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Abstract
Sepsis is a complex inflammatory response to infection. Microarray-based gene expression studies
of sepsis have illuminated the complex pathogen recognition and inflammatory signaling
pathways that characterize sepsis. More recently, gene expression profiling has been used to
identify diagnostic and prognostic gene signatures, as well as novel therapeutic targets. Studies in
pediatric cohorts suggest that transcriptionally distinct subclasses may account for some of the
heterogeneity seen in sepsis. Time series analyses have pointed to rapid and dynamic shifts in
transcription patterns associated with various phases of sepsis. These findings highlight current
challenges in sepsis knowledge translation, including the need to adapt complex and time-
consuming whole-genome methods for use in the intensive care unit environment, where rapid
diagnosis and treatment are essential.
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Sepsis and its genomic influences
Since its introduction in the late 1990s, microarray-based gene expression profiling has had
a significant impact on the field of medicine. In cancer biology, molecular subtypes of
diseases have been identified [1], as well as transcriptional signatures predicting clinical
outcome [2], and response to specific therapies [3]. Useful biomarkers have been found that
in some cases can obviate the need for genome-wide approaches, enabling the translation of
gene expression research into clinical practice. Nonetheless, the impact of genome science
remains far from pervasive, especially in the Intensive Care Unit (ICU), where diseases
evolve rapidly, resulting in systemic illness, organ failure, and high mortality.
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Sepsis, one of the most prevalent diseases in the ICU, is a clinical syndrome characterized
by a systemic inflammatory response to infection, typically bacterial in origin. It is defined
as documented or suspected infection, in the setting of a subset of four findings that describe
the systemic inflammatory response syndrome (SIRS) [4], and can progress rapidly,
resulting in organ failure (severe sepsis), or impaired tissue perfusion (septic shock). Sepsis
syndromes are both common and dangerous, with the incidence increasing in both adults
and children, and mortality rates as high as 10–50% depending on age and disease severity
[5,6].

While genetic influences on the pathogenesis of acute conditions like sepsis may be under-
appreciated, they are no less striking. In adoptee studies, death from infection has been
shown to be 5-fold more heritable than death from cancer [7]. The innate immune response
that accounts for the physiologic derangements of bacterial infection is associated with
altered expression of more than 3,700 genes [8], making gene expression analysis a
potentially useful tool for discovery-oriented studies of the pathogenesis of sepsis and severe
infection. Published findings based on this research paradigm are increasing, while
expression data are accumulating in publicly available repositories, and a few active clinical
trials include a gene expression component (Figure 1).

Goals and challenges of transcriptome research in sepsis
Gene expression analysis of sepsis is distinguished from analyses of cancer and chronic
diseases in a number of ways, both conceptual and pragmatic (Figure 2). First, sepsis
investigators must make decisions about which tissues to sample and at what time points,
which in the absence of additional clinical data or a priori hypotheses, may be arbitrary in
nature. Tissue from the source of infection may be difficult to sample directly as biopsies are
seldom practical in the critically ill. As an easily accessible compartment of the immune
system, whole blood and its various leukocyte fractions have therefore been the source
tissue of interest in most gene expression studies of sepsis. The findings from gene
expression profiling of blood cells may not accurately reflect expression patterns from
immune cells resident in other tissues, such as alveolar macrophages, or splenic
lymphocytes, though the significance of this potential discordance remains uncertain [9,10].

Secondly, sepsis is a dynamic process within a relatively narrow time period. Thus, while
genomic changes can occur in tumors over time, large-scale transcriptional shifts in
leukocytes have been shown to occur within just a few hours of an inflammatory stimulus
[8,11]. In the setting of blunt trauma, a condition with considerable inflammatory features
that is often complicated by sepsis, the leukocyte transcriptome is substantially altered to up-
regulate inflammatory and pathogen recognition pathways in the days and weeks following
injury [12]. These investigations into the functional trajectory of cellular processes
constitute a unique method by which to model the dynamic pathophysiology of acute illness.
Samples collected repeatedly over the course of an illness episode should therefore ideally
be analyzed together rather than in isolation, in an attempt to describe illness trajectory and
differentiate responses to treatment. Unlike with trauma, the precise onset of sepsis may be
difficult to pinpoint accurately, introducing further complexity in comparing time course
gene expression profiles from different patients with sepsis.

Thirdly, while gold standard diagnostic labels can be arrived at for most tumors based on
anatomic and molecular pathology findings, the diagnosis of sepsis is predominantly a
clinical one. Moreover, the criteria on which the diagnosis is based lack specificity, with
more than 40% of cases having negative bacterial cultures [13]. The absence of reliable
classification complicates statistical analyses of gene expression data that use supervised
methods to detect differences in expression between groups.
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Lastly, whole-genome approaches to sepsis research must include strategies for
“downsizing” the methods used, from high-dimensional, resource-and time-intensive gene
expression assays to rapid, cost-effective diagnostic tests that can be deployed at the point of
care. While findings from gene expression studies in cancer may translate to clinical practice
via immunohistochemical staining of pathologic specimens, targeted genotyping, or other
complex and time-consuming assays, these techniques are impractical in the management of
sepsis. Useful assays must reflect the rapidly evolving, dynamic nature of sepsis, the need
for quick information in the acute resuscitative phases of this condition, and the necessity
that individual samples be analyzed at any time of day or night, with short turnaround time,
and without waiting to be batched with other specimens.

Experimental designs
As a primarily immunologic phenomenon, sepsis is often studied by examining leukocytes,
including ex vivo immunostimulation experiments. Patients with sepsis syndromes manifest
a variety of dynamic shifts in leukocyte populations, often transitioning between states of
leukocytosis and leukodepletion, and exhibiting differences in the relative abundance of
granulocytes, lymphocytes, and specialized subsets thereof. Each of these cellular subtypes
exhibits a distinct gene expression pattern tailored to the specialized function of the
respective cell type [14], with expression profiles from whole blood representing a weighted
sum of these patterns. As different cellular compartments of the blood perform different
immunologic functions in response to infection, leukocyte gene expression in sepsis is cell
type specific. The set of genes that distinguish sepsis from non-infectious inflammation in
the neutrophils of the innate immune system demonstrates very little overlap with the set of
genes similarly identified from the lymphocytes of the adaptive immune system [15,16],

The use of whole blood to derive gene expression data in sepsis has the pragmatic advantage
of straightforward sample collection, minimal preprocessing, and limited induction of
expression artifacts related to isolation of leukocyte subsets [17]. Most clinical studies in
both adults and children have used either whole blood or peripheral blood mononuclear cells
(PBMCs). In the case of whole blood studies, statistical methods have been employed to
account for the relative abundance of each leukocyte subtype in the sample, and to attribute
gene expression findings to specific populations of cells [18].

Insights into molecular mechanisms of sepsis
Initial studies of gene expression in sepsis were largely exploratory in nature, aiming to
describe the complex immunologic and inflammatory pathways that characterize this
condition. Early insights came from studies of healthy volunteers exposed to bacterial
endotoxin [8,11,19], which revealed significant changes in the transcription of more than
3,700 genes as soon as 2 hours after endotoxin exposure. Early after endotoxin exposure,
pathogen recognition cell surface receptors, including those from the Toll-like receptor
(TLR) family, are upregulated, along with a variety of proinflammatory cytokines and
chemokines such as tumor necrosis factor (TNF), interleukin (IL) 1A, IL1B, CXCL1,
CXCL2, monocyte chemotactic protein 1 (MCP-1), and IL-8 [8,11]. These changes are
accompanied by activation of signal transduction pathways including nuclear factor κB
(NFκB), mitogen activated protein kinase (MAPK), janus kinase (JAK), and signaling
transducer and activator of transcription (STAT). In parallel, signaling to restrain the
immune response is increased, both by the upregulation of suppressor of cytokine signaling
genes (e.g. suppressor of cytokine signaling 3; SOCS3) and the downregulation of cytokine
expression itself. Expression patterns return to baseline within 24 hours of endotoxin
exposure. Unlike with tightly controlled experiments in healthy subjects, clinical studies of
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gene expression in sepsis must confront substantially more uncertainty, heterogeneity, and
complexity in the inflammatory manifestations of infection.

Expression patterns are modulated by a number of factors such as age, gender, and ethnicity,
the presence of comorbidities, the timing of inflammatory stimulus, and the patient’s state of
immune activation at the time of infection. This is reflected in the results of clinical studies
of gene expression in adults with sepsis syndromes. A systematic review of a dozen such
studies suggests nearly universal upregulation of the pathogen recognition and signal
transduction pathways identified in controlled endotoxin experiments, but a far more mixed
picture when it comes to the pro- and anti-inflammatory pathways mediated by genes that
govern lymphocyte differentiation, antigen presentation, and cytokine expression [20].
Disagreement between studies in this regard may reflect differences in patient population, in
that trauma patients who are otherwise healthy may be predisposed to immunostimulation
following injury, while patients with primary sepsis exhibit a greater degree of
immunosuppression [18,21].

Gene expression studies have been used to identify novel therapeutic targets in sepsis, based
on molecular pathways differentially expressed between cases and controls, or between
survivors and non-survivors. Complementing findings from basic science research, animal
studies, and clinical trials in humans [22], gene expression studies have highlighted the
importance of zinc homeostasis in immune functioning, particularly amongst children with
sepsis syndromes [23]. Children admitted to the ICU with septic shock have been shown to
exhibit diminished expression of numerous genes that influence or rely upon zinc
homeostasis. This pattern that may be more evident in a certain subset of patients, and
associated with poor outcomes [24]. Clinical studies of zinc supplementation have
demonstrated salutary effects on the incidence and severity of certain infections in both
children and the elderly [25–27], but in both adult and pediatric ICU patients, larger
randomized trials of mixed micronutrient supplementation that included zinc showed no
significant effects on the incidence of infection [28,29].

One particular family of zinc-related proteins has been shown to be consistently
overexpressed in sepsis and septic shock. The matrix metalloproteinases (MMPs) are a
series of proteases that degrade extracellular matrix, inflammatory cytokines, and other
proteins, thereby mediating a variety of immunologic and neoplastic processes [30,31].
Gene expression studies, along with confirmatory serum assays, have shown MMP-8 and
MMP-9 to be upregulated in injury and sepsis, correlating in some cases with disease
severity [11,32–34]. Consistent with these clinical observations, MMP-8 null mice and wild-
type mice treated with a pharmacological inhibitor of MMP-8 have a survival advantage
when subjected to a model of sepsis [32].

Influence of demographic factors
While patient age, gender, and ethnicity have been accounted for in traditional clinical and
basic science research in sepsis, the importance of these demographic factors in gene
expression studies has yet to be fully explored. Nonetheless, there is reason to believe that
demographic features exert considerable effects on gene expression patterns in sepsis.
Ethnic background is known to be a strong determinant of gene expression in general [35],
and there is some evidence to suggest its influence on sepsis in particular. In one small study
examining gene expression patterns amongst critically ill patients with ventilator-associated
pneumonia (VAP), far more genes varied between ethnic groups (Caucasian or African-
American), than between groups sorted by age or gender [36]. Epidemiological studies
suggest differences in sepsis incidence and outcomes amongst patients with different ethnic
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backgrounds, although the extent to which these findings reflect genomic differences is not
known [37].

Concurrent with evolving immune function, both early in development and later in life,
different genetic responses to sepsis are seen amongst various patient age groups. In one
analysis combining results from five separate studies, researchers identified differences in
gene expression amongst pediatric patients with septic shock. Full-term neonates (≤28 days)
were shown to have gene expression patterns distinct from those of infants (1 month to 1
year), toddlers (2–5 years), and school-aged children (≥6 years) when assessed within 24
hours of ICU admission [38]. Importantly, and in contrast to older children and adults, these
results suggest that neonates not only failed to mount a robust inflammatory response, but
also in fact demonstrated downregulation of antigen presentation and NF-κB pathway genes,
and an overall decrement in immune response to infection. Reduced expression of triggering
receptor expressed on myeloid cells-1 (TREM-1) pathway-related genes was also seen,
suggesting that neonates may have limited capacity to amplify immune signals related to
pathogen recognition, and may be less responsive to novel therapies targeting this pathway
in septic shock [39,40]. This study included a relatively small number of neonates (n=17),
and the findings would be bolstered by validation in a dedicated prospective study.

At the other end of the age spectrum, there are fewer whole-genome data about the effects of
aging on immune functioning in sepsis. In one mouse study examining individual cytokine
levels using a cecal ligation and puncture (CLP) model of sepsis, older mice showed more
pronounced local and systemic inflammatory responses compared to younger mice with
similar survival rates [41]. While gender is known to influence gene expression patterns in
other conditions such as ischemic heart diseases, albeit modestly [42], sex-specific
differences in gene expression in sepsis remain largely unexplored. Complex interactions
between demographic factors are also likely to influence gene expression in sepsis.

Gene expression and sepsis subtypes
One of the most clinically relevant questions following the diagnosis of sepsis is that of
which invading pathogen is responsible for the acute infection. Proper knowledge of the
inciting cause is useful in selecting appropriate antimicrobial agents, and identifying
uncontrolled sources of infection. Sepsis arising from different types of organisms, including
gram-positive bacteria, gram-negative bacteria, and fungi, may be clinically
indistinguishable, and both the yield and lag time of microbial cultures limit their utility in
practice [4,13]. As the molecular pathways underpinning the cellular immune response to
these various types of infection have distinctive features, gene expression profiling has been
investigated as a means to identify culprit organisms in septic patients.

Early studies in animal models and ex vivo models of human cell types suggest that
regardless of the invading pathogen, a core group of co-expressed genes are upregulated in
the face of infection, constituting a so-called “common host response” to sepsis [43,44].
This common response, expressed in a variety of cell types, includes activation of
inflammatory mediators and signal transduction pathways, as well as negative feedback
pathways and apoptotic pathways that put infected cells in a state of ‘high alert’, whereby
programmed cell death can be initiated in the event of progressive infection [43]. While
targeted experiments suggest that isolated pathways coordinate the immune response to
gram-positive and gram-negative infections, microarray experiments suggest considerable
overlap between these types of infection. Both TLR2 receptors (associated with the
transcriptional response to gram-positive infections), and TLR4 receptors (which bind
lipopolysaccharide from gram-negative bacteria) initiate signals that culminate in the
common host response [43]. This result is reflected in clinical studies of gene expression in
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sepsis, which for the most part have shown few differences in expression patterns between
patients infected with different types of bacteria [36,45].

In the pediatric population, gene expression data have been used to distinguish bacterial
infections from viral infections such as influenza A [46]. Not surprisingly, patients with
influenza were identifiable on the basis of increased expression of interferon (IFN)
pathways. Up to a third of patients with bacterial sepsis also demonstrated upregulation of
IFN genes, suggesting the possibility of a preceding or concurrent viral infection in these
cases. Differences were also found between patients with gram-positive infections and those
with gram-negative infections. Beyond its focus on pediatric rather than adult patients, this
study differed from those that found no differentially expressed genes between gram-
positive and gram-negative sepsis. Instead of using neutrophils, investigators generated gene
expression profiles from PBMCs which, because of their pleomorphism, might be expected
to better reflect pathogen differences. These findings highlight the importance of
considering tissue type in designing and interpreting gene expression studies in sepsis.

In addition to determining what type of infection has triggered a sepsis response, it may be
equally important to determine the nature of the response mounted by an individual patient.
The existence of heretofore unrecognized sepsis subtypes is suggested by the heterogeneity
of physiologic and molecular phenotypes encompassed under the non-specific clinical
definition of sepsis. This inadvertent case mixing in clinical studies leads to
indistinguishable survival curves, overlapping histograms of measured outcomes, and a
deficit of actionable evidence. Discovery of sepsis subtypes has thus been identified by
some as a key goal in sepsis research [47,48].

This problem is inherently one of unsupervised machine learning, in which patients are
grouped not based on clinical labels assigned by investigators, but rather according to
similarities across multiple dimensions of gene expression data. Various cluster
identification algorithms have been used for this purpose. In one such study, pediatric
patients with septic shock were partitioned into distinct gene expression clusters, based on
expression levels of genes that differentiated septic patients from a group of non-septic
controls [24]. Hierarchical clustering was used with an a priori decision to designate the
second-order branch points as distinct clusters. This approach resulted in 3 subclasses of
septic shock (subclasses A, B, and C), with nearly 7,000 genes differentially expressed
between them. Clinical phenotyping of the subclasses after clustering showed significant
differences in important clinical outcomes, with patients in subclass A having more severe
manifestations of sepsis, a greater degree of organ injury, and higher mortality. Patients in
this subclass also tended to be younger, with a median age of 3.6 months, compared to 4.3
years for subclass B, and 2.0 years for subclass C. From a genomic standpoint, subclass A
was characterized by a relative downregulation of adaptive immune pathways and
glucocorticoid receptor signaling. In a separate multicenter validation study, 82 patients
from an independent cohort were grouped according to their level of expression of the top
100 class-defining genes identified in the first study. Patients from subclass A again showed
a greater severity of illness, a trend towards higher mortality, and younger median age [49].

While no prospective studies in adults have been dedicated to sepsis subtype discovery, a
post-hoc analysis of gene expression profiles generated in the course of other investigations
suggests their existence. Using separate derivation and validation cohorts, patients were
clustered using a partitioning around medioids (PAM) algorithm based on expression levels
of a subset of genes identified in the literature as being meaningful in sepsis and septic
shock [50]. The existence of two distinct clusters was best supported by the data, and while
no significant clinical differences were found between subtypes, there were important
differences in the expression of genes involved in inflammatory and pathogen recognition
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pathways, as well as key pharmacogenes involved in the metabolism of drugs used
commonly in sepsis.

“Downsizing” genome-wide data for clinical use
Multidimensional gene expression platforms that sample thousands of genes at once are
ideally suited for discovery-oriented tasks in sepsis research. Their use in clinical practice,
however, is limited by a number of practical considerations. To be useful in the evaluation
and treatment of patients with sepsis, assays must be widely available, rapid, repeatable,
consistent, and inexpensive. As such, there is a need to “downsize” the high-dimensional
data generated by gene expression microarrays, to more targeted signals that can be
produced closer to the point of care.

The most reductive approach to this problem is to use gene expression microarray data to
identify individual biomarkers that distinguish patient subsets of interest. Typically, this
involves examining genes with the highest fold-change difference in expression between
patients with sepsis and those with noninfectious SIRS. In one pediatric study, gene
expression profiling was used to identify class-predictor genes distinguishing SIRS with
negative bacterial cultures, from sepsis with positive bacterial cultures [51]. The most
predictive gene was Epstein-Barr virus-induced gene 3 (EBI3), a subunit of IL-27 that, when
detected at high levels in the serum, had high specificity and positive predictive value
(>90%) for the diagnosis of sepsis. A comparable study in adults showed that serum IL-27
levels had relatively less favorable test characteristics, and was outperformed by
procalcitonin, a biomarker already used in clinical practice [52].

Biomarkers identified by gene expression profiling have also been used to stratify patients
with sepsis according to mortality risk. The IL8 gene was shown to be upregulated in
nonsurvivors of pediatric septic shock, with elevated serum levels of IL-8 significantly
increased as compared to survivors and controls [23]. Again this biomarker was shown to
have less predictive value in adults with sepsis [53]. Although there were methodological
differences between the pediatric and adult studies in the case of both IL-27 and IL-8, these
findings again underscore the influence of age in immune functioning, and the importance of
considering age in the design and analysis of gene expression studies in sepsis.

In other microarray studies, the chemokine receptor CX3CR1 (fractalkine receptor) was
shown to be upregulated in sepsis survivors compared to nonsurvivors [54], and serum
levels of its ligand CX3CL1 were found to be elevated in patients with sepsis, as compared
to healthy controls [55]. Chemokine ligand 4 (CCL4, also known as MIP-1β) has also been
identified as a potential biomarker based on differential gene expression, and shown to have
a very high negative predictive value for mortality in pediatric septic shock [56].

Though variously sensitive or specific in certain populations, these single-marker diagnostic
strategies do not have well-rounded performance characteristics that would justify their
broad use in clinical practice [57]. Moreover, the use of individual biomarkers in isolation in
many ways defeats the purpose of using high-throughput technologies like gene expression
microarrays to study multifaceted, complex conditions like sepsis. Traditionally identified
by knowledge-based approaches predicated on known biologic functions and pathways, the
search for biomarkers tends to leave unexamined scores of other proteins that may be useful
alone or in combination, but whose biologic function in sepsis has yet to be fully elucidated
[58]. One strategy to overcome this bias is to leverage the considerable coverage of gene
expression microarrays, to identify candidate biomarkers that appear promising based on
statistical, rather than biological features.
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In the Pediatric Sepsis Biomarker Risk Model (PERSEVERE) project, investigators used
such an approach to derive and validate a panel of serum biomarkers to assign a mortality
probability in pediatric sepsis [57–59]. Genes differentially expressed between sepsis
survivors, sepsis nonsurvivors, and healthy controls were identified by analysis of variance
(ANOVA), and further refined by post hoc pairwise comparisons to identify 137 candidate
biomarker genes. These were cross-referenced with a list of 4,397 candidate genes identified
using support vector machine (SVM) classifiers based on sepsis mortality, and further
reduced by selecting genes whose protein products could be easily measured in the blood
[58]. The final panel of 12 biomarkers was subsequently used to derive a classifier based on
classification and regression tree (CART) analysis, and validated in a separate patient
cohort. The model had adequate sensitivity (91% in the derivation cohort, 89% in the
validation cohort), but lacked specificity (86% in the derivation cohort, 64% in the
validation cohort), and had an area under the receiver operating characteristic (ROC) curve
of 0.759 in the validation cohort [59]. Recently, prospective validation of an updated model
yielded a ROC of 0.811 [60] and an analogous model was derived and tested in adult
populations [61].

The shortcomings in gene expression derived biomarker performance likely reflect a
complex interplay of individual genes and transcripts in sepsis, to say nothing of the post-
translational modifications and protein interactions that exert influence on function. Cellular
signals in sepsis are dynamic, changing rapidly with inflammatory conditions and an
evolving immunologic milieu. The goal of reducing genome-wide signals to individual
biomarkers, or even groups of biomarkers used in combination, may therefore be difficult to
achieve. Some investigators have instead focused on developing gene signatures that
combine signals from dozens or hundreds of genes, to be used as a filter in identifying septic
patients from those with noninfectious SIRS, and in predicting outcomes of sepsis
syndromes. In one such study, a 138-gene signature distinguished sepsis from SIRS, with
sensitivity and specificity in the validation cohort of 81% and 79%, respectively [16].

Translating genome-wide assays for clinical use involves developing tools that can be
deployed in the unpredictable and dynamic clinical environment of the emergency
department or ICU. New methods of data representation are needed in order to convey key
signals contained within high-dimensional data to front-line clinicians both quickly and
unambiguously. Along these lines, investigators have tested the use of novel data
visualization methods such as “gene expression mosaics” that convey high-dimensional
gene expression data in 2-dimensional color patterns [62]. Expression mosaics have been
developed in the study of pediatric septic shock subclasses, and have been shown to be
useful in both computer-based and clinician-based interpretation of expression patterns
[49,63]. Among clinicians without specific training in the interpretation of these patters,
gene expression mosaics were sorted according to sepsis subclass (A, B, or C) with overall
K value for agreement of 0.81.[63]

In an effort to develop more scalable solutions for gene expression analysis in acute care,
investigators have also used multiplexed color-coded probes, so-called “molecular
barcodes”, to directly measure mRNA transcript abundance in samples of interest
(NanoString nCounter system) [64]. Based on microarray gene expression findings from the
leukocyte fractions of 167 trauma patients, researchers derived an expression signature of 63
genes that varied most between patients with uncomplicated, intermediate, and complicated
clinical courses following trauma [34]. To create an assay that could reasonably be used in
clinical practice, leukocytes were isolated by means of red cell lysis in microfluidics
chambers, and samples analyzed using the NanoString platform to evaluate expression of the
63 signature genes. These results were further downsized to a single expression metric, the
difference from reference value (DFR), based on a summation of expression differences for
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each gene, from age-, gender-, and ethnicity-matched controls. Results were generated
within 8 to 12 hours, showed good agreement with microarray expression values, and
performed better than both microarray-derived DFR, and conventional clinical severity of
illness scores.

Temporality of gene expression in sepsis
Most clinical studies of gene expression in sepsis have been based on the analysis of a single
time point in the illness trajectory, or on the comparison of an early time point with a later
one. However, genomic shifts in response to inflammation are known to occur rapidly, as
seen in clinical studies of trauma patients [12], or experimental studies of healthy subjects
exposed to endotoxin [8,11]. Unlike in these cases, the time of onset of the inflammatory
stimulus in sepsis cannot be accurately known, resulting in considerable uncertainty
regarding the timing of sampling with respect to the ebb and flow of the immunologic
response. Many studies include protocols to collect samples for gene expression analysis
within 24 hours of admission to the ICU, however patients are admitted to the ICU at
various stages of sepsis, and may transition from one stage to the next even within the first
24 hours of their stay. The extent to which gene expression is being compared across similar
genomic, molecular, and pathophysiologic epochs in these studies is thus uncertain.

The importance of timing in sepsis gene expression analysis is illustrated by one recent
study of 5 pediatric patients with severe sepsis and septic shock due to meningococcal
meningitis [65]. In this work, expression levels of key genes differed between patients at
various time points. Further, the overall contour of expression trajectories of key genes
across the entire 48-hour period also differed. These differential trajectories were seen for
some genes that have been investigated as biomarkers in sepsis, suggesting that certain
biomarkers may be more useful in some patients than others, and may be more useful at
certain stages of illness than others.

A number of statistical methods have been developed to analyze time course gene
expression data. Approaches include Markov models [66–68], analyses of variance [69], and
the use of cubic splines to model changing expression levels over time [70]. Time course
gene expression data from trauma and burn patients have been used to develop statistical
methods for the analysis of leukocyte gene expression over time, such as the riboleukogram,
which uses principal components analysis to graphically represent a patient’s genomic
trajectory over time [36,71]. Results from these studies suggest that genomic profiles in
sepsis oscillate around a baseline immune attractor state. Early results support an increased
between-patient variance in gene expression at the height of the acute inflammatory phase,
with differences between individuals diminishing as patients return to a baseline state of
health [71]. As these statistical and computational methods evolve, comparison of gene
expression trajectories in sepsis may provide even greater insight into the molecular
physiology of sepsis than comparison of gene expression at a single time point.

Concluding remarks and future perspectives
The advent of high-throughput genomic technologies such as gene expression microarrays
have made possible the study of the complex, dynamic changes in the host transcriptome as
it responds to severe infection. Initial studies have added significantly to our understanding
of sepsis pathophysiology, identified different molecular phenotypes of sepsis, and
suggested novel targets for new sepsis therapies. Nonetheless, conclusions from these initial
studies have been far from unanimous. Discrepancies may be attributable to a variety of
technical factors, including lack of agreement between microarray platforms in earlier
studies, and an abundance of different statistical methods and bioinformatics pathways used
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to conduct analyses (Table 1). A lack of standardization in terms of timing of sampling and
tissue source used further complicates direct comparisons between studies. Importantly,
many analyses have been based on small sample sizes, and bear confirming in larger
cohorts. As microarray technology and bioinformatics methods evolve, concordance is
likely to increase.

Additional challenges remain (Box 1), including the need for more comprehensive clinical
data by which to annotate gene expression patterns, and for more reliable diagnostic
categories with which to label patients with sepsis syndromes. These should not only include
basic “case/control” and “survivor/nonsurvivor” categories, but also more nuanced labels
related to illness trajectory, and response to therapeutic interventions. New methods
continue to be developed including RNA-Seq, sequencing of microRNAs [72], and
evaluation of microbial nucleic acid signals.
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Box 1: Outstanding Questions

• Which source tissue (whole blood, neutrophils, PBMCs) is best suited to
generate the gene expression data needed to address a particular biological
hypothesis?

• How should time series gene expression data be collected, analyzed, and merged
with clinical outcomes data

• What are the optimal transcriptome-based definition and classification of sepsis
syndromes?

• Can gene expression events early in the course of sepsis predict later
transcriptional events, response to therapies, and clinical outcome?

• What is the role of next-generation sequencing technologies in the transcriptome
profiling of sepsis syndromes?
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HIGHLIGHTS

• Gene expression analysis has yielded insights into the pathophysiology of
sepsis.

• Gene expression analysis in sepsis differs conceptually and pragmatically from
cancer studies.

• Gene expression data must be “downsized” to be useful in the ICU.

• Rapid assays are needed to make gene expression useful in the ICU.
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Figure 1.
Trends in gene expression profiling of sepsis. Bars represent the number of Pubmed
citations per year for the search term “gene expression AND sepsis”. Trend line shows the
number of individual microarray assays added each year to a publicly available repository of
gene expression data (ArrayExpress). The size of the points at the bottom of the plot reflect
the number of clinical trials initiated in each year, as identified by a trials registry
(clinicaltrials.gov, search terms "gene expression AND sepsis OR septic shock OR severe
sepsis").
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Figure 2.
Overview of gene expression profiling in sepsis. (A) As sepsis syndromes are characterized
by rapid shifts in gene expression over hours and days, blood samples can be collected for
analysis at a variety of time points. Multiple samples taken over the course of resuscitation,
stabilization, and convalescence, can be used to generate time series of gene expression. (B)
Once samples are collected, RNA can be extracted either directly from whole blood, or from
different leukocyte fractions. RNA transcript levels are derived from gene expression
microarrays. (C) Bioinformatics pathways can be used to compare gene expression profiles
between two or more groups of patients (e.g. sepsis and non-infectious SIRS), resulting in a
list of differentially expressed genes, and their associated pathways. Unsupervised machine
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learning methods including partitional clustering algorithms can be used to identify
previously unrecognized sepsis subclasses. Expression data from multiple time points can be
analyzed together to generate expression trajectories, which may differ between patients.
Interpretation of differences in gene expression is facilitated through comparison with
clinical phenotypes derived from patient data collected from electronic medical records or
patient registries, or in the context of a clinical trial. (D) Unlike with diseases managed in
the outpatient setting, the treatment of sepsis relies on diagnostic testing that can rapidly
returns easily interpreted results. High-dimensional gene expression data must therefore be
“downsized” to more easily derived and understood signals. Strategies include using serum
biomarker assays develop patient classifiers, generating gene expression mosaics that
visually represent complex expression signals, and deploying sophisticated multiplex assays
that measure a limited number of transcripts using molecular barcoding technology.
Abbreviations: whole blood, WB; polymorphonuclear neutrophils, PMN; peripheral blood
mononuclear cells, PBMC.
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Table 1

Statistical methods and other analytic tools used in gene expression profiling of sepsis

Analysis Description References

Single time point data

Univariate Student’s t-test A t-test is performed for each gene represented in the experiment in order to
identify those that are differentially expressed between two groups (eg. “sepsis”
and “control”). Correction of significance level is required to reflect testing of
multiple hypotheses.

[15,16,45,46]

Significance analysis of microarrays
(SAM)

Identifies genes that are differentially expressed between two or more groups.
SAM uses gene-specific t-tests to assign a score based on differences in expression
levels between groups, relative to the standard deviation [73]. A tuning parameter
is used to select a tolerable false discovery rate.

[8]

K-means clustering Samples are partitioned into a user-specified number of clusters, according to their
proximity to one another in n-dimensional gene space (where is n is the number of
genes whose expression levels are used in the analysis).

[9,12,24]

Extraction of Differential Gene
Expression (EDGE)

Uses an Optimal Discovery Procedure to identify genes that are differentially
expressed between user-specified groups [74].

[12,36]

Linear mixed models Each gene is modelled individually with expression levels as the dependent
variables and any number of phenotypic features (group assignment, age, day of
sample, etc.) used as independent variables. Differential expression between
conditions of interest can be inferred, controlling for potential confounders.

[18]

Hierarchical clustering Similar expression patterns are grouped, forming a dendrogram that can be used to
select clusters. Clustering can be done according to similarity between genes,
between samples, or both. Results are often depicted as a heatmap.

[23,24,45,46]

“Riboleukogram” This approach uses a mathematical technique similar to principal components
analysis, in order to reduce the dimensionality of the data, and compare patients
based on average expression vectors over time.

[36,71]

Classification and regression trees
(CART)

Optimal predictors and cutoff values are determined by means of an algorithm that
evaluates all possible combinations. CART has been used to identify a diagnostic
panel of serum biomarkers based on findings from whole genome expression
profiling.

[59]

Multiple time point data

Timecourse ANOVA (TANOVA) Accommodates multifactorial data to determine if variations in gene expression
over time are related to the condition of interest, or an independent factor (eg. age).

[69]

Average time curve This method involves determining whether the population average time course is
best represented by a flat line, suggesting no difference in expression over time, or
by a curve (cubic splines), indicating a significant change over time.

[70]

Visualization

Gene expression mosaics The Gene Expression Dynamics Inspector (GEDI) platform is used to generate a
color representation of gene expression patterns based on self-organizing maps
[58]. These expression mosaics lend themselves to human pattern recognition, as
well as computer-based recognition.

[49,63]
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