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Abstract
Survival median is commonly used to compare treatment groups in cancer-related research. The
current literature focuses on developing tests for independent survival data. However, researchers
often encounter dependent survival data such as matched pair data or clustered data. We propose a
pseudo-value approach to test the equality of survival medians for both independent and
dependent survival data. The Type I error and power of the proposed method are examined by a
simulation study, in which we examine independent and dependent data. The simulation study
shows that the proposed method performs equivalently to the existing methods for independent
survival data and performs better for dependent survival data. The proposed method is illustrated
by a study comparing survival median times for bone marrow transplants.
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1. Introduction
Survival analysis is widely used in cancer-related research, for example, bone marrow
transplant studies [1]. Survival median is often provided to summarize survival data and to
compare treatment groups of interest. Brookmeyer and Crowley [2] proposed a
nonparametric test to compare the equality of survival medians (We refer to this method as
the Brookmeyer-Crowley test in this paper). They considered a pooled-weighted Kaplan-
Meier estimate based on the sample size of each group. Then, the pooled-sample median is
calculated by the weighted Kaplan-Meier estimate and linear interpolation. If the survival
medians of all groups are the same, the estimated survival rate of each group at the pooled-
sample median should be close to 0.5. Thus, a chi-squared test was developed based on the
difference between 0.5 and the estimated survival rate of each group at the pooled-sample
median. Another chi-squared test was proposed by Rahbar et al. [3] with fewer assumptions
than the Brookmeyer-Crowley test. In particular, they considered that the family of the
underlying survival distributions or censoring distributions of some groups is different from
those of the other groups in the simulation study. Their simulation study indicated that the
performance of the Brookmeyer-Crowley test appears to be poor when the survival
distribution family differs among groups. However, these two tests are limited to
independent survival data.
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Another limitation of [3] is that the test requires the existence of survival median for each
group because the test statistic is based on the difference between the survival median of
each group and the pooled survival median. On the other hand, the Brookmeyer-Crowley
test only requires the existence of the pooled survival median. Thus, if the pooled survival
median exists, the method is applicable even when the survival medians of some groups do
not exist. See Section 4 for a concrete example.

The pseudo-value technique was proposed by Andersen et al. [4]. To explain the details of
the pseudo-value approach for clustered or dependent data, we introduce some notations. Let
dj be the sample size of cluster j, j = 1, …, m and n = Σj dj, where m is the number of
clusters and n is the total number of individuals. The survival probability S(t) indicates the
pooled survival probability at time t based on the total sample and Zij represents the
covariate vector for the ith individual in the jth cluster. Assuming censoring times are
independent of failure times, a pseudo-value at time t of the ith individual in the jth cluster is
defined by Yij(t) = nŜ(t) − (n − 1)Ŝ−ij(t), i = 1, …, dj, j = 1, …, m, where Ŝ(t) is the Kaplan-
Meier estimate of S(t) based on the pooled data and Ŝ−ij(t) is the Kaplan-Meier estimate of
survival obtained by omitting the ith individual in the jth cluster. Logan et al. [5] studied
marginal cumulative incidence and survival models for clustered data using the pseudo-
value approach. Assuming the censoring times are a random sample from a common
distribution, they showed that i) Yij(t) is approximately independent of Ykℓ for j ≠ ℓ as n →
∞; and ii) limn→∞ E(Yij(t)|Zij) = S(t|Zij). The pseudo-values can be used as a response
variable in a generalized estimating equation (GEE) setting as described in [4], [5], and [6].
Since a single fixed time point is only considered in this paper, we illustrate the use of the
GEE at a fixed time point τ. To obtain the marginal survival function at time τ given
covariate Z, we consider g(S(τ|Z)) = β′Z, where β is a q × 1 parameter vector. Let μ = S(τ|Z)
= g−1(β′Z), Yj = (Y1j(τ), …, Ydj,j (τ)), and μj = (μ1j(τ), …, μdj,j (τ)), j = 1, …, m. Then, the
GEE is defined as follows:

(1)

where Vj is a dj × dj working covariance matrix for cluster j. The working covariance matrix

Vj can be expressed by , where R(α) is a working correlation matrix
and Aj is a diagonal matrix with elements var(Yij) = v(μij) for some known variance function

v(·). Then, it was shown that  converges in distribution to N(0, Σ) for some
covariance matrix Σ, see [5], [7], and [8]. Thus, a Wald chi-square statistic mβ̂′Σ̂−1β̂

converges in distribution to the chi-squared distribution with degrees of freedom q under the
assumption that β = 0 for an appropriate estimator Σ̂. To estimate Σ, the sandwich estimator
is used:

where
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Therefore, the dependent survival data are readily handled by considering within-cluster
correlation between individuals.

We propose a pseudo-value-based method to test the equality of survival medians for
independent and dependent data in this paper. In Section 2, we describe the proposed
method and its asymptotic distribution. In Section 3, we compare the proposed method to
the Brookmeyer-Crowley test and Rahbar et al. [3] in a simulation study. A bone marrow
transplant example is illustrated in Section 4. Finally, we have a brief conclusion in Section
5.

2. Method
In this section, we lay out the proposed method. We assume that the censoring times are
independent of the failure times and the censoring times are a random sample from a
common distribution. The median survival time is given by

The Kaplan-Meier estimator Ŝ(t) is consistent even for dependent data under some mild
conditions. For the detailed conditions, see [9]. Thus, ζ̂ defined by inf{t : Ŝ(t) ≤ 0.5} is also
consistent for dependent data using Lemma 21.2 of [10]. Assume that we have ν groups to
compare. Under the null hypothesis, we have ζ1 = · · · = ζν ≡ ζ0, where ζi is the survival
median of group i, i = 1, …, ν. This is equivalent to testing H0 : S1(ζ0) = · · · = Sν(ζ0)(= 0.5),
where Si(ζ0) is the survival rate of group i at time ζ0. Let ζ̂0 be an estimate of ζ0 based on the
pooled data.

To compare survival probabilities at ζ0, we use the pseudo-value approach at a fixed time
point ζ0. Let Ik be an indicator variable for group k such that for k = 1, …, ν,

Let β = (β1, …, βν)′ be the coefficient vector of the indicator variables in the GEE. To avoid
an identifiability issue, without loss of generality we fix βν at 0 and estimate β−ν = (β1, …,
βν−1)′. Next, we define pseudo-values Yij(ζ̂0) = nŜ(ζ̂0) − (n − 1)Ŝ−ij(ζ̂0), where Yij is a
pseudo-value for the ith individual belonging to the jth cluster. Let Yj = {Yij(ζ̂0); i = 1, …,
cj} and μj = {μij(ζ̂0); i = 1, …, cj}, which means that Yj includes all and only individuals
belonging to the jth cluster and μj is the corresponding mean vector. Then, the GEE is
defined as in (1). An identity link function or a logit link function can be used in practice.
Assuming Zij = Ik, we have limn→∞ E(Yij(ζ0)|Zij) = S(ζ0|Ik) = Sk(ζ0) by [5]. Therefore, the
null hypothesis S1(ζ0) = · · · = Sν(ζ0) is equivalent to testing β−ν = 0 given ζ0. Thanks to the
consistency of ζ̂0, the test statistic is given by

where β̂−ν is found by solving the GEE numerically and Σ̂β−ν is the corresponding sandwich
estimate of the covariance matrix of β̂−ν. By considering the sandwich estimate for Σβ−ν, we
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account for the dependency of survival data. In practice, the independence working
correlation matrix was recommended for the pseudo-value approach [6]. Under the null
hypothesis, X2 converges in distribution to a chi-squared distribution with ν − 1 degrees of
freedom by the consistency of ζ̂0 and [5]. Note that like the Brookmeyer-Crowley test, the
proposed pseudo-value approach only requires the existence of the pooled survival median,
which is an advantage over [3].

3. Simulation Study
In the simulation study we compared four groups to examine the empirical Type I error rates
and rejection rates of the proposed pseudo-value method, the Brookmeyer-Crowley test, and
[3] at the significance level α = 0.05. To estimate the density functions of survival
distributions for [3], we used bootstrap with 1000 replicates. Survival and censoring times
were assumed to have exponential, log-normal, uniform, or Weibull distributions. Three
censoring rates were considered: c = 0, 25, and 50 percent. The sample size for each group
was fixed at ni = 100, or 200 for i = 1, …, 4, where ni is the sample size of group i. All
experiments were replicated 5000 times. The logit link was considered for the pseudo-value
approach. The independence working correlation matrix was used following the
recommendation of [6]. We also examined the exchangeable working correlation matrix and
the unstructured working correlation matrix for a portion of the simulation, but there was
little difference from the result using the independence working correlation matrix.

Let ζ0 and c be the survival median and the censoring rate, respectively. The survival times
were generated from i) the exponential distribution with mean ζ0/log(2); ii) the uniform
distribution on (ζ0 − 3, ζ0 + 3); iii) the log-normal distribution with mean ζ0 exp(0.5) and

variance ; and iv) the Weibull distribution with shape parameter 1.2 and

scale parameter . For c > 0, the censoring times were generated from i) the
exponential distribution with mean (1 − c)ζ0/c/log(2) for the exponential survival times; ii)
the uniform distribution on (ζ0 − 3, ζ0 + 3 + 3(1 − 2c)/c) for the uniform survival times; iii)
exp(log(ζ0) + U) where U was generated from the uniform distribution on (−2, 2 + (2 − 4c)/
c) for the log-normal survival times; and iv) the Weibull distribution with shape parameter
1.2 and scale parameter {c log 2/ζ0/(1 − c)}−1/1.2 for the Weibull survival times.

Each cluster was assumed to have 8 individuals. The 8 individuals were divided into the 4
groups by 2. Thus, the ith group with ni = 100 and ni = 200 consisted of 50 and 100 clusters,
respectively. Normal copulas were used to generate correlated survival times of each cluster.
The 8 × 8 exchangeable correlation matrix  with correlation ρ = 0, 0.25 and 0.5 was used
for the normal copulas, i.e.,

Note that ρ = 0 means that the survival times of the four groups are independent. After
generating 8-dimensional random vectors on the unit cube [0, 1]8 from normal copulas given
ρ, the survival times were generated corresponding to their marginal survival distributions.
Independent of the survival times, the censoring times were randomly generated using
normal copulas with ρ = 0. For the detailed use of copulas, see [11].
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Table 1 shows the empirical Type I error rates when the survival time distributions of the
four groups were the same. The true survival median was fixed at ζ0 = 6. ‘PV’, ‘BC’, and
‘Rahbar’ represent the pseudo-value approach, the Brookmeyer-Crowley test, and [3],
respectively. ‘Exp’, ‘LN’, ‘Unif’, and ‘WB’ indicate the exponential distribution, log-normal
distribution, uniform distribution, and Weibull distribution for survival time distributions.
The censoring time distributions were chosen accordingly as discussed previously.
Distributions in parentheses are the survival time distributions for four groups. For example,
(Exp,Exp,Exp,Exp) indicates that all four groups have the exponential survival distributions.
For the independent survival data (ρ = 0), the empirical Type I error rates of all three
methods are close to the nominal rate 0.05. For the dependent data (ρ = 0.25 or 0.5), in
contrast to the two methods, the pseudo-value approach controls Type I error rates very
well. The Brookmeyer-Crowley test and [3] show much less Type I error rates than 0.05 in
general. It appears that as the dependency of data increases, the Type I error rates of the
Brookmeyer-Crowley test and [3] decreases towards 0.

Table 2 shows the simulation results of the empirical rejection rates when the survival time
distributions of the four groups were the same. Four true survival medians were assumed to
be 8, 8, 6, and 6 for (Exp,Exp,Exp,Exp) and (Unif,Unif,Unif,Unif). For (WB,WB,WB,WB)
and (LN,LN,LN,LN), the true survival medians were 7.5, 7.5, 6, and 6. For ρ = 0, the
pseudo-value approach appears to have higher power than [3] and comparable power to the
Brookmeyer-Crowley test. For ρ = 0.25 and 0.5, the pseudo-value approach has greater
power than [3] and the Brookmeyer-Crowley test.

Although the asymptotics of the proposed method works for a common censoring
distribution, the performance is also of interest when some survival distributions or
censoring distributions of the groups are different from the others [3]. Table 3 shows the
empirical Type I error rates when the two survival time distributions of the four groups were
different from the other two survival distributions. For example, (Exp,Exp,LN,LN) is two
exponential survival distributions and two log-normal survival distributions. The true
survival median was fixed at ζ0 = 6 as previous. For ρ = 0, the empirical Type I error rates of
the three methods are close to 0.05 in general. For ρ = 0.25 and 0.5, in contrast to the other
two, the pseudo-value approach controls Type I error rates very well. As in Table 1, the
Brookmeyer-Crowley test and [3] show much less Type I error rates than 0.05 in general.
Like Table 1, the Type I error rates of the Brookmeyer-Crowley test and [3] decreases to 0
as the dependency of the survival distributions increases.

Table 4 shows the simulation results of the empirical rejection rates when the two survival
time distributions of the four groups were different from the other two survival distributions.
For (Exp,Exp,LN,LN), survival medians are 8, 6, 8, and 6, respectively. The survival
medians of (Exp,Exp,WB,WB) and (Unif,Unif,LN,LN) are 7.5, 6, 7.5, and 6, respectively.
For ρ = 0, it appears that the three methods have comparable power. For ρ = 0.25 and 0.5,
the pseudo-value approach has greater power than [3] and the Brookmeyer-Crowley test as
expected.

In summary, the proposed pseudo-value approach works properly for independent and
dependent data. In particular, it controls Type I error a lot better and has higher power than
the other two methods for dependent data. In addition, the proposed method appears to work
very well even when some of the survival distributions or censoring distributions are
different from the others.
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4. Example
The data we considered were collected by the Center for International Blood and Marrow
Transplant Research (CIBMTR) [12] and consisted of pediatric patients (< 18 years) with
myelodysplastic syndrome undergoing a first allogeneic transplantation from 1993 to 2006.
We limited the data to patients with advanced disease status in this example. The study
population consisted of 1609 patients at 53 transplant centers. The center size was from 6 to
216 patients and the overall censoring rate was 50%. The data were correlated because a
significant center effect (p-value = 0.007) on disease-free survival (DFS) rates was found
using the random effect score test of [13]. To test the equality of survival medians, we
examined two cases: donor groups and disease groups. Although we found that the choice of
the working correlation matrix made little difference in the results under our simulation
setting, three working correlation matrices were examined to choose a working correlation
matrix based on the quasi-likelihood under the independence model criterion (QIC) [14]: the
unstructured correlation matrix, the exchangeable correlation matrix, and the independence
correlation matrix.

For the donor groups, we considered four donor groups: 97 patients with one-antigen
mismatched related donors (mmRD), 51 patients with phenotypically matched nonsibling
related donors (PMRD), 1197 patients with human leukocyte antigen (HLA) identical
sibling donors, 264 patients with 8/8 allele-matched unrelated donors (URD). The censoring
rates of mmRD, PMRD, HLA identical sibling donors, and URD were 42%, 51%, 52%, and
42%, respectively. The left plot of Figure 1 shows the Kaplan-Meier disease-free survival
curves of the four donor groups. The DFS distributions of the four groups were different
based on [15] (p-value = 0.0001). The estimated survival medians of mmRD, PMRD, HLA
identical sibling donors, and URD were 14.2, 27.9, 78.9, and 17.6 months, respectively. It
appears that the survival medians of some of the four groups are different. The p-values of
the Brookmeyer-Crowley test and [3] are 0.107 and 0.513, respectively. For the pseudo-
value approach, the independence working correlation matrix was chosen by QIC. The
pseudo-value approach found a significant difference within the four donor groups with p-
value 0.004.

To compare different disease groups, we further limited the data to three disease groups: 553
patients with acute myeloid leukemia (AML), 756 patients with acute lymphoblastic
leukemia (ALL), and 156 patients with myelodysplastic syndrome (MDS). The censoring
rates of AML, ALL, and MDS were 52%, 57%, and 47%, respectively. The right plot of
Figure 1 shows the Kaplan-Meier disease-free survival curves of the three disease groups.
The estimated survival medians of AML and ALL were 60 and 29 months, respectively. The
estimated survival median of MDS did not exist. Although the DFS distributions of the three
groups were not different based on [15] (p-value = 0.120), the survival medians of the three
disease groups appear to be different to each other. Because the estimated survival median
of the MDS group did not exist, [3] was not applicable. The p-value of the Brookmeyer-
Crowley test is 0.060. The exchangeable working correlation matrix was selected by QIC for
the pseudo-value approach. The pseudo-value approach found a significant difference with
p-value 0.031 at the significance level 0.05.

5. Conclusion
We proposed the pseudo-value approach to test survival medians for independent and
dependent data. The simulation study showed that the pseudo-value approach performed
equivalently to the Brookmeyer-Crowley test and [3] for independent data. For dependent
data, the existing methods ignoring dependency were found to be too conservative.
However, the pseudo-value approach controlled Type I error satisfactorily and had higher
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power than the two existing methods for dependent data. Although this paper focuses on the
inference of survival median, the proposed method can be readily applied to other survival
quantiles. Choosing an appropriate working correlation matrix may improve the
performance of the pseudo-value approach [6]. We selected a working correlation matrix by
QIC in the example. It may be interesting to investigate whether the working correlation
matrix selected by QIC or other criteria such as the correlation information criterion [16]
improves the performance of the pseudo-value approach. Exploring a pseudo-value
approach for testing the equality of quantiles of cumulative incidence rates for competing
risks data may also be an interesting future research question.
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Figure 1.
Disease-free survival rates for donor groups and disease groups
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