) and averaged across all orientations between

locations in the x-y plane separated by a distance P. Error bars give the stan-

dard error of the mean. Simulated data is averaged over 10 independent

samples (with clathrin) or five independent samples (without clathrin).

(Insets) Fluctuating portions of the membrane with and without clathrin

at the two tensions shown in the plot.
We are also able to quantify the increase in defect density
that is caused by reducingmembrane tension. A histogram of
the types of topological structures existing at equilibrium for
all our simulated tensions is shown in Fig. 5. At infinite ten-
sion, nearly all ringswithin the lattice are six-sided,withmin-
imal five- and seven-sided rings that are characteristic of
defect population. As tension is decreased, resulting in larger
membrane fluctuations, the number of five- and seven-sided
rings steadily increases at the expense of the six-sided rings,
signifying a decay in the regular structure of the lattice.

In addition to visual assessment of the state of clathrin
lattices based on defect population and arrangement, we
also can quantify the degree of orientational order of our
clathrin assemblies. The orientational-order correlation
function is often used to determine if a two-dimensional sys-
tem is in a crystalline or fluid state, and we apply it to our
quasi-two-dimensional system for this purpose.

Calculating the orientational-order correlation function
requires us to map our honeycomb clathrin lattices
onto an equivalent hexagonal Bravais lattice, which is con-
structed of points separated by linear combinations of repet-
itive primitive vectors. To make this transformation, we first
create a Voronoi diagram of the equilibrium lattice configu-
ration projected on the x-y plane (60). The vertices of this
diagram are clustered in the centers of the rings of the orig-
inal clathrin lattice. We delineate the boundaries between
clusters by performing an agglomerative hierarchical cluster
analysis (61). The dissimilarity between points in this anal-
ysis is measured using a Euclidean distance that is normal-
ized to the square-root of half the distance between hexagon
centers in each dimension in a perfect lattice. Linkages
FIGURE 5 Histogram of the average distribution of ring-sidedness

normalized to the number of six-sided rings in a perfect lattice. Simulated

tensions include N (black), 19,000 kBT/r0
2 (purple), 1,900 kBT/r0

2 (blue),

190 kBT/r0
2 (turquoise), 19 kBT/r0

2 (lime), 1.9 kBT/r0
2 (orange), and 0.19

kBT/r0
2 (red). Error bars are standard errors of the mean over 10 simulations

per parameter set. Rings of fewer than five sides or greater than seven sides

are too infrequent to compare on this scale, but are more numerous at lower

tensions.

Biophysical Journal 106(7) 1476–1488
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between clusters are made using the average linkage
method. Creating a lattice point at the centers of mass of
each of these clusters results in a new array that is sixfold
symmetrical in the undeformed state. Note that this new
Bravais lattice is hexagonal, owing to the fact that each
lattice point is in the center of a hexagon formed by other
points, in contrast to our honeycomb-type lattice that lacks
such symmetry. The lattice spacing in this new system is
also increased from r0 to

ffiffiffi
3

p
r0.

The local orientational order jð~rjÞ at the two-
dimensional location of the jth point in this new lattice ~rj
is given by

j
�
~rj
	 ¼ 1

nj

Xnj
k¼ 1

exp
�
6iqjk

�
~rj
	�
; (3)

in which qjk is the angle between the line connecting points j

and k and a fixed reference plane, and nj is the number of
near neighbors to point j in the new Bravais lattice. The
orientational-order correlation function C6(P) between
points separated by a distance P is given by an average
over all points separated by that amount within each system
and across an ensemble of simulations, such that

C6ðPÞ ¼
D
j


~rf

�
j�



~ri

�E
; (4)

where
��~rf �~ri

�� ¼ P.

Two-dimensional melting theory shows that C6 of a

crystalline phase tends to a constant at large separation P,
whereas fluid phases exhibit either power-law or ex-
ponential decays with P (57,58). The behaviors of C6 with
P for our simulated systems at different degrees of
membrane fluctuations are plotted in Fig. 6.
FIGURE 6 The orientational order correlation function of simulated

clathrin lattices, at different membrane tensions. (Colors correspond to

the same tensions as in Fig. 5, with higher tensions on the violet end of

the visual spectrum and lower tensions on the red end.) Separation is scaled

by the magnitude of a standard dislocation Burger’s vector b, which is

defined in the Discussion.
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In agreement with the visual observations shown in Fig. 3,
our calculated structural order correlation functions demon-
strate a marked effect of membrane fluctuations on clathrin
lattices. Membrane tensions R190 kBT/r0

2 suppress fluctu-
ations and yield long-range orientational order, shown by
the leveling off of C6, which is consistent with a crystalline
phase. Short length-scale oscillations are a natural result of
measuring C6 at points that are displaced from the unde-
formed lattice points. As the tension decreases, C6 behavior
transitions from staying constant with separation to decay-
ing with separation. At the lowest tested tensions of s ¼
1.9 kBT/r0

2 and s ¼ 0.19 kBT/r0
2, the power law decay of

the orientational-order correlation function signifies a fluid
phase. The intermediate tension of s ¼ 19 kBT/r0

2 shows
a distinctly intermediate degree of long-range orientational
order, which appears to level off in a crystalline-type trend,
but our limited simulation length scales do not ensure that
this function does not exhibit a power law decay either.
DISCUSSION

Our computational results demonstrate the important role of
membrane fluctuations on a system that is ubiquitous in
biology. Experiments and simulations of quasi-two-dimen-
sional colloidal systems (i.e., confined to a surface with
small deviations) show that out-of-plane fluctuations
destabilize the crystalline phase, expanding the range of
conditions where a fluid phase prevails (62–64). Out-of-
plane fluctuations are modulated in our simulations by
the membrane tension. In this section, we show how analyt-
ical predictions of quasi-two-dimensional defect-mediated
melting theory support the existence of a phase transition
at some critical tension sf, and that our computational
estimate of sf is within the range expected from this theory.
We also discuss alternative mechanisms for clathrin plaque
assembly.
Defect-mediated melting in two dimensions

The theory of two-dimensional defect-mediated melting
developed by Kosterlitz and Thouless (56), Nelson and
Halperin (57), and Young (58) states that the crystalline-
to-fluid transition in two dimensions arises from defect for-
mation and motion within the assembled lattice. The most
common defect within a crystal is a dislocation, which is
characterized by an insertion of a half lattice-line into an
otherwise perfect surrounding lattice. Dislocations can arise
in two-dimensional crystals due to thermal excitation, but
they only exist in tightly coupled pairs, because the elastic
cost of separation outweighs the entropic benefit of defect
mobility. Above some finite temperature that is dictated
by the elastic properties of the crystal, the entropic benefit
of dislocation separation overcomes the elastic cost, and
dislocations decouple from one another. This decoupling
marks a continuous, second-order phase transition from a
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crystalline phase to a fluid phase. The predictions of the
theory from Kosterlitz and Thouless (56), Nelson and
Halperin (57), and Young (58) for two-dimensional melting
have been borne out through numerous computational
(65,66) and experimental (67,68) systems.

A dislocation pair in our model system consists of two
heptagons sandwiched by two pentagons. Two examples
of this configuration are shown in the top-right image of
Fig. 2. A dislocation pair can be generated by the rotation
of a single bond, and subsequent bond rotations lead to
decoupling of the pentagon-heptagon (i.e., five-to-seven)
dislocations from each other (see Figs. 4 and 5 in Mehraeen
et al. (30)). Lone dislocations are confirmed to exist in
clathrin lattices in vivo through electron microscopy studies
(69). On a flat membrane, dislocation decoupling results in
an elastic energy of separation,

Esep ¼ Yb2

4p

�
log

r

a0
þ c



; (5)

that scales logarithmically with separation distance r
relative to the dislocation core radius a0 (56,57,70). The
two-dimensional Young’s modulus Y dictates the energetic
cost of dislocation separation and can be directly
related to our model’s in-plane elastic parameters ks and
kb through (30)

Y ¼ 2ks

3
ffiffiffi
3

p 6þ h

2þ h
; (6)

where h ¼ r0
2ks/kb. The magnitude of the dislocation Bur-

ger’s vectors b in the present case is related to the lattice
constant as b ¼ ffiffiffi

3
p

r0. The constant c depends on the angle
between the Burger’s vector and the line connecting the
two dislocations (56,57,70). The in-plane elastic moduli
in our simulations correspond to Y z 131 kBT/b

2 z 44
kBT/r0

2.
This interaction energy can be used to find a critical

Young’s modulus Ydissoc below which entropic benefits over-
come Esep and a dislocation pair dissociates (71), given by

Ydissoc ¼ 16pkBT

b2
: (7)

However, this expression for Ydissoc does not give the true
elasticity at which a phase transition occurs, because this
analysis so far neglects fluctuations that give rise to sur-
rounding dislocations at finite temperature. In fact, these
fluctuations affect large-scale lattice rigidity. The recursion
relations from Kosterlitz and Thouless (56), Nelson
and Halperin (57), and Young (58) give the renormalized
Young’s modulus YR(a) as a function of renormalized dis-
location core radius a. YR is coupled to the re-
normalized dislocation fugacity yR(a), given by

yRðaÞhexp½ � EcRðaÞ=kBT�: (8)
The renormalized dislocation core energy EcR(a) also
depends on YR (56–58). As a is increased from a0 to N,
the recursion relations from Kosterlitz and Thouless (56),
Nelson and Halperin (57), and Young (58) map the bare
properties y and Y to large-scale yR and YR. While yR may
increase or decrease with a depending on the bare pro-
perties, YR is always <Y, and vanishes completely at
YR ¼ <16p kBT/b

2, corresponding to the crystalline-fluid
transition. So while any ordered two-dimensional system
with Y < Ydissoc melts into a fluid phase, many systems
with Y > Ydissoc are also fluid. Even with fluctuations, our
simulated systems exist well within the crystalline region
in purely two dimensions, as YR

(2D) > 2Ydissoc.
Melting with membrane deformations

When an otherwise two-dimensional system allows for out-
of-plane deformation, as with clathrin on a cell membrane,
the interaction energy of defects is altered, changing the
melting criteria significantly. Consider a membrane’s
behavior at length scales much less than Lc, a regime that
is large at low tension. The membrane may buckle around
a dislocation in a way that incurs a bending energy cost,
but benefits from a reduction in in-plane elastic strain of
the two-dimensional crystal. Seung and Nelson (72) have
shown that such buckling around an isolated dislocation
can confine the two-dimensional strain to a region character-
ized by a buckling length that scales as

Lb � k

Yb
: (9)

In other words, Esep of a dislocation pair on a flexible
tensionless membrane adopts the same form as Eq. 5 for
separations less than Lb, but is constant above that separa-
tion. At sufficiently large system size and no tension, mem-
brane fluctuations enable buckling at any finite temperature,
screening dislocations from one another and leading to the
destruction of crystalline order with any elastic parameters
Y and k (72,73).

At length scales greater than Lc, tension contributions to
membrane behavior overwhelm bending contributions, and
the dislocation interactions are altered further. Buckling
around a dislocation is resisted by the tension, which seeks
to minimize surface area. Morse and Lubensky (74) have
shown that the membrane flattens out around a lone defect,
counteracting any potential buckling, at some flattening
length that scales as

Lf � Yb

s
: (10)

Membrane buckling is therefore enabled at low tension,
where Lc R Lb, and suppressed at high tension, where
Lc % Lf. These two inequalities are essentially the same
condition, as
Biophysical Journal 106(7) 1476–1488
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Lc=Lb � Lf=Lc � Yb=
ffiffiffiffiffi
ks

p
:

Ignoring in-plane lattice fluctuations, buckling occurs and

dislocation pairs dissociate when the value

ghYb=
ffiffiffiffiffi
ks

p
(11)

exceeds some critical value gc. Morse and Lubensky (74)
have numerically estimated gc z 80 in the continuum limit.
Because fluctuations further soften defect interactions, gc
can be considered the largest possible ratio of in-plane
rigidity to out-of-plane rigidity that allows a stable flat crys-
talline phase when YR

(2D) > Ydissoc. If g > gc, melting
is certain, but it is also possible for cases when g < gc if
YR > Ydissoc. At our lowest simulated tension, s ¼ 0.19
kBT/r0

2, our system has g ¼ gc, so melting at that tension
is expected, as well as at higher tensions when considering
fluctuations. This prediction is confirmed in the Results.

As is found in two-dimensional melting, the presence of
in-plane fluctuations significantly effects the melting transi-
tion on a flexible membrane. When dislocation-induced
buckling is accounted for, the recursion relations from
Kosterlitz and Thouless (56), Nelson and Halperin (57),
and Young (58) only apply on length scales shorter than
Lb or longer than Lf, the regimes in which effects of buckling
are outweighed by the two-dimensional interactions
between defects. It is therefore necessary to use recursion
relations for yR and YR within the regime Lb < a < Lf devel-
oped by Morse and Lubensky (74) to bridge the renormali-
zation flow. Unlike in two dimensions, the dislocation
fugacity yR monotonically increases in this regime along
with a monotonically decreasing YR, because lattice stress
does not increase with increasing a around a buckled dislo-
cation for Lb < a< Lf. As a result, many systems that would
reach a stable crystalline phase with finite YR in two dimen-
sions but have Lf> Lb are driven into a fluid phase when out-
of plane deformation is allowed (see Fig. 5 of Morse and
Lubensky (74) for further illustration of this effect).

In addition to in-plane lattice fluctuations at finite temper-
ature, the membrane also exhibits out-of-plane fluctuations,
which cause the elastic parameters k and Y to become renor-
malized as a function of the membrane wavenumber q.
These adjustments are only significant on a fluctuating crys-
talline surface when q�1 is above some nonlinear length
Lnl � k=

ffiffiffiffiffiffiffiffiffiffiffi
YkBT

p
that is at least several times larger than Lb

(73,74), and are weak when q�1 > Lc (75). Therefore, any
membrane that has significant renormalization of elastic
parameters due to undulations is also subject to buckling
around dislocations, as Lb < Lc. Within the regime Lnl <
q�1 < Lc, the effective bending modulus kR(q) is stiffened
at larger wavelength, following kR(q) ~ q�0.82, and the
Young’s modulus YR(q) deteriorates as YR(q) ~ q0.36

(76,77). While the divergence of the bending modulus at
large q�1 resists membrane buckling around dislocations,
the renormalization of the Young’s modulus still lowers
Biophysical Journal 106(7) 1476–1488
the energetic threshold for dislocation decoupling, the
hallmark of melting from a crystalline phase to a fluid phase.

Given these effects of membrane flexibility, in-plane fluc-
tuations, and out-of-plane fluctuations, we predict that our
systems will exhibit a crystalline-to-fluid phase transition
at some finite tension sf. Ignoring membrane fluctuations,
this transition is expected when gz gc and lone dislocations
are stabilized by buckling. Because membrane buckling
enhances the softening effect of in-plane fluctuations on
the renormalized Young’s modulus YR, g(YR) exceeds g(Y),
and sf is higher than that which would give g z gc using
bare parameters. The presence of membrane undulations
reduces YR even more, elevating sf further.

Our Monte Carlo simulations have predicted a value of sf
that is consistent with the theory presented in this section.
The lowest simulated tension (s ¼ 0.19 kBT/r0

2) decayed
to a fluid phase, as expected from the prediction that buck-
ling would occur based on the bare elastic moduli (g z gc).
At tension 10 times higher, fluctuations soften the in-plane
elasticity and a fluid phase is once again achieved. Although
increasing the tension yet another 10 times appears to
restore some order to the system, a crystalline state clearly
emerges when tension is raised yet again, to s ¼ 190
kBT/r0

2. This leads us to the conclusion that the value of
sf lies somewhere between 1.9 kBT/r0

2 and 190 kBT/r0
2.

This range encapsulates the upper end of measured values
in normal, resting cells (48,78), which is consistent with
the absence of crystalline plaques on freely fluctuating bio-
logical membranes. It is also noteworthy that simulations
with Lc R r0 prefer a fluid phase, and simulations with
Lc << r0 have crystalline phases. In other words, when
height undulations of wavelength equal to the lattice spacing
are dominated by bending as opposed to tension, the crystal-
line phase is stabilized.

Our estimate of sf would be altered for a system in which
physical properties differ significantly from the parameter
set chosen. For instance, if the membrane bending modulus
k is larger than 4.7 kBT, as is the case in most cells (50), this
will inhibit the ability of the lattice to screen defect interac-
tions through buckling, effectively decreasing sf. Different
estimates of the clathrin subunit stiffness would also affect
the phase boundary, with the out-of-plane bending and
twisting moduli (ko and kt) of the model clathrin pinwheels
supplementing the membrane bending modulus by resisting
out-of-plane deformation. Other elastic properties of the
subunits affect the phase boundary in a less simple manner.
Although increasing their stretching and in-plane bending
moduli (ks and kb) increases the bare Young’s modulus Y,
which stabilizes the crystalline phase in two dimensions,
such adjustments have the potential to broaden the buckling
window between Lb and Lf if membrane parameters are
sufficiently soft, thereby also increasing the likelihood that
out-of-plane deformations stabilize a fluid phase. The exact
effect of ks and kb on sf therefore varies based on the
membrane properties.



Fluctuation Destabilize Clathrin Lattice 1485
One difference between our model and physiological con-
ditions is the irreversible nature of clathrin-membrane asso-
ciations. Our treatment fixes the number of clathrin on the
membrane, resulting in a density that is sufficiently large
to have a single percolated clathrin network in either a fluid
or crystalline phase. However, large membrane fluctuations
that are shown to induce lattice disorder may also be strong
enough to strain the bonds linking adaptor proteins to cla-
thrin and cause their dissociation, resulting in lower density
of membrane-bound clathrin. Reducing density is a defini-
tive way to induce a phase transition from a crystal to a fluid
(62). These effects could be addressed by either performing
a range of simulations with different densities or by per-
forming simulations with clathrin binding and unbinding,
i.e., exchanging with a clathrin reservoir with a fixed chem-
ical potential. Fluctuation-induced depletion of clathrin at a
fixed chemical potential (i.e., fixed concentration of clathrin
in the cytoplasm) would amplify the lattice destabilization
from membrane fluctuations that we discuss in this article.
Alternative explanations for clathrin plaques

The stabilization of clathrin plaques due to the suppression
of membrane fluctuations suggests that these structures may
arise incidentally as a result of experimental conditions, but
it does not necessarily rule out their potential to serve a
biological function. Plaques have been conjectured as a
possible intermediate step on the way to pit formation
(79,80), possibly due to frequent electron micrographs
showing localization of the two structures neighboring
each other on membranes (69,81), and the fact that changes
in the cytoplasmic acidity can induce curvature in otherwise
flat lattices (18). Computational models of clathrin assembly
have shown how a subtle change in the triskelion’s pucker
angle could drive the transition from plaques to pits (40).
However, live cell imaging has not provided any evidence
for this dynamic configurational change, and the extensive
molecular rearrangement required for such a transition is
considered unlikely (2). Our simulations show that mem-
brane fluctuations are capable of destabilizing plaques
without dynamically altering the subunit properties.

Alternative explanations of plaque assembly may be
biochemical in nature. For example, the depletion of choles-
terol in the plasma membrane (82,83) or interference with
intracellular cholesterol trafficking ability (84) has been
shown to foster large plaques of clathrin that are resistant
to internalization, although the mechanism of this effect is
unclear. In the case of cells adhered to solid surfaces, there
may be yet unspecified cytoskeletal adjustments made upon
adhesion that enable plaque assembly over pit assembly
(21). Although such biochemical pathways are not dispro-
ven, they are not as simple as membrane properties physi-
cally altering the clathrin lattice to determine its preferred
phase. In fact, experiments have shown that decreasing
membrane tension is correlated with increased endocytosis
activity (85), a condition that seems to indicate a prevalence
of pits over rigid plaques. Recent numerical computations
have also shown that membrane bending rigidity influences
the morphology of clathrin pits (86). These examples further
demonstrate the principle that membrane properties have a
profound impact on associated clathrin structures.
CONCLUSIONS

In this work, we show that membrane fluctuations are a
critical determinant of whether a clathrin lattice exists in a
crystalline structure or a fluid phase. Qualitative visual
inspection and quantitative structural order calculations
demonstrate a systematic decay of crystalline order as
tension is decreased and membrane fluctuations increase,
until the point at which crystalline lattices are completely
destabilized and enter the fluid phase. Our computations
show that crystalline clathrin lattices on a flexible mem-
brane are only stabilized at tensions above normal physio-
logical values. Predictions from quasi-two-dimensional
defect-mediated melting theory align with these findings.

Experimental observations in vivo (21) also show agree-
ment with our results, because two distinct phases of biolog-
ical clathrin assemblies are identified, corresponding to
distinct membrane conditions. Large, flat plaques, which
slowly internalize with help from the actin cytoskeleton,
are much more likely to assemble on membranes that are
adhered to solid substrate surfaces. On the other hand, small,
curved pitlike structureswith nonhexagonal facets are able to
form on freely fluctuating cell membranes. These observa-
tions compare favorably with our theoretical predictions
that membranes restricted in their fluctuations enable the for-
mation and stability of highly ordered crystalline structures.

Based on our findings, the collective behavior of clathrin
can be changed from a crystalline phase to a fluid phase by
modulating membrane tension. This physical effect repre-
sents a simple environmental cue that induces major changes
to the properties of a clathrin lattice. The complex process of
endocytosis requires the lattice to undergo structural rear-
rangement to accommodate the specific cargo size and shape
with a subsequent stabilization of the latticewhen the desired
structure is achieved. Our work represents a simple mecha-
nism bywhich such local changes in behavior can be induced
through the local suppression of membrane fluctuations.
APPENDIX: CLATHRIN MODEL

Clathrin triskelia are represented as three-legged pinwheels, shown in

Fig. 1. Each unbound leg is capable of forming a bond with an unbound

leg of another triskelion, causing a reduction in energy equal to ε. When

an individual leg is unbound to any others, it is assumed to adopt an exten-

sion and orientation relative to its origin hub that minimizes the triskelion’s

elastic energy. However, when two legs are bound together, the position and

orientation of their origin hubs can incur elastic stresses on the resulting

structures through four harmonic modes. The orientation of hub i is charac-

terized by the vector~ni that is normal to the plane created by the ends of its
Biophysical Journal 106(7) 1476–1488
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three legs. Specifically, if the location of the end of themth leg of pinwheel i

is given by~r
ðmÞ
i , then this normal vector is defined by

~ni ¼


~rð2Þi �~rð1Þi

�
�



~rð3Þi �~rð1Þi

�
���
~rð2Þi �~rð1Þi

�
�



~rð3Þi �~rð1Þi

����: (A1)

The state of pinwheel i is fully defined by its hub’s position~ri,~ni, and the

bond connectivity of its three legs, which is characterized by the link indi-
cators Lij and the leg index indicators li
j for all the hub indices j of the other

pinwheels in the model. If hubs i and j are bound, then Lij ¼ 1, whereas if

they are unbound, then Lij ¼ 0. The leg index indicator li
j gives the leg

index (between 1 and 3) of the leg on hub i that connects to hub j, and

li
j ¼ 0 if Lij ¼ 0.

The total energy of a collection of N pinwheels in our model is given by

Eclath ¼
XN�1

i¼ 1

XN
j¼ iþ1

(
� eLij þ krH

�
d � rij

	"�d

rij


4

� 1

#

þ ks
2

�
rij � r0

	2
Lij þ kt

2
g2
ij Lij

)

þ kb
2

XN
i¼ 1

XN�1

j¼ 1

XN
k¼ jþ1

c
jk
i

�
l
j
i; l

k
i ; l

l
i

	
Lij Lik

þ ko
2

XN
i¼ 1

XN
j¼ 1

�
a
j
i � a0

	2
Lij:

(A2)

A hard-core potential is modulated by the repulsive strength kr, which

is set to 1 kBT. It imposes steric limitations on the locations of the

hubs, and is activated between hubs i and j by the Heaviside step

function H(x) only when the separation between the two
��~rj �~ri

�� ¼��~rji�� ¼ rji is less than a cutoff distance d, which is set to 0.8r0. The stretch-

ing modulus, ks, resists elongation or compression of the interhub bonds

relative to their equilibrium length, r0, and the twisting modulus, kt,

resists torsion of these bonds. The twisting angle between hubs i and j,

gij, is based on the misalignment of the components of ~ni and ~nj that

are orthogonal to the unit vector defining their connecting bond
~tji ¼~rji=rji, as given by

gij ¼ cos�1

��
~ni �~tji

	
$
�
~nj �~tji

	��~ni �~tji
����~nj �~tji

��
�
: (A3)

The in-plane bending modulus kb resists distortion of the legs beyond a

uniform radial distribution when projected onto their normal plane, i.e., it

resists deviation of the in-plane angle qjik between legs on hub i that are con-

nected to hubs j and k from a value of 2p/3. Because the configuration of

unbound legs is assumed to minimize the elastic energy, the value of the

in-plane bending metric ci
jk depends on the binding state of all three legs

on hub i. Specifically,

c
jk
i ¼

�
qjik � 2p

3


2

if there exists a hub l for which li
l is nonzero, and

c
jk
i ¼ 3

2

�
qjik � 2p

3


2
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otherwise. To prevent reordering of the legs around the central hub, we

measure the angles between them in a counterclockwise fashion from leg

1 to leg 2, leg 2 to leg 3, or leg 3 to leg 1. Therefore, defining ~tji to be

the projection of~tji in the plane orthogonal to ~ni, and with the example

li
j ¼ 1 and li

k ¼ 2, the in-plane angle is calculated to be

qjik ¼ cos�1
�
~tji$~tki

	
if~tji � ~tkiR0;

or

qjik ¼ 2p� cos�1
�
~tji$~tki

	
if~tji � ~tki<0:

The out-of-plane bending modulus, ko, resists deformation of the

triskelion’s pucker angle away from an intrinsic value, a0. An unpuckered,

planar clathrin structure corresponds to a0 ¼ 90�. The pucker angle contri-
bution ai

j to hub i from its leg connecting to hub j is given by

a
j
i ¼ cos�1

�
~ni$~tji

	
:
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