
The statistical analysis of partially confounded covariates
important to neural spiking

Kyle Q. Lepagea,*, Christopher J. MacDonaldb, Howard Eichenbaumb, and Uri T. Edena

a Department of Mathematics and Statistics, Boston University, Boston, MA, USA
b Department of Psychology, Boston University, Boston, MA, USA

Abstract
A method is presented capable of disambiguating the relative influence of statistical covariates
upon neural spiking activity. The method, an extension of the generalized linear model (GLM)
methodology introduced in Truccolo et al. (2005) to analyze neural spiking data, exploits
projection operations motivated by a geometry present in the Fisher information of the GLM
maximum likelihood parameter estimator. By exploiting these projections, neural activity can be
divided into three categories. These three categories, neural activity due solely to a set of
covariates of interest, neural activity due solely to a set of uninteresting, or nuisance, covariates,
and neural activity that cannot be unequivocally assigned to either set of covariates, can be
associated with physical variables such as time, position, head-direction and velocity. This
association allows the analysis of neural activity that can, for example, be due solely to temporal
influence, irrespective of other, identified, influences. The method is applied in simulation to a rat
exploring a temporally modulated place field. A portion of the analysis reported in MacDonald et
al. (2011), using the methodology described herein, is reproduced. This analysis demonstrates the
temporal bridging of a delay period in a sequential memory task by firing activity of cells present
in the rodent hippocampus that cannot be explained by rodent position, head direction or velocity.
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1. Introduction
Understanding which biological stimuli and behavioural signals influence neural firing is a
fundamental area of scientific interest in neuroscience. In many experiments, multiple,
confounded signals are recorded that may influence neural spiking activity.1 While some
signals may be of direct interest to experimenters, others may be ancillary to the question
they are investigating, and can pose a nuisance. When both types of signals interdepend
identifying signal effect upon observed spiking activity is problematic. This difficulty
presents the experimenter with a number of questions. Which signals affect neural spiking?
Which of these signals are of scientific interest? How should the signals that are not of direct

© 2012 Elsevier B.V. All rights reserved.
* Corresponding author. lepage@math.bu.edu (K.Q. Lepage)..
1Here signal explicitly refers to input information available to a neuron that may, or may not, influence its spiking activity. Note that a
neuron’s spiking activity in turn “signals” neurons, by relaying all or a part of the information available to it. In the following,
discussion focuses upon disambiguating the effect of input neuronal signals upon neural spiking activity; however, it applies equally
well to disambiguating the informational content present in the “signal” a neuron provides.
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interest be handled? To what extent can experiments be designed to remove the confounding
effect of these nuisance signals? To what extent can statistical techniques handle these
confounds?

Such questions arise often in neural coding studies. For example, the influence upon
hippocampal neural activity by rodent position, rodent movement, odour type, and
experimental condition are dissociated in Wood et al. (1999). In Wood et al. (2000) left-turn/
right-turn preferential hippocampal neural activity is identified after accounting for rodent
speed, heading and position. The separation of the influence of hand, joint and muscle
defined coordinate systems on activity in the monkey motor cortex is addressed in
Georgopoulos et al. (1986) and Wessberg et al. (2000). The separation of timing effects
from spatial effects in rodent hippocampal neural activity is discussed in MacDonald et al.
(2011). For pedagogical purposes, we here label one set of signals as spatial covariates and
another set as temporal covariates, and discuss dissociating their influence on spiking.

There are multiple approaches used to address nuisance signal confounding. In one approach
experiments are designed to eliminate the influence of confounding covariates. In another
approach, data potentially affected by the confounding covariate or nuisance signal is
discarded. Finally, as described in this work, the influence of nuisance signals upon neural
activity can be explicitly modelled and a projection performed to effectively decouple the
influence of sets of covariates upon neural spiking. This projection exploits the geometry
described in Cook (1986) and McCullagh and Nelder (1999) associated with the parameter
Fisher information for a large class of neural spiking models. Use of this projection yields
sets of asymptotically independent model parameter estimators. The projected covariates
provide information regarding the modulation of the spiking intensity due to that part of a
covariate of interest that is independent of the other covariates. This unconfounded
component of the neural model describes how a covariate, after accounting for the influence
of the dependent and confounding covariates, affects neural spiking activity. Additionally,
the parameter estimates and covariance associated with the projected signals are
demonstrated to be identical to the original estimates from the confounded model. This
equivalence allows assessment of the significance of the influence of any covariate on
spiking, regardless of its dependence on other covariates.

A review of relevant literature and the generalized linear model statistical framework in the
context of neural spike modelling is presented in Section 2. Section 3 develops statistical
theory enabling the investigation of that portion of spiking influence unique to a specific
covariate. Following theoretical development introduced in Section 3, the efficacy of the
method is demonstrated on synthetic data produced from a temporally modulated place cell
as a rat moves through the cell’s place field. The utility of the method is further
demonstrated on real data analyzed in MacDonald et al. (2011). The method applied to this
data, collected from a population of rodent hippocampal neurons recorded from a rat
performing a sequential memory task, enables the isolation of temporally dependent neural
activity that is not dependent on other covariates. The paper concludes with a discussion in
Section 6.

2. Background
Geometric ideas in statistics are established and are prominent in works such as Christensen
(2002), Kass (1989), Cook (1986), Cox and Reid (1986), and Lawrence (1988). The
geometry in the current context, restricted to the class of generalized linear models, is first
documented in Cook (1986) for the purpose of identifying leverage points, and also appears
in statistical literature in the context of “orthogonal parameters”, discussed in, for example
McCullagh and Nelder (1999). In neuroscience, the methodology common in fMRI analysis
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called Statistical Parametric Modelling (SPM) often exploits model matrices possessing
some orthogonal columns, yielding orthogonal parameters within a general linear model of
voxel activation. Also in the context of the general linear model, a recursive estimation
algorithm is presented which exploits Gram–Schmidt orthogonalization to yield an
orthogonal design matrix (Aqil et al., 2010). One notes that general linear model and
generalized linear model2 are two entirely different classes of models. GLMs are appropriate
for modelling data from a wide variety of distributions including Poisson counts, and history
dependent point process data, and involve a non-linear “link” function relating a linear
combination of covariates to the response variable. Although relevant geometric ideas are
common amongst the statistics literature, the consequences of these ideas when using
generalized linear models to capture covariate influence upon neuron spiking behaviour has
not been discussed. This work provides a neuroscience specific treatment of the
consequences of the model geometry and discusses a method for separating the influence of
a set of covariates upon spiking behaviour into three parts: a first part due entirely to the
covariates of interest, a second part attributed to any of the remaining covariates, and a third
part with ambiguous association of the influence on spiking that cannot be attributed to these
covariates. inseparable from other covariates. This latter method is used by the authors in
MacDonald et al. (2011) to separate the influences of a set of temporal covariates from the
influences of spatial, head directional, and speed covariates in an analysis of neural activity
in rat hippocampus. We begin with a review of the generalized linear modelling (GLM)
framework in Section 2.1. In Section 2.2, a review of geometric ideas central to this work is
presented.

2.1. Generalized linear modelling framework
In this section, the generalized linear modelling framework (McCullagh and Nelder, 1999)
and its application to spike train modelling (Truccolo et al., 2005) are reviewed. Let dnj be
the jth increment of a discrete-time point-process modelling neuron spiking behaviour.
Specifically, dnj is the count of the number of spikes occurring within the time interval [Δ(j
– 1), Δj). For bin size Δ chosen sufficiently small, the probability, P(dnj > 1) of multiple
spikes within one such interval is o(Δ). This stipulation reduces within bin history effects,
limiting inaccuracy due to the time-discretization procedure. Let λj be the conditional
intensity of the point process for the jth time step. The log-likelihood, , can be written

(1)

To construct a GLM, set the log of the conditional intensity vector, log(λ) = [log(λ1) . . .
log(λN)]T, to be a linear function of a set of covariates that influence neural spiking.
Specifically, let H be a design matrix with each row representing the set of covariates that
influence spiking at a given time. Then the vector of the conditional intensities through time
is given by

(2)

Here the exponentiation of a vector is defined to be element-by-element exponentiation, and
β is a vector of parameters associated with the covariates.

2The acronym, “GLM”, is here reserved for the class of generalized linear models. This is consistent with, for example Truccolo et al.
(2005) and the MATLAB™ glmfit() command.
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Without loss of generality, consider the case where the design matrix H can be partitioned
into two matrices, H(t) and H(s), where H(t) is used to model the influence of one set of
covariates on the spiking activity, and H(s) is used to model the influence of the remaining
covariates. For concreteness, refer to H(t) as the temporal covariates and H(s) as spatial
covariates, although these can be any combinations of covariates whose influence one
wishes to unravel. To tie the parameters with the covariates, break the model parameter
vector β into β(t) and β(s). The temporal covariates are influenced by the parameters
comprising β(t) and the spatial covariates are influenced by the parameters comprising β(s).
Then,

The full conditional intensity vector can be expressed in terms of multiplicatively separable
components related to time and space:

(3)

(4)

and

Here · is the element-by-element, or Hadamard, product between the N dimension vectors
λ(s) and λ(t). While the above models are very specific, the principle described herein
generalizes to arbitrary covariate sets, provided that design matrix columns are linearly
independent.

The maximum likelihood estimator  of β satisfies the score equations (McCullagh and
Nelder, 1999). These equations result from taking the first derivative of the log-likelihood, ℓ,
with respect to the parameter β, and can be written as follows:

(6)

where dn = [dn1 dn2 . . . dnN]T. Associated with the maximum likelihood estimate, , of the

maximum likelihood estimator, , is the observed Fisher information, Ǐβ, equal to
(McCullagh and Nelder, 1999)

(7)

Here

(8)
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is a diagonal matrix formed from the maximum likelihood estimate of the conditional
intensity, . As is shown in Section 3.2, covariate decoupling does not change the estimator
of the conditional intensity. Thus,  can be taken to be the standard conditional intensity

estimate associated with the potentially confounded parameter estimator, . With the
observed Fisher information, Ǐβ, an estimate of the Cramer-Rao lower bound,Čr, equal to

(9)

is available. The Cramer-Rao matrix, Cr, bounds the variance of any unbiased estimator of
β. Specifically, the covariance matrix of any unbiased estimator minus the Cramer-Rao
lower bound is positive semi-definite (Scharf, 1991; Casella and Berger, 2002). The

maximum likelihood estimator, , attains the Cramer-Rao lower bound asymptotically (with

increasing N), and thus possesses a covariance matrix,  equal to Cr. Similarly, the
Cramer-Rao bound estimator,Ĉr, from which the realization,Čr, specified in Eq. (9), is
drawn equates to the Cramer-Rao bound in the limit when D̂ is an unbiased estimator of D.
Thus asymptotically,

(10)

when  is unbiased. In many situations of interest the parameter estimator  is biased due to
model mis-specification. When this occurs the conditional intensity estimator , the
estimator of the diagonal matrix D̂ and the estimator of the Cramer-Rao bound,Ĉr may all be
biased. In this situation, Eq. (10) is approximately correct; with an accuracy that depends on
the extent of the bias. Though this bias is a concern, one notes that it is commonly thought
that all models are mis-specified but that some, while mis-specified, can be used to make
useful statistical inference (Box and Draper, 1987). Many model selection procedures exist
and careful analysis employs their use (Truccolo et al., 2005). For the purposes of this paper,

Eq. (10) is considered to be an equality. Due to the asymptotic normality of  (McCullagh
and Nelder, 1999), Eq. (10) completely describes the dependencies between covariate
parameter estimators in the model, Eq. (2), of the neuron spiking rate, λ, as the number of
measurements tends to infinity. In Section 3, based upon the dependencies specified by Eq.
(10), adjustments are made to the covariates such that the un-confounded part of the
covariates of interest is asymptotically independent of the remaining covariates. In the
example of sets of temporal and spatial covariates, this procedure allows for a space-
independent analysis of the influence of time upon a neuron's spiking behaviour.

2.2. Geometry
Let  be the normed, linear vector space whose elements span . Let  and 
be two elements of  (for example, columns of H are elements of ) and define the inner-
product 〈a, b〉, between a and b as

(11)

where D is the diagonal matrix of rates defined in Eq. (8). Then  is a Hilbert space. This
implies that any set of vectors can be projected with a projection operator consistent with the
inner product specified by Eq. (11) onto the space formed by any other set of vectors. In the
following, projections within the Hilbert space  are exploited to develop a time-dependent
covariate that is independent of spatial covariates and represents, heuristically, that part of
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time whose influence upon the neuron spike rate is unconfounded by spatial effect. In
particular, the projection, P, onto the space spanned by a matrix, A, is

(12)

3. Covariate decoupling
In the following, two confounding groups of covariates are transformed into two new groups
of covariates such that dependencies between associated parameter groups are
asymptotically zero in the limit of infinite data when the conditional intensity estimate is
unbiased. As discussed previously in Section 2.1, while an asymptotic result, it is found in
practice to hold to good approximation with data sets of a size common to the neuroscience
setting (Truccolo et al., 2005); yielding results sufficiently accurate to be useful (Cohen et
al., 2007; Huang et al., 2009; Jenison et al., 2011; Saleh et al., 2010; Sarma et al., 2010;
Townsend et al., 2006; Truccolo et al., 2010). This accuracy alleviates concerns regarding
the convergence of the negative inverse of the observed Fisher information, Ǐβ to the

covariance of the parameter estimators, , as presented in Eq. (10). For pedagogical
reasons, as in Section 2.1, the two covariate groups considered in this work are the “time”
group, consisting of covariates related to time, and the “space” group, consisting of
covariates associated with, for example, rodent position. This designation is convenient for
simplicity and fits nicely with the simulations presented in Section 4. In the data example
presented in Section 5, the first group will be time and the second group is generalized to
include not only covariates associated with position, but also covariates associated with
speed and head direction. The language in the following is specific to two groups; but, any
pairwise grouping of covariates is possible. This flexibility can be exploited to test both
within covariate parameter group estimator dependency and dependencies between groups
of parameter estimators.

3.1. Parameter independence

As described in Section 2.1, block diagonal  implies asymptotic independence
between groups of parameter estimators, and hence between the influence of groups of
covariates upon neural spiking rates. Let the observed Fisher information be block diagonal,

(13)

where Aj is an invertible matrix for each j and 0 is a matrix of zeros of appropriate
dimension. The inverse of a block diagonal matrix is a block diagonal matrix of inverted
matrix blocks. That is asymptotically,
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(14)

Thus, with the block diagonal observed Fisher information matrix, Ǐβ, specified in Eq. (13),

the asymptotic maximum-likelihood parameter estimator covariance matrix,  is also
block diagonal.

3.2. Block diagonalization of the observed Fisher information matrix
To achieve block diagonalization of the observed Fisher information matrix, Ǐβ, specified in
Eq. (7), project H(t) orthogonal to H(s) in the sense defined by the inner-product specified in

Eq. (11). That is, replace the time-part, H(t) of the model matrix H with , a projection
orthogonal to the range of H(s),

(15)

Here I is the identity matrix and  is the projection matrix perpendicular to the range of

H(s). The square, asymmetric projection matrix,  is idempotent, possessing eigenvalues

that are either zero or one and possessing the property that . Construct the

modified design matrix, , which has the same range as the original model
matrix H, but the component of H(t) that belongs to the span of H(s) has been removed from
the time-part of the original model matrix. In words, this amounts to associating confounded
neuron spiking behaviour with the spatial covariates and investigating that part of spiking
behaviour which can only be explained by the effect of time. Estimation with the modified

model matrix, H̃, is shown in Appendix B to yield maximum likelihood estimators,  with
the covariance matrix,

The observed Fisher information for  is block diagonal, and thus  is also block
diagonal (Section 3.1). The estimators associated with the time and space covariates are
asymptotically independent as described in Section 2.1. As previously discussed, this
implies that functions of the time and space parameter estimators are asymptotically

independent; implying that  is asymptotically independent of .
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3.3. Interpretation of 
Fig. 1 illustrates the geometric interpretation of the projection procedure. After
orthogonalization the component of each temporal covariate belonging to the span of the
spatial covariates is removed.3 To maintain the pre-projection log of the conditional
intensity, the parameters associated with the spatial covariates are augmented. The
parameters associated with the temporal covariates are left unaffected.

This effect, due partly to the preservation of the range of H by the projection procedure, is
demonstrated in simulation for a rat moving according to a random walk through a
temporally modulated place cell (Section 4) and is depicted in Table 1 and in Fig. 4. While
the time parameters are unaffected by the orthogonalization procedure, the parameters
associated with the spatial covariates change to accommodate the loss of the contribution to
the rate from the space-confounded part of the time covariate. This is the situation, unless
the time covariate and space covariates are linearly dependent, in which case time and space
are not separable. In this latter situation, there is an identifiability problem, and a unique
maximum-likelihood estimator does not exist.

Because the parameters associated with time do not change due to projecting the time
covariate perpendicular to the span of the columns of the model matrix describing the space
covariates, tests of significance of temporal rate modulation un-confounded by the space
covariates can be conducted using either the confounded temporal parameter estimator or by
using the un-confounded temporal parameter estimator. In either case the estimators are
identical and have equivalent covariance matrices. The geometry specified in Fig. 1 holds

for every realization of the data, dn. That is,  and  are equal in realization. Thus, the
covariance matrix associated with the temporal set of covariates is unchanged.

3.4. Independent rate modulation

For data sets of a size typical of neuroscience data  and  are independent. Due to this
independence, an effect of the orthogonalization is to specify through the orthogonalized

time-covariate associated with the estimator, , spiking rate behaviour that cannot be
explained by the spatial covariates. As discussed in Section 3.3, tests to see if time is
significant, with either the space orthogonalized or non-space-orthogonalized time covariate
are identical, and the interpretation, whether or not time informs spiking behaviour, is also
identical. The difference and advantage of the space-orthogonalized time-covariate becomes
evident when investigating how time modulates neural spike rate. Specifically, when the
time covariate is not orthogonal to the space covariate, one cannot tell whether the
confounded part of the time and space covariates is associated with temporal rate
modulation or with spatial rate modulation. This ambiguity is not present when the temporal
covariate has been projected orthogonal to space. The identification of time-only rate
modulation is used to demonstrate bridging of a delay period in a sequential memory task by
a population of rodent hippocampal cells (MacDonald et al., 2011). An example analysis
from MacDonald et al. (2011) is reproduced in Section 5.

3.5. Functional dependence of the projected time covariate upon spatial covariates
The orthogonalization of the time-covariate perpendicular to the space spanned by the
columns of the spatial part of the model matrix introduces a positional dependence upon the
time covariate. In the example of the spatial and temporal model of neural activity this

3In the following, a temporal covariate orthogonalized in this fashion is referred to as a “space-orthogonalized time covariate” or as a
“space-orthogonalized temporal covariate”.
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dependence reflects the fact that the extent to which the effect of time on spiking rate is
confounded with the effect of space on spiking rate depends on rodent movement. In
particular, the orthogonalized time covariate, produced by the projection operation specified
in Eq. (15), is equal to the residuals resulting from a weighted least-squares fit of the
original time covariate to the spatial covariates. The weighting is equal to the estimated rate.
Thus, the orthogonalized time-covariate indicates the “mis-fit” between the original non-
orthogonalized time covariate and the fitted “space” model. If the rat motion is stereotyped
from trial-to-trial, and further, if the position of the rat increases linearly with time, time and
spatial rate effects are strongly confounded. This strong confound manifests in a span of the
temporal part of the design matrix that is nearly contained within the span of the columns of
the design matrix associated with space. The coordinate transformation produced by the
orthogonalization procedure is demonstrated in Fig. 6. On the left of Fig. 6, the space-
orthogonalized time covariate (labelled “time-perpendicular”), is plotted against the rat
position for the synthetic data produced by the simulation described in Section 4. The space-
orthogonalized time covariate takes on many values for any given rat position due to trial-to-
trial variability in rat position, and, as described, are a scatter plot of the residuals in a
weighted least-squares fit of the time covariate (across all trials) to the position related
covariates. On the right-hand side of Fig. 6, the modulation of the rate due to the space-
orthogonalized temporal covariate is plotted against the space-orthogonalized temporal
covariate. When this covariate is zero the rate modulation is one, indicating no effect on the
rate estimate due to the orthogonalized temporal covariate. This corresponds to those
instances in time where the positionally dependent firing rate model suffices (with the
correctly chosen parameters) to determine the time. When the original, non-projected time
covariate deviates from this spatial model of time, the space-orthogonalized temporal
covariate may also deviate from zero. Commensurate deviation of the rate modulation due to
the space-orthogonalized temporal covariate from one indicates rate dependence on time that
cannot be explained by rate influence due to the spatial covariates. In essence, firing rate
modulation that can be attributed to the spatial model has been removed and any remaining
modulation must arise from variation in other covariates.

3.6. Multiple covariate projections
Asymptotic independence between more than two groups of covariate parameter estimators
can be obtained by performing more than one orthogonal projection. This is achieved by
iteratively projecting the group of covariates that is unmodified at the time of the current
projection step orthogonal to a subset of covariates within this group. For example, after
projecting time orthogonal to space, one might further project some of the covariates related
to space orthogonal to the remaining covariates associated with space. At the end of this
procedure the observed Fisher information possesses three matrix blocks upon its diagonal.
The projections can be continued in this fashion until the desired covariate separation is
attained.

3.7. Inferential procedure
The proposed method of decoupling the influence of groups of covariates upon neural
activity described in Section 3 augments a typical inferential procedure. Fig. 2 depicts a flow
chart detailing steps in a standard-practice statistical analysis along with the methodological
addition introduced in this work. This addition, represented by blue colour in the flow chart,
shows the parts of an analysis affected by the methodology presented herein. The flow chart
elucidates the two-part estimation procedure required to perform the covariate influence
separation. In particular, one notes that the projection, Eq. (15), requires knowledge of the
conditional intensity, or rate. A knowledge that is available only after preliminary parameter
estimation (black coloured part of Fig. 2). Note that the rate estimate is not affected by the
covariate projections. This invariance is important because if the rate estimate changed when
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computing rate estimates with the projected covariates the results would be inconsistent with
the rate used to compute the covariate projections.

Model selection, described in Fig. 2, is a key part of the inferential procedure. The results
presented in this paper are valid for multiplicatively separable generalized linear models
using a log-link function. While this limits the class of models available at the model
selection step, this class of models has produced adequate fits for data collected from many
neural systems, including Truccolo et al. (2005) and MacDonald et al. (2011) and is capable
of fitting a wide-range of spiking behaviour. Because of this, unless there is reason apriori to
expect model mis-specification or problems with model interpretation, the multiplicatively
separable generalized linear model is an excellent choice when beginning the analysis
procedure. As shown schematically in Fig. 2, statistical inference is an iterative procedure
whereby models are selected, analyzed and modified iteratively. Model selection procedures
are detailed in Truccolo et al. (2005) and McCullagh and Nelder (1999) and are useful; both
when determining model adequacy and when performing model modification.

4. Simulation
Statistical features of the proposed methodology are illustrated by simulation. Synthetic
neuron spike-times are generated by a time-modulated place cell as a rat explores one spatial
dimension. Data is generated for fifty trials. On each trial the rat trajectory is a realization of
a random walk with drift. In Fig. 3, neural spike times, rat position, and the actual rate of
neural firing are shown for the 50 simulated trials. The synthetic data is fit to three models.
The first model is comprised of four covariates, the first accounting for background firing
rate, the second accounting for the temporal modulation of the rate and the third and fourth
accounting for spatial effects. Specifically, the model follows the form specified in Eq. (3),
with the model matrix, H(t) specified to be a single column of times referenced to the
beginning of each trial. Thus, this crate repeats with trial. The spatial part of the model, H(s),
is specified to have three columns. The first column is constant, representing a background
firing rate, the next column is the position of the rat, and the final column is the squared
position of the rat. The second model is identical to the first model with the exception that
the temporal covariate is replaced with its projection orthogonal to the range of H(s),
employing Eq. (15). The third model is identical to the first model, with the exception that
now the columns of H(s) are projected orthogonal to H(t). Maximum likelihood parameter
estimates for these three models are tabulated in Table 1.

As described in Section 3.2, the parameter estimates for the model comprised of non-
projected covariates, labelled “Confounded” in Table 1, representing a standard model for
this type of analysis, yields temporal maximum likelihood parameter estimates that are
identical to the maximum likelihood parameter estimates obtained with the model labelled
“Time Perp. to Space”. This latter model possesses a temporal covariate projected
orthogonal to the span of the columns of the design matrix associated with the spatial
covariates. Similar effects consistent with the discussion in Section 3.3 are demonstrated for
the other parameter estimates and models. The spike-rate estimates computed using the three
models are plotted in Fig. 4. The estimates are, as expected, visually identical. In Fig. 5
estimates of the asymptotic correlation matrices of the maximum likelihood parameter
estimators are shown.

These estimates are computed using Eq. (10) with the appropriate model matrices. The
projections successfully remove a negative 20% correlation between the non-projected
temporal covariate parameter estimator and the position covariate parameter estimator. In
Fig. 6, the space-orthogonalized temporal covariate is plotted against rat position (left) and
the modulation due to the space-orthogonalized temporal covariate is plotted against the
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space-orthogonalized temporal covariate (right). Each black dot corresponds to a recording
instant. There are many values of the orthogonally projected time covariate for every
position, due to trial-by-trial variability in rat position at the same within-trial temporal
instant. The plot on the left-hand-side of Fig. 6 demonstrates how the projected covariate
functionally depends on the covariates it is projected orthogonal to. Because of this
dependence it is not meaningful to study the temporal rate modulation using a single trial, as
it would be if one were using the non-projected temporal covariate. It is necessary to
summarize rate modulation over all trials with, for example, an across-trial average of the
rate modulation, as used on real data in Section 5, or a scatter plot across all trials, as shown
on the right-hand-side of Fig. 6. As discussed in Section 3.5, modulation of the rate due to
the orthogonally projected temporal covariate can deviate from one only when the weighted
fit of the time covariate by the spatial covariates fails to explain the time. The importance of
the temporal covariate on the rate is evident.

5. Data
The method of identifying neuron spike rate modulation specific to temporal covariates and
independent of other covariates, presented in Section 3, is applied to tetrode recordings from
single neuron activity in the rodent hippocampus (MacDonald et al., 2011). In this
experiment, rats were trained to distinguish sequences of two events separated in time by a
delay. For each sequence repetition, or trial, one of two objects is first presented. Following
an empty 10-s gap, one of two odours is presented (see Fig. 1 in Kesner et al. (2005)).
Electrophysiological data was collected over many trials, and on each trial, the rat, to obtain
a reward, had to remember the first event in the event sequence in order to respond
appropriately to the second event in the event sequence. This paradigm provides an
opportunity to explore how neurons encode a sequence of events and how their activity
bridges an identical temporal gap shared by distinct event sequences. One of the striking
findings of this study is that individual neurons become active at different times during the
delay between events and that they activate sequentially to bridge this delay (MacDonald et
al., 2011). Thus, in this experimental paradigm, a natural question is to what extent, and in
what fashion, is neural activity associated with the empty delay influenced by time and to
what extent is it influenced by other covariates such as rat position, head direction and
speed.

The portion of the analysis presented in MacDonald et al. (2011) employing the
methodology presented in this work, uses a model of the log of each neuron’s spike rate, log
(λ), as a seventh order polynomial model in time, a second order polynomial model of rat
position, a second order polynomial of rat speed, and two head direction covariates allowing
for firing rate modulation specific to a single head direction. In addition to these covariates,
all second order interactions among the non-temporal covariates are included, along with the
addition of two extra covariates allowing preferential velocity modulation of the firing rate.
Thus the model represents place, velocity and direction “fields”, as well as temporal firing
rate modulation. The total number of parameters in the model of the firing rate of each
neuron is 35. The eight temporal covariates are projected orthogonal to the remaining
covariates using the projection operator, Eq. (15), adjusted to include along with the space
covariates discussed in conjunction with Eq. (15) in Section 3, the additional covariates
relevant to this analysis; that is, speed, head direction, and interactions. As discussed in
Section 3, the estimated rate modulation due to the orthogonalized time covariate is
unconfounded by the non-temporal covariates. This modulation is then down-weighted by
the 95% confidence interval divided by four and then averaged across trials. The down-
weighting discounts highly uncertain firing rate modulation due to the orthogonally
projected temporal covariates. The procedure, repeated for every neuron in four experiments
yields Fig. 8 after sorting the neurons and normalizing. The de-correlation of the projected
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temporal covariate parameter estimators from the remaining covariate parameter estimators
is demonstrated in Fig. 7. In this figure, the sum of absolute correlations between all
orthogonally projected temporal covariates and the remaining covariates is computed for all
neurons from all rats included in the population temporal modulation figure presented in
Fig. 8, prior to the orthogonalization procedure and after the orthogonalization procedure.
The resulting figures of merit, plotted in Fig. 7, demonstrate the efficacy of the procedure.

6. Discussion
A method of understanding the effect of parameter estimator dependence is provided when
fitting multiplicatively separable generalized linear models of neural spiking activity. This
method, described in Section 3, exploits geometry to construct independent parameter
estimators associated with the original dependent parameter estimators. This procedure
provides insight into the effect of pre-orthogonalization parameter estimator dependence. It
is found in Section 3, due to the invariance of both parameter maximum likelihood estimates
and parameter covariance matrices upon the parameter decoupling procedure, also presented
in Section 3, that the identification of the significance of covariate influence upon spiking
rate can be conducted ignoring dependent parameters present in the model. While this is
valid, one notes that the parameter estimates are sensitive to the inclusion of confounding
covariates in the model; implying that inference is valid only to the extent that the model
captures salient features of the data. This is a standard caveat in statistical analysis. While
tests of significant effect upon rate can be carried out without employing the
orthogonalization procedure described in Section 3, the orthogonalization procedure
provides a mechanism by which firing rate modulation due to a dependent covariate can be
investigated independent of the effects of the remaining covariates in the model. This ability
is demonstrated in simulation in Section 4 and on real data in Section 5.

In this paper, relationships between variables are modelled. The nature of this relationship is
statistical in nature and is restricted to the indication of which variables can be used to
explain the behaviour of which other variables. One notes that while causal relations are
studied, the problem of determining which relationships are causal and which have merely a
statistical, or probabilistic relation, cannot be directly solved with the methods presented.

The development within this paper, with the exception of Section 5 using real data, uses
temporal and positional covariates for pedagogical reasons. While developed using only two
groups of covariates, the results of this work hold for an arbitrarily large number of
covariate groups. Similarly, discrete Poisson models of neuron spiking activity are used
throughout this work. Generalization to the doubly-stochastic discrete-time point process
setting, where the firing activity of a neuron depends upon past firing activity of the neuron,
is immediate. This work provides a principled approach to the isolation of covariate effect
upon neural spiking and will be of use both when analyzing data with potential confounds,
but also when assessing the feasibility of investigations at the design of experiment phase.
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Appendix A. Properties of the Matrix Projection
Some mathematical properties of the projection matrix, P, defined in Eq. (12) are specified.
In particular, P, is square, asymmetric and idempotent; the eigenvalues of P are either zero
or one. Additionally, let P⊥ = I – P, then,
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(16)

(17)

Appendix B. Covariance Matrix Block Diagonalization

The maximum likelihood estimator, , possesses an asymptotic covariance matrix, ,
equal to,

Where the identities specified in Eq. (16) and in Eq. (17) have been used. Both the observed

Fisher information and the asymptotic covariance of  are block diagonal.
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Fig. 1.
Geometry depicting the effect on model parameters due to the orthogonalization of the time
covariate, t, with respect to the space covariates, here represented as a one dimensional
vector, s. The superscripts, and, are withheld to emphasize the fact that this geometry applies
equally to both parameter estimators and to parameter estimates. The log rate, log λ is equal
to β(t)t + β(s)s. After orthogonalization, the component of t parallel to s is removed. In this
situation, log λ equals β(t)t⊥ + α s, where α = β(s) + β(t)(|t∥|/|s|). Here |s| is the magnitude of
the vector s. Thus, the parameter associated with time, β(t) is unaffected by the
orthogonalization, while the parameter associated with space, β(s), is increased by β(t)(|t∥|/|s|).
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Fig. 2.
A flow chart depicting a standard statistical procedure in black with the proposed
augmentation in blue. Arrows indicate sequential steps in the analysis. One notes that an
estimate of the conditional intensity is required prior to forming projected covariates; an
unnecessary requirement when performing linear regression. The interpretation step, also
coloured blue, is part of a traditional procedure. For this step, the blue colouring indicates
that the interpretation step is modified to incorporate the results of the augmented procedure.
(For interpretation of the references to color in this figure legend, the reader is referred to the
web version of the article.)
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Fig. 3.
Synthetic data obtained for a time-modulated place-cell. Fifty trials obtained from a rat
moving according to a random walk with drift. Raster plot (upper left), rat position vs. time
(upper right), each trajectory corresponds to a single trial. Position modulation of the rate
(middle left), time modulation of rate (middle right). Actual rate as a function of position
and time (bottom left), and the actual rate as a function of time and trial (bottom right). The
variance of the random walk insures that different parts of the place field are observed at the
same time as trial varies. Note that as the variance of the random walk tends to zero, space

and time become inseparably confounded. In this situation, , the design matrix, H̃ has
linearly dependent columns, and the parameters associated with time and space become
unidentifiable.
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Fig. 4.
Neuron spike rates estimated using the three models. Because the range of the three different
model matrices are identical, the rate estimates are also identical. This plot demonstrates this
equality up to possible deviance too small to be seen on the scale plotted.
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Fig. 5.
Asymptotic maximum likelihood estimator correlation matrix estimates for the confounded
model (left), for the time perpendicular to space model (middle), and for the space
perpendicular to time model (right). The constant term is associated with the spatial
covariates so that the time column in the design matrix is projected orthogonal to the
constant vector as well as the position and squared position columns in the “time
perpendicular to space” model. The projection successfully eliminates the approximate –
20% correlation between the time and space covariates in the confounded model (far left).
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Fig. 6.
Both plots: each dot corresponds to a recording instant. All 50 trials are plotted. Left: the
space-orthogonalized temporal covariate vs. rat position. The functional dependence (due to
orthogonal projection) of the temporal covariate upon the spatial covariates is slight. This
dependence is largest at the origin where time and position are more closely linked due to
the small variance of the random walk at early times. At later times, there are many values
of the orthogonally projected time covariate for every rat position, due to the increased
random walk variability at later times. At times approaching one, extremes in position occur
and dependence between time and position seems apparent; however, in this situation few
samples are available and the apparent dependence is not reliable. This plot demonstrates
how the projected covariate functionally depends on the covariates it is projected orthogonal
to. Because of this dependence it is not meaningful to study the temporal rate modulation
using a single trial, as it would be if one were using the non-projected temporal covariate. It
is necessary to summarize rate modulation over all trials with, for example, an across-trial
average of the rate modulation, or a scatter plot across all trials (as shown on right) of rate
modulation due to time perpendicular to space vs. time perpendicular to space. When time is
explained by spatial information time perpendicular to space is zero and the rate modulation
is one. Only when time perpendicular to space deviates from zero can the rate modulation
due to time alone deviate from one.
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Fig. 7.
The ratio of two figures of merit indicating the effect of the orthogonalization procedure on
the correlation between temporal and non-temporal covariates for the data described in
Section 5. The first figure of merit, indicating the extent of correlation between temporal and
non-temporal covariates prior to orthogonalization, is labelled SACoriginal in the plot. The
second figure of merit, identical to the first but computed using parameters estimated for a
model with temporal covariates projected orthogonal to the non-temporal covariates, is
labelled SACprojected in the plot. The figure of merit in both cases equals the sum of absolute
correlations between temporal and non-temporal covariate parameters and is computed
using the maximum likelihood parameter estimates for the relevant model. The
orthogonalization procedure suppresses the sum of absolute correlation by at least
approximately two orders of magnitude, and typically by six orders of magnitude. Note that
the maximum value of the figure of merit is equal to the number of temporal parameters
multiplied by the number of non-temporal parameters, which in this case is 216. Thus an
upper bound on the correlation between a temporal covariate parameter and a non-temporal
covariate parameter after temporal covariate orthogonalization is 0.02 for all but 4 neurons.
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Fig. 8.
Rodent hippocampal cell activity, due to that part of temporal modulation independent of
confounds, bridges a delay epoch in a sequential memory task (MacDonald et al., 2011).
Each image represents the normalized, uncertainty down-weighted rate modulation due to
the temporal covariates alone for a population of neurons from a different rat after averaging
across trials. “Time cells” bridge the delay epoch.
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Table 1

Maximum likelihood estimates for three models of neuron firing rate.

Model type Temporal covariate Time Spatial covariates

Constant Position Squared position

Confounded 1.31 × 10–3 –10.00 342.44 –5.40 × 103

Time perpendicular to space 1.31 × 10–3 –9.96 367.05 –5.52 × 103

Space perpendicular to time –6.88 × 10–3 –10.00 342.44 –5.40 × 103
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