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Abstract
Background—To date, common genetic variants in ~70 loci have been identified for breast
cancer via genome-wide association studies (GWAS). It is unknown whether rare variants in these
loci are also associated with breast cancer risk.

Methods—We investigated rare missense/nonsense variants with minor allele frequency (MAF)
≤ 5% located in flanking 500 kb of each of the index SNPs in 67 GWAS loci. Included in the
study were 3,472 cases and 3,595 controls from the Shanghai Breast Cancer Study. Both single
marker and gene-based analyses were conducted to investigate the associations.

Results—Single marker analyses identified 38 missense variants being association with breast
cancer risk at P < 0.05 after adjusting for the index SNP. SNP rs146217902 in the EDEM1 gene
and rs200340088 in the EFEMP2 gene were only observed in 8 cases (P = 0.004 for both). SNP
rs200995432 in the EFEMP2 gene was associated with increased risk with an odds ratio (OR) of
6.2 (95% CI: 1.4–27.6, P = 6.2×10−3). SNP rs80358978 in the BRCA2 gene was associated with
16.5-fold elevated risk (95% CI: 2.2–124.5, P = 2.2×10−4). Gene-based analyses suggested eight
genes associated with breast cancer risk at P < 0.05, including the EFEMP2 gene (P = 0.002) and
the FBXO18 gene (P = 0.008).

Conclusion—Our results identified association of several rare coding variants neighboring
common GWAS loci with breast cancer risk. Further investigation of these rare variants and genes
would help to understand the biological mechanisms underlying the associations.

Impact—Independent studies with larger sample size are warranted to clarify the relationship
between these rare variants and breast cancer risk.
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Introduction
Breast cancer is one of the most commonly-diagnosed malignancies of women in the world
(1). It is well established that genetic factors play an important role in breast cancer risk (2).
Over the past several years, common variants, usually with minor allele frequency (MAF) >
5%, in approximately 70 loci have been identified as breast cancer risk factors via genome-
wide association studies (GWAS) (3). However, these common variants together explained
only a small portion of the heritability for breast cancer.

It has been increasingly recognized that the missing heritability for breast cancer and other
complex diseases may be partially explained by low-frequency variants. There are a large
number of low-frequency variants in the human genome, and these rare coding variants are
enriched for functional importance (4). Rare coding variants have been associated with
multiple diseases, such as the MTNR1B gene for type 2 diabetes (5), IFIH1 gene for type 1
diabetes (6), APOA5, GCKR, LPL and APOB genes for hypertriglyceridemia (7) and
CHEK2, ATM, BRIP1, PALB2, RAD51C, RAD51D, and PPM1D genes for breast cancer (8–
13). Herein, we investigated low MAF coding variants in GWAS identified loci regions for
their association with breast cancer risk. Focusing on the flanking 500kb regions of 67
GWAS identified loci, we investigated low MAF nonsense/missense variants and their
corresponding genes in a total of 3,472 cases and 3,595 controls from the Shanghai Breast
Cancer Genetics Study.

Materials and Methods
Study populations

Study participants in the present study were drawn from four population-based studies
conducted in Shanghai, the Shanghai Breast Cancer Study (SBCS), Shanghai Women’s
Health Study (SWHS), Shanghai Breast Cancer Survival Study (SBCSS), and the Shanghai
Endometrial Cancer Study (SECS, contributed control data only). Detailed descriptions of
participating studies have been published elsewhere (14–16). In brief, the SBCS is a 2-stage
(SBCS-I and SBCS-II), population-based, case–control study. SBCS-I recruitment occurred
between August 1996 and March 1998; SBCS-II recruitment occurred between April 2002
and February 2005. Both studies identified patients with incident primary breast cancer
through the population-based Shanghai Cancer Registry and randomly selected community
controls from the general population in Shanghai. The SBCSS included newly diagnosed
breast cancer cases ascertained via the Shanghai Cancer Registry between April 2002 and
December 2006. The SECS is a population-based, case–control study of endometrial cancer
conducted between January 1997 and December 2003 using a protocol similar to the SBCS;
only community controls from the SECS were included in the present study. The SWHS is a
population-based prospective cohort study of women from urban communities in Shanghai
who were recruited between 1996 and 2000. The cohort has been followed by a combination
of record linkage and active follow-ups to identify cause-specific mortality and cancer
incidence by sites. All these studies are conducted among Chinese women in Shanghai, a
genetically homogenous population, using very similar protocols in data and sample
collection. Genomic DNA for all included participants was extracted using commercial
DNA purification kits. Study protocols were approved by the institutional review boards of
all institutions involved in the study, and informed consents were obtained from all study
participants.
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Genotyping array
Genotype assays were done by the Asian Exomechip, an expanded Illumina
HumanExome-12v1_A Beadchip. The original Exome array includes 247,870 markers
focused on protein-coding regions selected from >12,000 samples with exome and genome
sequencing data. The vast majority of these samples were from European ancestry
populations, and ~600 Asian samples were included. Details about SNP contents and
characteristics are described at Exomechip design (17). In brief, nonsynonymous variants
observed three or more times in at least two studies, and splicing and stop-altering variants
observed two or more times in at least two studies were selected. Additional array content
includes variants associated with complex traits in previous GWAS, HLA tags, ancestry-
informative markers, markers for identity-by-descent estimation and random synonymous
SNPs.

To improve the coverage for the low frequency variants in Asian population, we designed
the Asian Exomechip by adding additional ~60K customer content variants onto the
Illumina HumanExome-12v1_A Beadchip based on additional sequencing data. Included on
the chip are also top SNPs selected from GWAS for follow-up. Three sequencing datasets
were used to add additional nonsense/missense variants: exome sequencing in 581 Chinese
women from SBCS, exome sequencing in 496 Singapore Chinese, and Asian data in the
1000 Genomes Project. Nonsynonymous, splicing and stop-altering variants observed two or
more times in any of these datasets or once in any two of the three datasets, were added
(N=33,342). Additional common variants (N=28,637) were added to the chip for various
GWAS follow-up and GWAS loci fine-mapping projects.

Genotyping and quality control
All samples were genotyped at the Genome Quebec Innovation Centre (Montreal, Quebec,
Canada) following Illumina’s protocol. On each 96-well plate, blind duplicate samples and
two HapMap samples were included as quality control (QC). Genotype calling was carried
out using Illumina's GenTrain version 2.0 clustering algorithm in GenomeStudio version
2011.1. Cluster boundaries were determined using study samples. After clustering, ~80,000
variants were manually reviewed and clusters were edited for 27,506 variants.

Further QC procedures were conducted using plink (18). We evaluated concordance rates
for HapMap samples genotyped in our study and sequenced by the 1,000 Genomes Project
(4). Principal components analyses (PCA) were conducted based on 3,200 ancestry
informative markers (AIMs) on the exomechip using EIGENSTRAT (19) to identify
population outliers with the 1,000 Genomes Project data as reference. We also estimated
pair-wise proportion of identify-by-descent (IBD) to identify potentially genetically
identical, unexpected duplicated samples or close relatives. The samples were excluded if:
(i) call rate<98%, or (ii) consistence rates between the HapMap samples with 1000 Genomes
data <99%, or (iii) heterozygosity outlier, or (iv) ethnic outliers, or (v) samples with close
relationship, or (vi) consistence rates among duplicated samples<99%, or (vii) samples with
wrong sex. The SNPs were excluded if: (i) MAF=0, or (ii) call rate < 98%, or (iii)
genotyping concordance rate < 98% in QC samples, or (iv) HWE test P<10−5, or (v)
redundant SNPs, or (vi) cautions SNPs discovered by the exomechip design group (17). A
total of 8,200 samples plus 192 QC samples were genotyped. The final analysis dataset
included 127,267 SNPs genotyped on 3,472 breast cancer cases and 3,595 controls.

Statistical analyses
We used ANNOVAR program (20) to annotate all SNPs. We included all missense/
nonsense variants located flanking 500kb of the indexed SNP of 67 GWAS loci. If a protein-
coding gene was partially covered within the flanking 500kb region, all missense/nonsense
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variants in the whole gene were included for analyses. For single-variant analysis, we used
logistic score test adjusted for age implemented in EPACTS package (21). Further
conditional analyses were conducted by adjusting the corresponding index SNP in each
locus.

For gene-based analysis, we used the SKAT-O test with default parameters implemented in
the EPACTS package. SKAT-O (22) encompasses burden tests and SKAT (23). Low-
frequency variants of MAF ≤ 5% or MAF ≤ 1% within each gene were aggregated.

Results
Characteristics of the study population are shown in Table 1. All the known risk factors
were associated with breast cancer risk in this study setting. Cases had higher educational
attainment and were more likely to have a first-degree relative with breast cancer, a history
of benign breast disease, be postmenopausal, and report early menarche than controls.

Single marker analyses
In the flanking regions of those 67 GWAS loci, a total of 1,272 missense/nonsense variants
were included on the chip; 1,080 were rare variants with 0 < MAF ≤ 5% (Table S1). A total
of 38 rare variants (0 < MAF ≤ 5%) showed an association with breast cancer risk at P <
0.05 after adjusted for the corresponding index SNP (Table 2). Notably, five rare variants
were associated with breast cancer risk at P < 0.01. SNP rs146217902 in the EDEM1 at
3p26.1 and rs200340088 in the EFEMP2 at 11q13.1 were observed in 8 cases but not in any
controls (P =0.004 for both). Another SNP rs200995432 in the EFEMP2 gene was
associated with increased breast cancer risk with an odds ratio (OR) of 6.2 (95% CI: 1.4–
27.6, P= 6.2×10−3). SNP rs80358978 in the BRCA2 gene, 42 kb upstream from the GWAS
SNP rs11571833, was associated with 16.5-fold elevated risk (95% CI: 2.2–124.5, P =
2.2×10−4). A rare variant rs143563006 in the FBXO18 gene was associated with decreased
risk of breast cancer with an OR being 0.60 (95% CI: 0.41–0.88) and a P value of 8.2×10−3.

Gene-based analyses
Collapsing variants with MAF ≤ 5% within each gene suggested eight genes associated with
breast cancer at P < 0.05 (Table 3 and Table S2). As the majority of rare variants whose
MAF was ≤ 1%, similar results were found when MAF was set to ≤ 1%. These associations
did not change materially after adjusting for corresponding GWAS index SNPs. At the locus
11q13.1, two genes, EFEMP2 and RNASEH2C, showed an association with breast cancer
risk with P = 0.002 and P = 0.04, respectively. The EFEMP2 gene was approximately 61.3
kb downstream from the GWAS SNP rs12575663, and the RNASEH2C gene was 87 kb
upstream from the index SNP. At the 10p15.1, the FBXO18 (consisting of 5 variants with
MAF < 0.05) was strongly associated with breast cancer risk (P = 8.0×10−3). The other five
genes showing associations were KLHL26, OR2A12, TGFBR2, TRIP13, and VTI1A.

Discussion
In the present study, we investigated associations of 1,080 missense/nonsense variants with
a MAF ≤ 5% in 337 genes at 67 GWAS loci among 3,472 Chinese breast cancer cases and
3,595 controls. Single marker analyses showed an association for 38 variants at P < 0.05. In
particular, five variants were associated with breast cancer risk at P < 0.01, including
rs200340088 and rs200995432 in EFEMP2, rs146217902 in EDEM1, rs143563006 in
FBXO18, and rs80358978 in BRCA2. Gene-based analyses showed an association at P <
0.01 for EFEMP2 and FBXO18 genes and at P < 0.05 for six genes, including RNASEH2C,
KLHL26, OR2A12, TGFBR2, TRIP13, and VTI1A.
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The most significant association was observed for a missense variant, rs80358978
(Gly2508Ser), in the BRCA2 gene. It was 42 kb upstream from the GWAS SNP rs11571833.
This variant was observed in 16 heterozygous breast cancer cases and only one control
participant. This variant was not present among the 1,092 individuals included in the 1,000
Genomes Project or the 6,400 individuals of European or African ancestry included in the
NHLBI Exome Sequencing Project (24). This variant was found in four Asian breast cancer
women in the Breast Cancer Information Core (25). Though the clinical importance of this
variant was unknown, it may be potentially functional and it is predicted to be “probably
damaging” based on its Polyphen-2 score (0.999) and “deleterious” based on its SIFT score
(0).

In addition, of the 38 rare variants causing missense mutations, the predominantly single
amino acid change is from a basic or acidic amino acid to a neutral amino acid, such is the
case for CCDC88C, MAP3K1, and SRRM5 genes are predicted to be deleterious based on
the SIFT score (Table 2). It further suggests, to the some extent, that these rare missense
mutations would affect the protein’s topological structure and physicochemical properties.

For gene-based analysis, our results indicated that the significant association with breast
cancer risk is driven by one single variant in each gene. The reason is greatly related to our
focuses on the missense/nonsense variants with low-frequency. Generally speaking, the
consequence of missense mutations has direct impacts on protein structure and function.
Thus, it is more likely to undergo purifying selection (26, 27), making the probability of two
or more rare missense mutations happening in the same gene quite low.

The most significant result from gene-based analyses is for the association observed with the
EFEMP2 gene, encoding a protein containing four EGF2 domains and six calcium-binding
EGF2 domains. This gene is necessary for elastic fiber formation and connective tissue
development (28). Several studies indicated that the expression level of the EFEMP2 gene,
even at an early cancer stage, was increased in cancer tissues of the colorectal and
endometrial cancer patients (29–31). RNASEH2C, another gene located at the 11q13.1 locus,
also showed a significant association in this study. This gene encodes one of Ribonuclease
H2 (RNase H2) subunits, a major nuclear enzyme involved in the degradation of RNA/DNA
hybrids and removal of ribonucleotides misincorporated in genomic DNA to maintain
genomic integrity. Mutations in each of the three RNase H2 genes have been implicated in a
human auto-inflammatory disorder, Aicardi-Goutières Syndrome (AGS) (32, 33). Crystal
structure of RNase H2 complex indicated residues in the C-terminal kinked helix
(RNASEH2C:143–160) contact both RNASEH2A and RNASEH2B (34), suggesting the
detected variant (R145L) in the RNASEH2C gene may influence the complex formation of
RNase H2.

FBXO18 (also called FBH1 or FBX18) is a member of the UvrD family of DNA helicases
(35, 36). Its helicase activity induces DNA double-strand breakage and activation of ATM
and DNA-PK and phosphorylation of RPA2 and p53 (37). The ATM and p53 genes are two
of the most well-established breast cancer susceptibility genes. A previous study has
revealed a connection between rare missense variants in the ATM gene and breast cancer
risk (11). Here we provide evidence that rare variants in the FBXO18 gene may also
contribute to the risk of breast cancer.

It has been well established that TGF-β pathway plays a critical role in the development and
progression of a large number of human cancers, including breast cancer (38–40). TGF-β1 is
the most abundant form of TGF-β and regulates cellular processes by binding to TGFBR2.
Therefore, defective expression of TGFBR2 may play a significant role in carcinogenesis.
Our previous evaluation of the associations of genetic variants in the TGF-β signaling
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pathway with breast cancer risk found that one common SNP (rs1078985) in the TGFBR2
was associated with breast cancer risk (41). The gene-based results in this study provide
further evidence that the TGFBR2 gene is significantly associated with breast cancer risk.

In the present study, we identified multiple rare coding variants associated with breast
cancer in GWA-identified loci. However, after adjusting multiple comparisons, some of
them became insignificant. The statistical power in the present study is limited for rare
variants, even though over 6,000 cases and controls were included. Independent studies with
larger sample size are warranted to clarify the relationship between this rare variants and
breast cancer risk.

In conclusion, we identified associations of additional genes/variants flanking the known
susceptibility loci with breast cancer risk. These findings may provide new insights into the
etiology of breast cancer as well as future potential therapeutic targets.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Table 1

Distribution of demographic characteristics and known breast cancer risk factors for cases and controls
included in the study

Category Cases
(N=3,472)

Controls
(N=3,595)

P value

Demographic Factorsa

Age (yr ± SD) 53.2 ± 10.0 53.0 ± 9.3 0.38

  Education ≥ high school (%) 55.9 40 < 0.01

Reproductive Risk Factors

  Age at menarche (yr) 14.4± 1.7 14.9 ± 1.8 < 0.01

  Postmenopausal (%)b 49.8 53.1 < 0.01

  Age at menopauseb 49.0 ± 4.2 48.8 ± 3.9 0.29

  Age at first live birth (yr)c 26.9 ± 3.8 25.6 ± 4.1 < 0.01

Other Risk Factors

  First-degree relative with breast cancer (%) 5.3 2.2 < 0.01

  Body mass index (BMI) 24.1 ± 3.5 23.9 ± 3.4 0.05

  Body mass index (BMI)b 24.7 ± 3.7 24.4 ± 3.5 0.01

a
Unless otherwise specified, mean ± sd are presented;

b
Among postmenopausal women;

c
Among parous women.
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