Hindawi Publishing Corporation

The Scientific World Journal

Volume 2014, Article ID 716020, 19 pages
http://dx.doi.org/10.1155/2014/716020

Research Article

Efficient Parallel Video Processing Techniques on GPU:
From Framework to Implementation

Huayou Su, Mei Wen, Nan Wu, Ju Ren, and Chunyuan Zhang

School of Computer Science and Science and Technology on Parallel and Distributed Processing Laboratory,
National University of Defense Technology, Changsha, Hunan 410073, China

Correspondence should be addressed to Huayou Su; huayousu@163.com

Received 27 November 2013; Accepted 16 January 2014; Published 16 March 2014

Academic Editors: J. Shuand E Yu

Copyright © 2014 Huayou Su et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Through reorganizing the execution order and optimizing the data structure, we proposed an efficient parallel framework for
H.264/AVC encoder based on massively parallel architecture. We implemented the proposed framework by CUDA on NVIDIA’s
GPU. Not only the compute intensive components of the H.264 encoder are parallelized but also the control intensive components
are realized effectively, such as CAVLC and deblocking filter. In addition, we proposed serial optimization methods, including
the multiresolution multiwindow for motion estimation, multilevel parallel strategy to enhance the parallelism of intracoding as
much as possible, component-based parallel CAVLC, and direction-priority deblocking filter. More than 96% of workload of H.264
encoder is offloaded to GPU. Experimental results show that the parallel implementation outperforms the serial program by 20
times of speedup ratio and satisfies the requirement of the real-time HD encoding of 30 fps. The loss of PSNR is from 0.14 dB to
0.77 dB, when keeping the same bitrate. Through the analysis to the kernels, we found that speedup ratios of the compute intensive
algorithms are proportional with the computation power of the GPU. However, the performance of the control intensive parts

(CAVLC) is much related to the memory bandwidth, which gives an insight for new architecture design.

1. Introduction

Video encoding plays an increasingly larger role in the
multimedia processing community, which aims to reduce
the size of the video sequence by exploiting spatial and
temporal redundancy, as well as keeping the quality as good
as possible. H.264/AVC [1] is currently the widely used video
coding standard, which constitutes the basis of the emerging
High Efficiency Video Coding (HEVC) [2]. It achieves about
39% and 49% bit-rate saving over that of MPEG-4 and
H.263, respectively [3, 4]. The high compression efficiency
is mainly attributed to several introduced new features,
including variable block-size motion compensation, multiple
reference frames, quarter pixel motion estimation, integer
transform, in-the-loop deblocking filtering, and advanced
entropy coding [5-8]. These new features imply that more
computational power is needed for H.264 encoder [9]. It is
almost impossible to achieve real-time High-Definition (HD)
H.264 encoding in serial programming technologies, which
restricts its usage in many areas [10-13]. In order to satisfy
the requirement of real-time encoding, many research works

focused on hardware-based encoders design [14-17]. Though
high efficiency can be gained, dedicated ASIC designs are
inflexible, time consuming, and expensive.

Due to the high peak performance, high-speed band-
width, and efficient programming environments, such as
NVIDIAs CUDA [18] and OpenCL [19], GPU has been at the
leading edge of high performance computing era. Recently,
many researchers are attracted to the topic of parallelizing
video processing with multicore or many-core architecture,
especially on the GPU-based systems [8-12,20-27]. However,
most of the research has mainly focused on accelerating
the computational components, such as the motion esti-
mation (ME) [12, 21, 22], motion compensation [10], and
intraprediction [23]. For the irregular algorithms, such as
deblocking filter and Context-based adaptive variable-length
code (CAVLC), research about these aspects is seldom [24].
To the best of our knowledge, there is no research about
GPU-based CAVLC, except our work [28]. There are several
disadvantages by only accelerating some parts of video
encoder. On the one hand, for each frame, the data size

http://dx.doi.org/10.1155/2014/716020

transferred between CPU and GPU will be very huge. For
example, when offloading the ME and transform coding to
GPU only, the data size of the input frame, the quantized
coefficients, and the auxiliary information are more than
30 MB for 1080 p video format. On the other hand, after
parallelizing the compute intensive parts of the encoder,
the control intensive algorithms occupy a larger fraction of
execution time [29]. Though NVIDIA provides a GPU-based
encoder library, the detailed information is insufficient, let
alone open source. In this paper, we focused on developing a
GPU-based parallel framework for H.264/AVC encoder and
the efficient parallel implementation. The main contributions
of this paper are as follows.

After carefully reviewing and profiling the program, we
proposed a fully parallel framework for H.264 encoder based
on GPU. We introduced the loop partition technology to
divide the whole pipeline into four steps (ME, intracoding,
CAVLC, and deblocking filter) in terms of frame. All the
four components are offloaded to GPU hardware in our
framework. The CPU is only responsible for some simple
transactions, such as I/O process. In order to improve the
memory bandwidth efficiency, array of structure (AOS) to
structure of array (SOA) transformation is performed. The
transformed small and regular structures are more suitable
for taking the advantage of coalesced accessing mechanism.
In addition, the proposed framework exploits the producer-
consumer locality between different parts of the encoder,
which avoids unnecessary data copy between CPU and GPU.

For the compute intensive component motion estimation,
a scalable parallel algorithm has been proposed targeting
massively parallel architecture, named multiresolutions mul-
tiwindows (MRMW) motion estimation. It calculates the
optimal motion vector (MV) for each macroblock (MB)
through several steps. Firstly, the original input frame and
reference frame are concentrated into small resolution ones.
Accordingly, there is a concentrated MB in the dedicated
frame corresponding to the normal MB in the original frame.
Secondly, based on the concentrated lower resolution frames,
a full search in an assigned window space is performed for
each concentrated MB and it produced a primary MV. Finally,
a refinement search for the MBs of the original frame will be
performed; the search window is centered with the produced
MYV in the second step.

In order to overcome the limitations from the irregular
components, a direction-priority deblocking filter [30] and a
component-based CAVLC parallel schemes have been pro-
posed. The GPU-based deblocking filter reserves the result
data into global memory, which serves as the reference frame
for the next frame. In order to further enlarge the parallel
degree, based on the direction-priority method, a novel
schedule strategy based on [24] is proposed. The proposed
CAVLCrelieves the data dependence and reduces the amount
of data copy back to CPU significantly. Overall, the proposed
parallel methods can not only improve the performance of
the tools but also reduce the data transferred between host
and device.

Based on the multislice technology, a multilevel parallel
method is designed for intracoding to explore the parallelism
as much as possible [31]. The proposed parallel algorithm

The Scientific World Journal

improves the parallelism between 4 x 4 blocks within a MB
by throwing off some insignificant prediction modes. By
partitioning a frame into multislices, the parallelism between
MBs can be exploited. In addition, a multilevel parallel
scheme was presented to adapt the parallel granularity of
different stage of the intracoding.

In summary, we proposed an efficient parallel framework
for H.264 encoder based on massively parallel architecture.
Not only the compute intensive parts but also the control
intensive components are ported to GPUs. Several optimiza-
tions are introduced to enlarge the parallelism or improve the
bandwidth efficiency, which are the two most important fac-
tors impacting the performance of a GPU-based application.
Our implementation can satisfy the requirement of real-time
HD encoding of 30 fps, while the value of PSNR only reduced
from 0.14 to 0.77 dB.

The rest of this paper is organized as follows. Section 2
is the related work. Section 3 presents the proposed the
efficient parallel H.264 encoder framework. We describe
the proposed MRMW algorithm and its implementation
with CUDA in Section 4. In Section 5, we discuss the
efficient parallelization of the control intensive components.
A comprehensive performance evaluation is performed in
Section 6. Finally, a conclusion is drawn in Section 7.

2. Related Work

At the beginning, motion estimation researches mainly
focused on designing optimized algorithms to reduce the
computational complexity. Cheung and Po [32] proposed a
cross-diamond search algorithm to reduce the search space.
In [5], it presented an unsymmetrical-cross multi-hexagon-
grid search method to simplify the ME, which can save about
90% of computation compared with the traditional full search
algorithm. In the last decade, with the widespread usage of the
parallel processors, many researchers are attracted to the field
of parallel video processing. A discussion about the parallel
methods for video coding was presented in [33], including
the hardware and software methods. In [34], the authors
implemented a MB-based parallel decode on CELL processor,
which can achieve real-time decoding performance. Huang et
al. [3] discussed how to optimize the data transfer between
host and device when designing the parallel scalable video
coding with CUDA. Marth and Marcus [35] presented a
parallel x264 [36] encoder with OpenCL.

A large amount of publications reported the GPU-based
motion estimation, including using 3D graphic libs and high
level programming models [12, 20, 22, 27]. These researches
mainly focused on scheduling the search algorithm to explore
the parallelism. Kung et al. proposed a block based parallel
ME [20], which increased the parallel degree by rearranging
the processing order of 4 x 4 blocks. In [12], the authors
divided ME algorithm into five fine-granularity steps, so
that high efficient parallel computation with a low external
memory transfer rate could be achieved. Cheung et al. [26]
surveyed the previous works using GPUs for video encoding
and decoding. In addition, they presented some design
consideration for GPU-based video coding.

The Scientific World Journal

for(frame){

C——Lfoi(;lices){
for(macroblocks){

macroblock_prediction ()

if(frame_type == SLICE_TYPE_I)
x264_mb_prediction_intra()

if(frame_type == SLICE_TYPE_P)
x264_mb_prediction_inter()

}

macroblock_encode() |

encode_I()

encode_P()

macroblock_cavlc()

}
}
deblock filter()

if(frame_type == SLICE_TYPE_I)

if(frame_type == SLICE_TYPE_P)

encode_I(){
4 x264_mb_encode_i16 x 16()

\\for(16){
/] x264_mb_encode_i4 x 4()|
}

< x264_mb_encode_i4 x 4()

sub4 x 4 dct()
quant4 x 4()
scan_zigzag()
dequant_4 x 4()
add4 x 4_idct()

}

quant4 x 4(){ |

SUANT_ONE(;

i I

FIGURE 1: The skeleton of x264 program.

We know that there are strong data dependencies between
MBs for intraprediction. The researches on GPU-based
intraprediction mainly focused on reordering the prediction
modes. Kung et al. [23] and Cheung et al. [10] presented the
method of reordering the process sequence of 4 x 4 blocks
to increase the parallel degree. Both of their works are based
on the wave-front strategy. However, limited by strong data
dependence, the parallel degree is not high. Even worse, the
initialized parallel degree is very low when using wave-front
method. For 1080 p video format, the average parallel degree
is less than 128. Ren et al. [37] presented a streaming parallel
intraprediction method based on stream processor.

The research about parallelizing CAVLC and deblock-
ing filter is very little. As control intensive components
of video coding, they post a challenge to parallelize these
two algorithms on massively parallel architecture efficiently.
Pieters et al. proposed a deblocking filter based on GPU
[24], by introducing the limited error propagation effect [38],
which can filter the MBs independently. Zhang et al. [29]
presented an efficient parallel framework for deblocking filter
based on many-core platform, which divided the deblocking
filter into two parts and used a Markov empirical transition
probability matrix and a Huffman tree to further accelerate
the process. To the best of our knowledge, there is no GPU-
based CAVLC implementation before our work. In [39],
it presented a DSP-based implementation of CAVLC. Xiao
and Baas [25] proposed a parallel CAVLC encoder on fine-
grained multicore system. A streaming CAVLC algorithm
was described in [14].

Though a lot of works focused on accelerating various
modules of H.264 encoder with GPU, as far as we know,
none of them implemented the whole H.264 application
on GPU, except the CUDA encoder. We think that it is
difficult to efficiently parallelize the H.264 encoder based on
GPU for four reasons. First, H.264 encoder itself is a very

complex application due to high computation requirement
and frequent memory access [40]; second, the gap between
the traditional serial H.264 framework and the massively
parallel architecture, which makes it difficult to implement
H.264 on GPU. In the traditional program of H.264, a video
frame is processed MB by MB sequentially. The granularity
is very small, 256 bytes, which is violated with the mas-
sively parallel mechanism of GPU. Furthermore, CAVLC and
deblocking filter, consisting of irregular computation and
random memory access [14, 29], pose a challenge to GPU
programming. Finally, the data transfer between CPU and
GPU could be one of the major bottlenecks for achieving
high performance. Taking the 1080 p video format as an
example, the data size needed to be transferred is more than
30 megabytes. For the PCI-E bus 2.0, the peak bandwidth is
8 GB/s; assuming the transfer efficiency is about 40%, the data
transformation time is more than 10 ms. Actually, the total 30
megabytes data is transferred by many times, and memory
copy startup overhead should be considered.

3. The Proposed Parallel Framework

3.1 Profiling the H.264/AVC. H.264 video coding standard
is designed based on the block-based hybrid video coding
approach [1,13]. It mainly includes four parts, from interpre-
diction, intraprediction, and entropy encoding to deblocking
filter. In this paper, we choose x264 program as reference code
to analyze the feature of H.264 encoder. Figure 1 shows the
skeleton of the x264 encoder. It can be seen that the program
is organized by triple loops: MB, slice, and frames. A frame is
divided into many 16 x 16 MBs. The whole frame is processed
MB by MB in raster order, from prediction to CAVLC.
Obviously, this kind of program structure is not fit for GPU-
like parallel platform in several aspects. First, the process

The Scientific World Journal

for(frames) {

for(slices)

for(macroblocks)

{

Inter prediction ();

Intra prediction ();

Cavlc_encode();

}
Deblock filter ();

for(frames) {

for(slices)

for(macroblocks)
{

Inter prediction ();

}
}

Loop for(slices)
partition
for(macroblocks)

{

Intra prediction ();

(a) The framework of x264

.
(b) The result of loop partition

FIGURE 2: The loop partition of x264.

typedef struct MB_ INFO{

int Total CoeffChroma; //mumber nonzero coefficients of Chroma
int TotalCoeffLuma; // number of nonzero coeflicients of Luma
int Pred_mode; /I prediction mode of the MB
int RefFrameldx; // Index of the reference frame
int MinSAD; // minimal SAD value of the MB
int IntraChromaMode; /I prediction mode for Chroma MB
int CBP; /I Coded block pattern
struct S MV MV; // motion vector
int QP; /] parameter QP
int Log; // Position of the MB
int Type; // Type of macroblock
int SubType; /1 type of subblock
} MB_INFO;

ALGORITHM 1: Structure of the MB_INFO structure in the x264 code.

granularity is too small. The granularity of the H.264/AVC is
one MB (256 pixels), while the number of processor units of
modern GPU is more than 300. Second, the process path is
too long to parallelize. The number of instructions between
two iterations is more than one million [40]. In addition,
the essential functions, such assub4 x 4.dct (), are nested
deeply, which increases the complexity of kernel designing.

3.2. Loop Partitioning in terms of Frame. In order to map
the H.264/AVC program onto GPU, we firstly optimized
the structure of the x264. The loop partition technology is
adopted to divide the long path into several short ones, as
shown in Figure 2. The functions are segmented in terms of
frame. For a frame, it performs the interprediction for all MBs
firstly. After the prediction of all the MBs is finished, the other
functions can begin to execute on the MBs. Though much
larger memory space is needed to keep the temporal data, it
makes the parallel designing simplify. The programmer can
focus on paralleling each individual module.

3.3. Data Locality: From AOS to SOA. There are lots of
large data structures in x264 procedure, such as MB_INFO,
which integrates the common information of a MB, shown
in Algorithm 1. Each instance of this data structure needs
a memory space with size of 52 (13 x 4) bytes. However,
each access to the structure only requires one or several
of its elements. For example, only 4 elements are typically
used in intraprediction, while the amount of data involved
is 52 x #MBs (number of macroblocks) bytes. The bandwidth
efficiency is only 4/13. In addition, adjacent threads of a kernel
usually access the same continuous elements of MB_INFO.
For example, assume that thread 0 accesses the motion
vector (MV in the MB_INFO structure) of MBI, and there
is a high probability that thread 1 will accesses the MV of
MB2. However, the access stride of each thread is 52 bytes.
When loading from global memory, the sustained bandwidth
efficiency is only about 1/13.

In order to improve the bandwidth efficiency, a transfor-
mation from AOS to SOA was performed. Corresponding to

The Scientific World Journal

Host

01011101001010001... Bit-streams

Device to host

Frame n

|_Frame 1

Frame 0

J LHost to device

Device
Original DRAM Bit-
kf)rafrfne streams
uffer
P frame I frame

Interprediction

IntraprocessinH CAVLC

Loop with frame

Reference
DRAM frame

FIGURE 3: The proposed H.264 encoder framework.

decoupled kernels, large global data structures are converted
into many small local data structures. Which brings the
following three advantages. (1) It improves the data transfer
efficiency by avoiding unnecessary data loading. For example,
in the intraprediction process, the 4 parameters loaded are
valid. (2) It improves data locality, facilitating prefetching. (3)
It facilitates coalesced access to GPU memory, which uses the
available memory bandwidth more efficiently.

3.4. Offloading the Workloads to GPU. Besides the compute
intensive tools, there are also control intensive components
in the H.264/AVC, such as CAVLC and deblocking filter. The
execution time for these two parts takes about 20% of the total
time. If these components cannot be parallelized efficiently,
the performance of parallel H.264 encoder will be restricted
by the serial parts. In this paper, we decomposed the H.264
encoder according to the functional modules into multi-
independent tools. These tools are connected according to
the input and output relationship. We assigned all the major
workloads of H.264 encoder to GPU, while the CPU is just
responsible for some simple transactions, like I/O. The pro-
posed H.264 encoder architecture based on GPU is presented
in Figure 3. The optimized structure takes on the following
characteristics. The first one is the relatively independent
functional modules, which handle large volumes of data with
multiple loops. It implies rich parallelism if loop unrolling
is available. The other one is the locality of the producer-
consumer. This feature can reduce the data transfer between
CPU and GPU. However, the challenges generated from
parallelizing the control intensive components (CAVLC and
deblocking filter) still exist in this framework. In fact, it must
modify the corresponding algorithms to settle this kind of
problems, which will be discussed in the following sections.

4. MRMW: A Scalable Parallel Motion
Estimation Algorithm

Motion estimation typically consists of two parts, the cal-
culation of the sum of the absolute difference (SAD) for
each possible estimate mode and the evaluation of rate-
distortion (RD) performance of each mode. It is the most
time-consuming part of video encoder [9]. In addition, the
process for RD evaluation may restrict the parallel degree.
In this paper, a novel ME algorithm is proposed, named
multiresolutions multiwindows (MRMW) motion estima-
tion. The basic idea of MRMW is using the motion trend of a
lower resolution frame to estimate that of the original frame.
It firstly compacts the original frame into lower resolution
image and estimates a primary MV for each compacted MB.
Based on the generated MV, it calculates a refinement MV of
MB in the original frame. The algorithm is divided into three
stages as follows.

Generating lower resolution frames: taking the 1080 p
video format as an example, the resolution (1920 x 1080)
image is decimated to a half-resolution (960 x 540) image and
a quarter-resolution (480x270) one, shown as in Figure 4. The
sizes of concentrated MB are 8 x8 and 4 x4 for half-resolution
and quarter-resolution images, respectively.

Full search on low resolution images: in order to ensure
the accuracy of the search results, a large search window is
assigned, such as 32 x 32. That is to say, when extended to the
original 1080 p resolution, the search window space covers a
128 x 128 region. Through this way, a rough MV is generated
for each MB, which is the candidate holding the minimal SAD
value, shown as in Figure 4, named MVO0. Then, a similar
search process is performed in a small window space for MBs
in the half-resolution frame. The search window is centered
with MVO. In this step, a more accurate MV is generated,
named MV1 in Figure 4. In addition, we divided the whole
frame into several independent tiles to enlarge the parallel
degree, similar to the tiles of HEVC. The process to MBs in
different tiles can be executed simultaneously.

Refinement search for full-resolution: it calculates a MV
for each MB in the original frame like the process to MB
of the half-resolution. Then, an evaluation of rate-distortion
performance is performed to generate the final optimal MV.
It should be noticed that we considered the whole frame as
only one tile in this step. In order to obtain a more accurate
prediction result, a MB is divided into variable block sizes,
suchas 8 x4,4x8,8x8,16x8,8x 16, and 16 x 16. If the
estimation is processed for each kind of block, the MV would
be the most accurate. However, the computation requirement
will be the highest. In this paper, the SAD values of different
blocks are merged from the corresponding 4 x 4 subblocks’
values.

All three steps of MRMW consist of the following
two basic functions: computing SADs for each candidate
position and selecting the best MV. In order to maximize
the parallelism, we divided each step of MRMW into three
stages: the computation of SADs, merging of SADs, selection
of the best MV. In this section, the processing for the full-
resolution is chosen to explain the parallel implementation
of the proposed interprediction algorithm with CUDA.

The Scientific World Journal

. uarter-
Full®resolution Half-resolution |——N r?solution
1920 x 1080 Decimats 960 x 540 Decimaty| 480 x 270
¥ by 2
1]
= MV1 —
—— Wl
Best 0 Search
MV0/window
Search Search
window window
MBI16 x 16 HRMB 8 x 8 QRMB 4x 4

FIGURE 4: Concentration of the original frame into lower resolution ones.

In our implementation, a MB was divided into 16 sub-
blocks with size of 4 x 4. The SAD value of each 4 x4 subblock
can be calculated simultaneously for all search points. Using
the generated SAD values of 4 x 4 subblocks, the SAD value
for other sizes of block can be calculated. One thread is
assigned to process the computation for a candidate search
point. Assuming the search range is M x N, the number of
thread of the kernel can be computed by (1). Because there
are two iterations of similar operations that will be carried
out before processing the full-resolution frame, we assigned
the search range as 16 x 16 for saving computation. For 720 p,
the parallel degree achieves up to 14745600. Assuming the size
of the thread-block is 256, the total number of thread-block
achieves 57600, while the number of multi-stream-processor
(SM) in a GPU graphic is less than 50. That is to say the
number of thread-block assigned to each SM is more than
1000. Figure 5 shows the parallel model of SAD computing
based on CUDA. Each thread calculates the SAD value for a
4 x 4 subblock in a certain search position. A thread-block
deals with computation for a 4 x 4 subblock in the same
search window (20 pixels x 20 pixels). In order to reduce the
accessing to global memory, the pixels of a search window
are loaded to the shared memory and can be reused by all
threads of the same thread-block. Figure 6 shows the course
of merging SAD. Firstly, the SAD values of small blocks (4 x 8
and 8 x 4) are obtained. Then results for big blocks will be
produced based on the small ones. The kernel designation is
different from SAD computation; one thread corresponds to
one MB, but not the subblock:
width _ height

X—y— %

1 N x M. 1)

Numthread =

5. Efficient Parallel Designs for Control
Intensive Modules

5.1. Multilevel Parallelism for Intracoding

5.11. Dependence Analysis. Two kinds of intraprediction are
largely used for component of Luma coefficient: the 4 x 4
mode and the 16 x 16 mode. The 4 x 4 prediction pattern
contains 9 methods [1]. Similarly, there are 4 methods for
the 16 x 16 mode. For each mode, reconstructed pixels in

neighbor blocks or MBs are needed, which makes the process
of current MB must wait until its left-top MB, top MB, and
left MB are completely performed. This kind of dependence
severely restricts the parallelism of intracoding.

5.1.2. Exploring the Parallelism between MBs. In order to
increase the parallel degree, multislice method is introduced.
It partitioned each frame into multislice and processed each
slice independently. At the same time, the wave-front method
is adopted for parallelizing the MBs in the same slice,
shown as in Figures 7(a) and 7(b). It should be noticed that
multislices will also result in the reduction of the compression
rate. However, if the number of slices is kept within a small
value, such as 17 for 1080 p video format, the experimental
results show that the reduction of the compression rate is
acceptable.

5.1.3. Exploiting the Parallelism within a MB. Restricted to the
reconstructed loop, though adopting wave-front method, ten
steps are needed to accomplish the 4 x 4 mode prediction for
a MB. As is shown in Figure 7(c), here, each small grid repre-
sents a 4x4 block. The number indicates the encoding order of
the blocks. The arrow represents data dependence. From the
graph, we know that the maximal number of blocks within a
MB that can be performed simultaneously is only 2. Experi-
ments to multiple test sequences show that some prediction
methods, needing upper right reconstructed pixels (the third
and the seventh method of the 4 x 4 prediction and the third
of the 16 x 16 prediction), play a slight role. It increases the
bit-rate for I-frames by less than 1% and has an even smaller
impact on P-frames when dropping these three prediction
ways. Therefore, in this paper, we remove these three modes.
Figure 7(c) shows that the intracoding of a MB can be
completed in 7 steps and the parallel degree can reach 4 for a
MB. After optimizing with the above two steps, the total max
parallel degree for intraprediction achieves 272 for 1080 p
video format, when the slice number is configured as 17.

5.1.4. Maximal Parallelism of the Pipeline. We divided intra-
coding into five stages: prediction, DCT, quantization,
I_quantization, and IDCT. The granularity of data depen-
dency in a MB differs from various stages, shown as in

The Scientific World Journal 7
. 0 cee
Slice 0 MB i
TIJ/IIBI% s 20 * 20 pixels
\r < Original frame Reference frame Global
6.9 memor
Ofl;;grg;al — T Slice n Y
| |
1
C |
% ,él;l Share memory % | S— |
DRAM 1
74 4
!l! u—-ﬁ Pod [
17 7 e SMy
ggi} P sp0 SP1 SP2 SP, | SP, 'SP, SP6 -SR7_ o ‘Cj}zlf SP, sp,
Original 0 1 2 254 255 4x4 Global
; Sh obal
4 x 4 block O OO (O (O Condidates | O block SADs memory
L M
Thread
Ty T, T, Thsy Tas5 block
By

SP: stream processor unit
T: thread

SM: stream multiprocessor core
B: thread block

FIGURE 5: The parallel model for SAD computing of 4 x 4 subblocks.

16 x 16 SAD

FIGURE 6: The merging of SAD values for different block.

Table 1. This feature induces us to design parallel model
according to different stages. We first configure thread-block

according to the available maximum parallel degree. During
execution, states of a thread are variational with different
stages. For a MB with size of 256, the maximum number of
threads that can be executed simultaneously is 256 in stage
of quantization, so the size of thread-block will be set as
256. In prediction stage, only 16 threads are activated for
each thread-block. During the processing of DCT, 64 threads
work and each thread handles a row/column of pixels in
a 4 x 4 block. When coming into quantization phase, all
threads are activated. Experimental results show that the
multilevel parallel method can achieve 3 times the speedup
ratio compared with using constant parallel degree.

5.2. Component-Based Parallel CAVLC

5.2.1. Three Major Dependencies of CAVLC. Through pro-
filing the instructions of CAVLC, we found three major
factors that restrict its parallelism, that is, the context-based
data dependence, the memory accessing dependence, and
the control dependence. Context-based data dependence is

8 The Scientific World Journal
TaBLE 1: Characteristics of five stages.
Stages Dependence level Dependence granularity Maximal parallel degree
Prediction Strong One 4 x 4 block 16
DCT Weak strong One column or row of 4 x 4 block 64
Quantization None One pixel 256
I_quantization None One pixel 256
IDCT Weak strong One column or row of 4 x 4 block 64
Row Stage 1: slice parallelism Stage 2: MB wave parallelism in a slice
1,919 ~ MBO
Slice 0 >
Slice 1 Malx
3 arallel e
1,920 Slice 2 %egree _ﬁ l\gax parﬁll:l
> 7 egree=4 ...
[TITT-

5.760 NI D

4x4
SubMB Max
parallel

degree = 2

> 6

P4
» 718

> 88— 9—10

Traditional 10-step wave
parallelism in a MB

()

4x4
SubMB
Max
parallel
degree = 4

Stage 3: simplified-7step wave parallelism in a MB
©)

Total max parallel degree (GPU thread number): 17 x 4 x 4 = 272

FIGURE 7: Multiple levels of parallelism of intraprediction.

caused by the self-adaptive feature of CAVLC, shown as in
Figure 8(a). The value of nC of the current block relies on nA
and nB. Due to the dependence, the process to current block
must wait until its top block and left block are finished. The
memory accessing dependence is due to the variable length
coding characteristic of CAVLC, shown as Figure 8(b). As we
all know, the bit-stream of a frame is packed bit by bit, and
the bit-stream of current MB cannot be output until the prior
one is performed. Control dependence results from different
processing path for different components, which consists of
two layers: the frame layer and the block layer. In the frame
layer, the branch is mainly caused by different frame types and
different components of a frame. The left side of Figure 8(c)
describes the branch caused by computing the value of nC
for different component block. In the block layer, the branch
comes from the irregular characteristic of symbol data, such
as whether sign _trail is 1 or —1 and whether levels are zero or
not. The right side of Figure 8(c) gives the branch processes
of computing the symbol of levels.

In order to parallelize the CAVLC encoder on GPU, the
first step is to optimize the structure of the conventional
CAVLC to overcome the limitations described above. We
partitioned the CAVLC into four paths according to the four
components of a frame: Luma_AC, Luma_DC, Chroma_AC,

and Chroma_DC. For each processing path, three stages
are performed, that is, coefficient scan, symbol coding, and
bit-stream output. The proposed CAVLC encoder, named
component-based CAVLC, is shown in Figure 9.

5.2.2. Two Scans for Data Dependence. Two scans are
employed to gain the statistic symbols. Firstly, a forward
scan is executed on the quantized residual data, and it stored
the residual data in zigzag order. The results include the
number of nonzero coeflicients (total_coeff: nA/nB) of blocks
and the zigzagged coefficients. Then, a backward scan is
performed on the zigzagged coeflicients. According to the
value of nA/nB, the value of nC can be calculated. The
results consist of symbols needed to be coded and the values
of nC. This method wins two advantages: avoiding data
dependence when computing nC and reducing unordered
memory accessing for zigzag scan in the traditional codes.

5.2.3. Component-Based Parallel Coding. For the sake of
minimizing the performance loss of the target parallel
CAVLC encoder due to control dependence, in this paper,
we proposed a component-based coding mechanism. In this
method, the program codes the symbols frame by frame in
order of Luma_DC, Luma_AC, Chroma_DC, Chroma_AC,

The Scientific World Journal 9
Top block N([)B N{B NéB l\an Nr[lB

nB | S. ——_

| 1 N \\\\ ~y ~<

) 1
nA ——> nC T/ T

Left block| Current | (1 byte Bits 1 byte

block I" J

(a) Data dependence

Ise if (ChromaAC)
nA = BIkA—> TotalCoeffChroma; 1

\v./
Assembled byte

I
|| if(i==i_trailing && i_trailing < 3)

} e

~—
Assembled byte
(b) Bit-stream accessing dependence

Cif (lumaDC))
h

nA = BlkA-> TotalCoeffLuma; I

if(level[i] < 0)
i_level_code = -2 * level[i] - 1;

i_level_code = 2 * level[i] - 2;

i_level_code—= 2;

(c) Control dependance

FIGURE 8: Dependence of the CAVLC encoder.

Packet

Luma_ac Contexts

Cavlc_block
_context_LumaAC

_word:
Cavlc_texture \Symbols [Cavlc_texture | Codes [Cavlc_header) Codes \{ Cavlc_bitpack wor; Cavlc_bitpack
_symbols_LumaAC _codes _codes _block_cu MB_cu

Contexts

Cavlc_block
_context_DC

Cavlc_block
_context_ChromaA«

Luma_dc

Cavlc_texture

Context:
R _symbols_ChromaAC

Chroma_ac

Chroma_dc

Cavlc_texture \Symbols (* Cavlc_texture Codes Cavlc_bitpack Packet_words
_symbols_LumaDC _codes _block_cu
Symbols Cavlc_texture Codes Cavlc_bitpack Packet_words
_codes _block_cu
Cavlc_block Contexts Cavlc_texture Symbols /" Cayletexture) C0des [Cavlc bitpack Packet_words
_context_ChromaDC symbols_ChromaDC -ChromaDC -block-cu

Packet_words

Cavlc_compute
_out_position

Positions

Cavlc_parallel
_write

Out_H264

Out
_streams

FIGURE 9: The component-based CAVLC.

instead of processing the four components MB by MB. For
example, until all the coefficients of Luma_DC of a frame are
executed, the process for the component of Luma_AC could
be started. The unnecessary branches caused by different
process path can be effectively reduced. In this stage, the
coded results (the bit-stream for each symbol and its length)
must be kept for the next stage (packing). However, the size of
bit-stream of each block is unknown; a big enough temporary
memory space is required to store the corresponding bit-
streams. In our implementation, maximum of 104 bytes are
used for keeping the symbols of a subblock. It should be
noticed that, among those memory units, some of them are
not used.

5.2.4. Parallel Packing. In order to implement the parallel
packing, the behavior of each thread must be determinate.
It means that the output position of the bit-stream for each
block must be determinate. Though the length of the bit-
stream is not constant, fortunately, the length of bit-stream
of each block has to be obtained from the previous stage.
According to the length, the output position can be calculated

for each subblock and a parallel packing can be performed.
In this paper, two steps are employed to perform the parallel
packing. The first step combines the bit-stream of subblocks
of a MB to be a continuous one and computes the parameters
for parallel packing, which includes the out position, the
shift bits, and shift mode of the bit-stream for each MB.
The second step performs parallel packing based on the
parameters gained in the first step.

We firstly combine the bit-stream of each subblock to be
a continuous one. For this kernel, the number of thread is
equal to the number of blocks of a frame. Then, it packs the
bit-stream of different blocks of an MB to form an integrated
one. The number of threads reduces to be the number of
MB. In order to parallelize the packing for each MB, some
information is needed, shown as follows:

(i) the number of byte of bit-stream for each MB (n);

(ii) the number of the remaining bits less than one byte of
the bit-stream for each MB (m, m < 8);

(iii) the shift mode and shift bits for the bit-stream of each
MB.

10

Shared memory[4 [5[6[3[2[8]1]0]3[5[2[7[7[1[9]6] - |

e L bbb

[4]9]6]9]2[10[1]1]3]8]2]9]7[8]9[15] ---]

Valid thread ID

»

Shared memory
(out position)

[4] 9 [15[18]20]28]29]29[32]37]39]46[53]54]63]69] - |

F1GURE 10: Calculation of start position for each MB.

The length of bit-stream for each MB is (1 x 8 + m) bits.
According to the length, the output position of the bit-stream
for each MB can be obtained. The reduce method is adopted
to speed up the calculation, shown as in Figure 10.

In the second step, each thread disposes the writing back
process of bit-stream for one MB. In our implementation, a
composed byte is generated by shifting the current bit-stream
towards left and the next bit-stream towards right. The shifted
number is 8 m for left-shift and m for right-shift, respectively.
Figure 11 shows the progressing of parallel output. In the first
writing, thread TO writes the first byte of the bit-stream of
MBO. Thread T1 writes the composed byte of MBI, which is
the combination of the last two bits of the first byte and the
first six bits of the second byte of the bit-stream. The data
thread TO writing in the last time is a composite byte of the
last two bits of MBO and the first six bits of MBI.

5.3. Direction-Priority Parallel for Deblocking Filter

5.3.1. Dependence Analysis. Deblocking filter is performed
to eliminate the artifacts produced by block-based coding.
For a frame, each MB is filtered in raster-scan order with
optional boundary strength (BS). The filter order for edges
of luminance MB is shown in Figure 12. The program firstly
filters the vertical boundaries from left to right (from A
to D), followed by four horizontal boundaries (from E to
H). For chrominance MB, it filters the external boundary of
the MB followed by the internal boundary. The filtering to
edges of the current boundary (such as e5, €6, €7, and e8
of B Figure 12) depends on the results of the edges of the
previous boundary (el, e2, €3, and e4 of edge A in Figure 12).
Similarly, the process to the current MB must wait until
the previous one is finished. It is challenging to parallelize
deblocking filtering efficiently due to this dependence. Table 2
shows the performance of serial implementation on CPU
and a nonoptimized parallel one on GPU GTX260. The
performance of the parallel realization is 4.4 times lower than
that of the serial one. The major reason can be attributed to
the very small parallel degree.

The Scientific World Journal

[] ii MBZJ/ MB3 & MB4 i
Bit stream
\, 2 w
First wrlte
Shlft 0 Shlft Sh1 Shlft 0 Shlft 4
LT =9 |

Bit stream
Out position Byte 0 Byte 3 Byte 5 Byt Bﬁte 9
vV
Second write T, Tl Ty T4
Bit stream
Out position Byte 1 Byte 4 Byte 7 Byte 10

I:I:D_I:D__

Third write ¥ T0 LT3
Bit stream
Out position Byte 2 Byte 8

FIGURE 11: Parallel writing packing.

| e R B E
1 I I 1
el; €5 | |
1 1 1 1
| iy S i e | F
1 I I 1
e2; €6, | |
:—————L————il-————1|~———— G r-'e§z'|-e-3-8- K
1 1 1 1 1 I
S S
1 1
R G S S S S SO 1
1 1 1 1 1 I
e4, e8| \ i e34; i
1 1 I 1 1 I
A B C D i]
Luma MB Chroma MB

FIGURE 12: The filtering order for boundaries of a MB.

TaBLE 2: The performance comparison between nonoptimized
parallel deblocking filter on GPU and serial one on CPU.

Implementation Serial Parallel
Platform CPU 2.65 GHz GTX 260
Parallel degree 1 16
Performance (ms/frame 1080 p) 92.1 405.8

5.3.2. Direction-Priority Algorithm for Filter. Through the
analysis to the instructions, we found that the difference
between the filtered pixels and the original pixels is very
small. In addition, data dependence between MBs only
involves the outermost boundaries. Furthermore, the depen-
dence level varies from the BS. Based on the observation, in
this paper, to enlarge the degree of parallelism, a direction-
priority deblocking filter was proposed, shown as Figure 13.
The process of the proposed algorithm is as follows: filtering
pixels around vertical edges of the frame from left to right
followed by filtering pixels around horizontal edges of the
frame in top-to-bottom order. Different from MB-based
approach [10], the direction-priority approach decouples the
computations for different directions. Each thread of the
kernel processes a pixel and the surrounding pixels on the
same edge, so that pixel-level parallelism can be achieved.

The Scientific World Journal 11
MB 3. MB
Recorder 0 E 1
15021 Pixel | Pixel | Pixel | Pixel processing —
o © BB priority [Y7]]
276 552 828 / MB Recon frame
+ 2
277 553 829
T+ o+ -
278 554 830
, 1 + Max parallel degree = 19260 o MB
16 x 16 MBO 16 x1 119
Max 279 555 831 A
parallel < l | |
degree . . Pixel Pixel Pixel Pixel Pixel Pixel Pixel Pixel
=1088 : . 1
| T T
7272 548 824 1100
+ 4+ 4 o480+ 4814482 4483 - 9564957 4958
1Xe
48273 549 825 1101
—| 22
MB 8 + + 1 = 9604-96149624-9634 L1436}14374-14384-1439
274 550 826 1102 o
+ 4+ 4 = 14404-14414-14424-1443 -1916}-1917+19181-19191
075 551 827 1103 e
| 1 1 I I | | 1 |
Kernel vertical_de_block Kernel
horizontal_de_block
FIGURE 13: Direction-priority approach on GPU.
In this way, the highest degree of parallelism for vertical TABLE 3: Available parallelism of different DB algorithms.
filtering is 1088, while horizontal filtering achieves 1920. -
Resolution 480 p 720 p 1080 p
Serial algorithm 16 16 16
5.3.3. Four Steps Schedule to Enlarge the Parallel Degree. The proposed method 1200 x 16 3600 x 16 8160 x 16

In order to further explore the parallelism, we proposed a
novel schedule method. The processing for a MB is divided
into four steps according to the principle of the limited
error propagation [38]. During each step, the filter to all
MBs is independent, but explicit synchronization is neces-
sary for neighboring steps. Figure 14 shows the proposed
schedule strategy. As we know, the strong filter just exists
at the boundaries of MB (boundary 0 or boundary 4 in
Figure 14(a)). For the inner boundaries (boundaries 1, 2, and 3
and boundaries 5, 6, and 7), maximal two pixels on either side
of the boundaries may be affected. For example, the samples
(g, h, and 1) used for filtering the second pixel of the right
side of the boundary 2 (pixels j) will not be affected, shown
as Figure 14(a). Based on the above analysis, the proposed
scheduling is shown as follows: in the first step, a horizontal
filtering to samples of boundary 2 and boundary 3 (samples
from j to n) is performed for all the MBs. Five columns pixels
will be modified, shown in Figure 14(a). The pixels of other
columns (pixels: n p and a i) will be filtered in horizontal
way in the second stage in Figure 14(b). Similarly, a vertical
filter is carried out for the horizontal boundaries (boundary
6 and boundary 7) in step three, shown as Figure 14(c), and
the pixels rows from J to M will reach their final state. In
the final stage, the pixels from N to P and from A to I of
a MB are filtered in Figure 14(d). At the start of the second
step, a synchronization point is introduced to ensure that the
horizontal filter for boundary 3 of the previous MB is finished.

Through the two steps mentioned above, the parallel
degree of the deblocking filtering is increased significantly.
Table 3 shows the parallelism of the conventional algorithm
and the proposed algorithm. It can be seen that the paral-
lelism is always 16 for serial algorithm, while the parallelism
of the proposed method increases with the resolution of the
video.

6. Experimental Results and Analysis

6.1. Experimental Setup and Test Sequences. The proposed
parallel H.264 encoder was tested on the host of Alienware
Aurora-R3, which was equipped with Intel CPU i7-2600
(quad-core 3.4 GHz). Three different NVIDIA GPUs are
chosen as coprocessors to accelerate the proposed parallel
H.264 encoder. The detailed information of the GPUs can
be seen in Table 4. The CUDA used in our experiment was
CUDA-4.2. The input videos in our experiment consist of a
list of standard test sequences in three resolutions: D1 (City,
Crew), 720 p (Mabcal, Park_run, Shields, and Stock), and
1080 p (Into_tree, Old_town, Park_joy, and Rush_hour).

6.2. Evaluation of the RD Performance. We first evaluated
the RD performance of the proposed parallel H.264 encoder.

12

Boundary Boundary Boundary Boundary

0 1 2 3

Boundary
4

Boundary
5

Boundary
6

Boundary
7

SOZE R~ TOmHIO = >

abcdefghijklmnop

The Scientific World Journal

The actual MB
abcdefghijklmnop

SOZE R~ TOmHIO =

FIGURE 14: Scheduling of the filter for MB. White: original pixels; light gray: previously filtered pixels; dark gray: filtered in current pass; circled:

pixels in their final state.

TABLE 4: The characters of GPUS.

Type GTX 260 GTX 460 Tesla C2050
Number of SM 27 7 14
Cores 216 336 448
Frequency 1.29 GHz 1.3 GHz 1.15 GHz
Shared memory per SM. 16 KB 16/48 KB 16/48 KB
Registers per SM 16384 32768 32768

L1 Cache NA 16 KB 16 KB
Memory bandwidth 111.9GB/s 115.2GB/s 144 GB/s
Peak performance 535.7 Gflops 873.6 Gflops 1.03 Tflops

Figure 15 shows the detailed impacts of different algorithms
on RD performance. The item of Original means the results
of the reference x264 code. The Para. Inter represents using
the proposed MRMW algorithm instead of the original
ME in x264 and keep the other components unchanged,
while Para. Intra and Para. DB. mean introducing the
proposed multilevel parallel intracoding and the direction-
priority deblocking filter to x264 code, respectively. The
Para. App. presents the implemented CUDA-based parallel
H.264 encoder. Because we do not propose a new CAVLC
algorithm, but just reorder the execution sequence, there is
no impact to the RD performance. The tested sequences are
configured as P-frames followed with an I-frame for each 30
frames. All the sequences are encoded for total 300 frames.
The slice numbers are set as 11, 15, and 17 for video formats
of D1, 720 p, and 1080 p, respectively. The initial search range

for MRMW is 16 x 16. It can be seen that the degradations
of PSNR are from 0.08dB to 0.56dB compared with the
reference software, when using the MRMW algorithm. The
decrease of the PSNR can be attributed to the following two
reasons. The first one is that the proposed MRMW algorithm
divided the whole frame into several small subdomains,
which is a 2D grid and consists of several MBs. The ME is
independent for each subdomain. In addition, the MV of
compacted lower-resolution MB may not represent the real
MV of the original MB. The decline of the PSNR values
affected by multilevel parallel intracoding is less than 0.1dB
for 1080 p, when keeping the same bitrate. For the other two
formats of frames, the maximal degradations of PSNR are
0.19 dB and 0.32 dB, when the bitrate is about 3000 kbps. With
the bitrate increasing, the degradation of PSNR impacted
by multilevel parallel intra-algorithms is decreasing. When
the bitrate is larger than 20000kbps, the degradations of
PSNR are smaller than 0.08dB, while for the direction-
priority deblocking filter, the impact to RD-performance
could be negligible, and results show upgrades in some cases
even. Overall, compared with the reference program, the
implemented CUDA H.264 has a loss of PSNR value about
0.35dB ~ 0.54dB, 0.14dB ~ 0.77 dB, and 0.33dB ~ 0.57 dB
for D1, 720 p, and 1080 p video formats, respectively.

6.3. The Speedup Overhead Analysis. We then assessed the
speedup of the proposed encoder. Figures 16, 17, and 18 give
the speedup ratio of the CUDA-based H.264 encoder on
three NVIDIAs GPUs, compared with the performance of

The Scientific World Journal

PSNR (dB)

PSNR (dB)

PSNR (dB)

PSNR (dB)

PSNR (dB)

48

32

40

26

42

24

40

38

36

34

32

36
34
32
30
28
26
24

City Crew

48 +

PSNR (dB)

T T T) 32 T T T]
0 10000 20000 30000 40000 0 10000 20000 30000 40000
Mobacl Park_run
=
=
e
Z
1%¢]
A
T T | 24 T T 1
0 20000 40000 60000 0 20000 40000 60000
Shields Stock
=
=
4
Z
%]
[=¥
T T] 30 T T]
0 20000 40000 60000 0 20000 40000 60000
Into_tree Old_town
- B . . 40 - . . B
39 |
= 38 4
=
i ~ 37
Z
£ 36 -
35 1
T T T) 34 T T T]
0 20000 40000 60000 80000 0 20000 40000 60000 80000
Park_joy Rush_hour
- . . . 46 - . : .
i 45
4 a 44 -
=
i ~ 43 1
Z
i A 42 1
4 41 A
T T T 1 40 T T T 1
0 20000 40000 60000 80000 0 20000 40000 60000 80000
Bitrate (kbps) Bitrate (kbps)
—+— Original —»— Para. DB —+— Original —— Para. DB
—=— Para.inter =~ —*— Para. app. —=— Para.inter =~ —*— Para. app.

—+— Para. intra

—+— Para. intra

FIGURE 15: RD performance with different algorithms.

13

14

14

City Crew Mobacl ~ Park_run Shields
B Para. inter B Para. DB
B Para. intra M Para. app

M Para. CAVLC

The Scientific World Journal

Speedup ratio of different components with GTX 260

Stock Into_tree Old_town Park_joy Rush_hour

FIGURE 16: Speedup ratio of the proposed parallel H.264 encoder on GTX260.

30 1

25

City Crew Mobacl ~ Park_run Shields
M Para. inter B Para. DB
M Para. intra W Para. app

[l Para. CAVLC

Speedup ratio of different components with GTX 460

Stock

Into_tree Old_town Park_joy Rush_hour

FIGURE 17: Speedup ratio of the proposed parallel H.264 encoder on GTX460.

the serial program on Intel CPU i7-2600. It should be noticed
that the serial program was not optimized with vectorization.
The experimental results indicate that our implementation
outperforms the reference serial encoder in terms of speedup
ratio by a factor of more than 19 for 1080 p format on C2050.
For the performance on GTX460 and GTX260, the speedup
ratios of the application are about 16 and 11. One observation
is that the bigger the input sequences, the higher the speedup
ratio that can be achieved. Except the overall performance
of the H.264 encoder, we also evaluated the performance
of different parallel components. From the graph, it can be
seen that the interprediction achieves the maximal speedup.

The speedup ratios on three GPUs are about 13, 18, and 25,
respectively. We considered that the high speedup ratio comes
from the high parallel degree of the MRMW. We noticed
that the achieved speedup ratios are proportional with the
peak performance of the GPUs. It implies that the proposed
MRMW algorithm is scalable, while for intraprediction,
the speedup ratio is very low, about from 2.8 to 8.8. That
is because of the strong data dependence caused by the
reconstruction loop, which is suitable for execution on CPU.
For the control intensive components CAVLC, the speedup
ratios on the three platforms are similar to each other and are
proportional with the memory bandwidth, while deblocking

The Scientific World Journal

35 q

30 A

City Crew Mobacl ~ Park_run Shields
B Para. inter B Para. DB
B Para. intra B Para. app

@ Para. CAVLC

15

Speedup ratio of different components with C2050

Stock

Into_tree Old_town Park_joy Rush_hour

FIGURE 18: Speedup ratio of the proposed parallel H.264 encoder on C2050.

filter shows varied phenomenon, because the parallel degree
of the most time consuming kernel (bit_pact) of CAVLC
is relatively small and decreases with the kernel execution.
Moreover, the process of this kernel is irregular, which cannot
exploit the computational power of GPUs. In addition, the
computation-accessing-ratio of CAVLC is relatively low; the
performance of the proposed CAVLC is majorly determined
by the bandwidth of the GPU, while the parallel degree of the
proposed deblocking filter is equal to the number of 4 x 4
subblock of a frame and keeps constant during the kernel
execution. It should be noticed that the CAVLC achieves a
very high performance on the CPU used in this paper due to
its high frequency and big cache size. When compared with
the performance on another CPU, Intel E8200, the speedup
ratio of CAVLC can be 46, 4 times higher than the speedup
on Intel CPU i7-2600.

We also compared the performance of the proposed
parallel implementation of H.264 encoder with other ver-
sions based on GPU or multicore processors, shown as in
Table 5. As can be seen, our implementation can achieve
about 16 times of speedup compared with the reference
program without optimization for 720p. It outperforms
the optimized serial encoder (using compiled instructions,
MMX, SSE, and so on) in term of speedup by factors from
3 to 6. It should be noticed that the speedup ratios in
the table for other implementations are copied from the
corresponding papers, but not the results compared with
the performance tested on our CPU. In order to facilitate
comparison with other GPU-based implementations, we
list the performance of different modules on GTX260. A
significant improvement can be obtained for the proposed
encoder when compared with other GPU-based parallel
versions. Our implementation establishes a speedup factor of
3 over the parallel H.264 encoder based on GPU [10]. More
than 5 times of speedup can be achieved for the proposed

multilevel intracoding compared with the wavefront method
[23] for 720 p video pictures, when normalized to the same
reference CPU. This table clearly shows that our component-
based CAVLC outperforms the implementation based on
fine-grained multiprocessors system [25]. For deblocking
filter, we got a similar speedup with MFP [24]. For 720 p
format scenarios, the proposed parallel H.264 encoder can
satisfy the requirement of real-time encoding of 30 fps, while
for 1080 p, the encoding speed achieves 20 fps. We think two
major factors make the proposed encoder high performance.
The first one is that the implementation realizes all the
major workload of the H.264 encoder with GPU, even for
the irregular components. It eliminates the impact of serial
parts according to Amdahl’s low and reduces the cost of
data transfer between CPU and GPU. The other one is the
proposed novel algorithms for varied modules, which enlarge
the parallel degree as much as possible and improve the
efficiency of the memory bandwidth. Though the CUDA
encoder can achieve a better performance on speedup ratio,
the quality is not as good as the proposed implementation.
More importantly, there is no detailed information about the
designation of the CUDA encoder.

6.4. The Bottleneck Analysis. In this section, we discuss the
time breakdown of the proposed H.264 encoder. Figure 19
shows the time distribution of the parallel H.264 encoder
on different platforms, including the CPU. As can be seen,
the inter prediction occupies more than 70% of the exe-
cution time when running on CPU. After parallelization,
the proportion decreased to be about 30% on C2050. The
time proportion of the parallel intraprediction doubled when
compared with its result in the serial encoder. An interesting
observation is that the proportion of the CAVLC rose after
parallelization. In addition, the number increased with the
computation power of the GPU, from 23% on GTX260 to

16 The Scientific World Journal
TABLE 5: Performance comparison between the proposed parallel H.264 encoder and other implementations.
Reference Target Optimized .
Platform code resolution module Speedup ratio Performance (fps)
CPU (i7-2600) original X264 720 p NA 1 1.05 (for application)
CPU (i7-2600) optimized x264 720 p Key function 3~5 3~5.5 (for application)
GTX280 [10] X264 720p ME NA 15.5 (for ME)
Geforce 8800 [23] X264 720 p Intracoding 2~3 NA
AsAP [25] X264 720p CAVLC 4.86 36~41.3 (for CAVLC)
GTX 240MEFP [24] X264 1080 p De'ﬁftzlr“ng 10.2 1309 (for deblocking filter)
GeForce 9800 [3] JSVM CIF ME + Intra 6.7 1.02 (for application)
GTX260 The proposed MRMW X264 720 p ME 12~14 50 (for ME)
GTX%O The proposed Intra x264 720p Intracoding 4~6.8 21 (for Intracoding)
Coding
GTX260 Component-based
CAVLC X264 720 p CAVLC 8 105 (for CAVLC)
o oo Deblocking .
GTX260 Direction-priority DB. x264 720 p flter 9 1050 (for deblocking filter)
C2050 The proposed H.264 X264 720 p Application 13~17 32.3 (for application)
Time breakdown of the H.264 encoders
1 4
0.8 A
0.6 1
0.4 1
0.2 1
O-I\OOOI\OOOI\OOOI\OOOI\OOOI\OOOI\OOOI\OOOI\OOOI\OOO
OO OO O[O WO OO WL |TTO IO | IO W [O (O (L] O[] OO
=B EEEPPEEPPEEREEEMEEE B EEHEE R EREE
| B B ©| S| E|E|CB|EIEIC|BIE|IECIBIE|E|C|B|E|E|C|B|E|E|C|B|EIE[C|B|EE[C|BIEIE|©
Ol o Oolo Olo 0lo OlO Olo Olo Olo QIO Olo
City Crew Mobcal | Park_run Shield Stock Into_tree | Old_town | Park_joy | Rush_hour

B Intraprediction
B Interprediction

B Memory copy
B Deblock filter
M CAVLC

FIGURE 19: Time breakdown of Shields on CPU and GPUs.

34% on C2050. The proportion of the deblocking filter keeps
almost the same with that of the serial implementation. For
the parallel implementation, though almost all the workloads
are offloaded to GPU, the memory copy time consists of about
25% even.

In order to analyze the proposed H.264 encoder much
more accurately, we used the CUDA profiler to collect the
major metrics of kernels. The results are based on encoding 30
frames of video sequences Shields. Table 6 shows the detailed
information of the major kernels on GTX460, including the
execution time proportion, IPC, shared memory used for
each thread block, the register allocated to each thread, and
the performance limitation factor. Here, we just listed the
information of kernels, whose execution time occupied more

than 0.5% of the total execution. The Exe. time means the
execution time of the kernel. The column of branch indicates
the instructions executed in serial way. As can be seen, the
calling times of the memory copy are 864 and 257 for host-to-
device and device-to-host, respectively, we think the times of
API calling caused the high proportion of these two methods.
The most time consuming kernel comes from the CAVLC,
named cavic_bitpack_block, which packs the encoded bit-
stream of each block to be a continuous one. The limitation
of this kernel can be attributed to the irregular process and
the calling time. We think that it is a possible optimization
to packing all four kinds of bit-stream of a frame in the
same kernel. Furthermore, using the L1 cache instead of the
shared memory in some case may bring some benefits. Kernel

17

The Scientific World Journal

$19)S189Y 001T 000 81 €Eer9 %650 L9V9LT 0¢ OVEWOIYH™IXU0I™D0[qO[ARD
Ipmmpueq [eqorH 00°T¢ 000701 61T 0£°8555¢ %19°0 08°198¢ 0¢ TOATPUIY INYP0[Ge(qBpPNO
Yipimpueq [eqo[H 00°€c 00'87ST z8°0 €8'8¥1L %19°0 10°558¢ 0¢ BWOIYD™P0D[eI0], pue dqDI[eD
wst[erered 00°8T 000 SHT 87°0¢€T %0L°0 Treree 6¢ JOAANPIIIPRIJO[ED)
YIpImpue(q [eqo[o 00°1¢ 00'809% €91 LYLST %¥L0 8L'867¢ 0¢ eUINT PO [BI0L, pue dgDO2[eD
9ZIS Y20[d 00°¢T 00°CIS 87’1 8L'G¥ ¢l %8L°0 $8'569¢ 8S SeWIRJ oW
Ipmpueq [eqorH 00°CC 00°095T 0%°0 €9'7L96 %€£8°0 r'806¢ 0¢ DV BWOIYD S[OqUIAS 9IN}X3) d[ARD
wistpereted 00'8 000 6.°0 00622 %16°0 (44154 6T GINAD{SARIFIXIU0DYDO[qD[ABD
pmpueq [eqorH 00°61 000 w1 0¥°%80C %€6°0 G8'T9¢Y 0¢ TN Pediqojaed
QUON. 00°¢ 000 9C'T 69°156¢ %€£6°0 YLL8EY 781 d1pausie-zgioswaw

9NSST UONd_NISUT 00°8T 00°8¥L 80T 8CLETY %S€E'T €L°¢€SE9 6¢ ewoIyHaresuadwoHuonoN
wsTa[[ered 00°1C 00CLT €L TS18L9 %871 L9'7969 6¢ 90\ 9jepIpUE) YH W
wisT[a[eIeq 00'T¢ 00'889C €91 or'1eeL %€S'T 19'961L 6T Burpo)[ENpPISRNYIIUIIWEL] JeWOIYD)
ONSST UoNONISUL 00°¢€T 00°960% ¥6°0 06°18T¢T %I19'T $5'68SL 0¢ OV BwN[S[OqUAS 21n)Xa)"d[ALD
INSST UONONISUT 00°ST 000 €TC 0T°6€ST %89'T S7'006L 0¢ OVewnT aWeyr)Xojuod d0[q d[ALD
9ZIS Y201d 0061 00781 STl L6'6€9Y %69'T 8CTL6L 6¢ AVS erepIpue)[e) YH oW
9NSST UONdNISUL 00°81 00°800I SPT 0S'¥S201 %SS°€ 0€°0€£91 06 O BWN[$9p0O372IMN)Xa)"J[ARD
wisT[a[[eIed 00Cy 00781 €5°0 08°SI80T %68°¢ 08 F€E8T 6¢ eumn(Surpod-1ajursurenyd
s193s189y 00°¢€9 00°0C¢ (741} 655681 %¥V0'¥ 0%°01061 6¢ Surpo)enpIsayeNUPUWEL] JEWOIYD)
wstT[[eIeqd 00°¢€9 00°CL¥S ¥6'1 007788 %6L'S 01'987.T 1 Surpoo-[enpisar-ewn[-weLy|
1938139y 00°C¢ 00°8%9S 9¢T 06'7<¥99 %9T1'9 08°9868C 6T (DIBIGSAIMOT YO oW
s103s139y 0007 00911 66°0 0T'8¥7SLY %YE<L 0C¥LSTE 6¢ 3j0A pEs[UISIaSjuL W
wiste[rereq 00°C¢ 00°%C8¢ 0€°0 009%0%01T %S8L 07°6969¢ 6¢ ewn[gurpoo-enuraureyyd
S[[ed Jo IoqumpN 000 000 000 000 %08°CL 08%S209 LS€ HoygAdowaw
wisterered 0071 009599 98°0 1¢°SICS %LE €T 0€'TL6T9 0sI oo[qpedygoped
S[[e2 Jo JsqunN 000 000 000 000 %SL ST 0T¥8IVL 798 goygAdowaw
$10)0®J PATWIT s19)s139y WoW PaIeys Ddl youerg B —— (sn) owm oxg Y — —

[oUnNe] [UISY YJed 10J dN[eA d5eloAy

"09%X,1.D UO SP[AIYS JO UOHRWLIOJUT [QUIY :9 TTAV],

18

Iframe_luma_residual_coding deals with the intraprediction,
DCT, and the quantization of an I frame. Though it has been
called only for one time, the time proportion is more than
5%., because the parallelism is very low, which is due to the
strong data dependence. In addition, there are many branch
instructions resulting from the multiprediction modes, which
will cause serial execution. For most of kernels belonging
to the interprediction, the performance limitation factors
come from the register consuming and the parallelism. When
the number of register used for each thread is over 32, the
maximal occupancy that can be obtained will be less than
0.667. We also marked the kernels with lower IPC (the bold
italic grids), which reveals the utilization of the compute
units. The low IPC can be attributed to the serial execution
and the frequent memory access. As we found from the
figure, the shared memory usage will not be a performance
impact factor. For some kernels that involved a lot of in/out
data, the global memory of the bandwidth will restrict
the performance, such as CalcCBP_and_TotalCoeff_Luma. It
calculates the CBP coeflicients and needs the transformed
data as input. The data amount is double of input frame.

7. Conclusion and Future Work

In this paper, we proposed a parallel framework for
H.264/AVC based on massively parallel architecture.
Through loop partition and transformation from AOS
to SOA, we optimized the program structure for parallel
kernel designing. We offloaded all the computation tasks
to GPU and implemented all the components with CUDA.
In order to achieve high performance, we optimized all
components of H.264 encoder, proposed corresponding
parallel algorithms, including MRMW, multilevel parallel
intracoding, component-based parallel CAVLC and
direction-priority parallel deblocking filter. Particularly,
in order to parallelize the control intensive parts, such as
CAVLC and deblocking filter, two novel algorithms are
presented. Experimental results show that about 20 times the
speedup can be obtained for the proposed efficient parallel
method when compared with the reference program. The
presented parallel H.264 encoder can satisfy the requirement
of real-time HD encoding of 30 fps. Our implementation
outperforms the other GPU-based encoders in terms of
speedup by factors from 3 to 10. We think there are two
pivotal factors denoting the high performance of the H.264
encoder. One is the full parallel framework proposed based
on multiple programmable processors. The other one is the
efficient parallel algorithms for different modules.

It can be seen from the bottleneck analysis that there
is rich space to optimize our implementation, such as the
mechanism of stream and efficient usage of the on-chip
memory, especially the L1 cache in modern GPU. With the
rise of the new video coding standard H.265, we intended to
parallelize it based on the technologies proposed in this paper.
By paralleling this application based on GPU, we suffered
from the low productivity. In the future, we are also interested
in automatically parallel framework aiming at multimedia
applications based on programmable multi/many core archi-
tecture.

The Scientific World Journal

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

The authors gratefully acknowledge supports from the
National Nature Science Foundation of China under NSFC
nos. 61033008, 61272145, and 61103080; the National High
Technology Research and Development Program of China
(863 Program) under no. 2012A A012706; the Hunan Provin-
cial Innovation Foundation For Postgraduate under no.
CX2012B030; and the Fund of Innovation in Graduate School
of NUDT under no. B120605.

References

[1] Joint Video Team (JVT) of ISOIEC MPEG and ITU-T VCEG,
“Draft ITU-T recommendation and final draft international
standard of joint video specifictio (ITU-T Rec. H. 264/ISO/IEC
14 496-10 AVC),” 2003.

[2] B. Bross, W. Han, G. Sullivan, J. Ohm, and T. Wiegand,
“High efficiency video coding (hevc) text specification draft
9, document jctve-k1003,” Joint Collaborative Team on Video
Coding (JCT-VC), Stockholm, Sweden, 2012.

[3] Y.-L. Huang, Y.-C. Shen, and J.-L. Wu, “Scalable computation
for spatially scalable video coding using NVIDIA CUDA and
multi-core CPU,” in Proceedings of the 17th ACM International
Conference on Multimedia (MM °09), pp. 361-370, October
20009.

[4] Y.-C. Shen, H.-P. Cheng, and J.-L. Wu, “An efficient distributed
video coding with parallelized design for concurrent comput-
ing,” in Proceedings of the Data Compression Conference (DCC
1), p. 476, March 2011.

[5] Z.Chen, P. Zhou, Y. He et al., “Fast integer pel and fractional pel
motion estimation for JVT,” JVT-F017, pp. 5-13, 2002.

[6] G. He, D. Zhou, J. Zhou, and S. Goto, “Intra prediction archi-
tecture for H.264/AVC QFHD encoder;,” in Proceedings of the
IEEE 28th Picture Coding Symposium (PCS ’10), pp. 450-453,
December 2010.

[7] B.-R. Chiou, Y.-C. Shen, H.-P. Cheng, and J.-L. Wu, “Perfor-
mance improvement of distributed video coding by using block
mode selection,” in Proceedings of the 18th ACM International
Conference on Multimedia (MM ’10), pp. 1207-1210, October
2010.

[8] N.-M. Cheung, O. C. Au, M.-C. Kung, and X. Fan, “Parallel
rate-distortion optimized intra mode decision on multi-core
graphics processors using greedy-based encoding orders,” in
Proceedings of the IEEE International Conference on Image
Processing (ICIP °09), pp. 2309-2312, November 2009.

[9] T.-C. Chen, S.-Y. Chien, Y.-W. Huang et al., “Analysis and
architecture design of an HDTV720p 30 frames/s H.264/AVC
encoder;” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 16, no. 6, pp. 673-688, 2006.

[10] N.-M. Cheung, O. C. Au, M.-C. Kung, P. H. W. Wong, and C.
H. Liu, “Highly parallel rate-distortion optimized intra-mode
decision on multicore graphics processors,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 19, no. 11, pp.
1692-1703, 2009.

The Scientific World Journal

[11] J. Ren, M. Wen, C. Zhang, H. Su, Y. He, and N. Wu, “A parallel
streaming motion estimation for real-time HD H.264 encoding
on programmable processors,” in Proceedings of the IEEE 5th
International Conference on Frontier of Computer Science and
Technology (FCST ’10), pp. 154-160, August 2010.

[12] W.-N. Chen and H.-M. Hang, “H.264/AVC motion estima-
tion implmentation on compute unified device architecture
(CUDA),” in Proceedings of the IEEE International Conference
on Multimedia and Expo (ICME "08), pp. 697-700, June 2008.

[13] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra,
“Overview of the H.264/AVC video coding standard,” IEEE
Transactions on Circuits and Systems for Video Technology, vol.
13, no. 7, pp. 560-576, 2003.

(14] J. Ren, Y. He, W. Wu, M. Wen, N. Wu, and C. Zhang, “Software
parallel CAVLC encoder based on stream processing,” in
Proceedings of the IEEE/ACM/IFIP 7th Workshop on Embedded
Systems for Real-Time Multimedia (ESTIMedia ’09), pp. 126-133,
October 2009.

[15] J. H. Lee and N. S. Lee, “Variable block size motion estimation
algorithm and its hardware architecture for H.264/AVC,” in
Proceedings of the IEEE International Symposium on Circuits and
Systems (ISCAS °04), pp. I11741-111744, May 2004.

[16] Y.-W. Huang, T.-C. Chen, C.-H. Tsai et al, “A 1.3TOPS
H.264/AVC single-chip encoder for HDTV applications,” in
Proceedings of the IEEE International Solid-State Circuits Con-

ference (ISSCC °05), pp. 128-588, February 2005.

[17] H. S. Malvar, A. Hallapuro, M. Karczewicz, and L. Kerofsky,
“Low-complexity transform and quantization in H.264/AVC,
IEEE Transactions on Circuits and Systems for Video Technology,
vol. 13, no. 7, pp- 598-603, 2003.

[18] Nvidia, “Compute unified device architecture programming
guide,” 2008.

[19] NVIDIA, “Opencl Programming Guide for the CUDA Archi-
tecture,” 2010.

[20] M. C. Kung, O. C. Au, P. H. W. Wong, and C. H. Liu, “Block
based parallel motion estimation using programmable graphics
hardware,” in Proceedings of the International Conference on
Audio, Language and Image Processing (ICALIP 08), pp. 599-
603, July 2008.

[21] Y.-C. Lin, P-L. Li, C.-H. Chang, C.-L. Wu, Y.-M. Tsao, and
S.-Y. Chien, “Multi-pass algorithm of motion estimation in
video encoding for generic GPU, in Proceedings of the IEEE
International Symposium on Circuits and Systems (ISCAS "06),
pp. 4451-4454, May 2006.

[22] B. Pieters, C. E. Hollemeersch, P. Lambert, and R. van de Walle,
“Motion estimation for H.264/AVC on multiple GPUs using
NVIDIA CUDA; in Applications of Digital Image Processing
XXXII, vol. 7443 of Proceedings of the SPIE, San Diego, Calif,
USA, August 2009.

[23] M. C. Kung, O. Au, P. Wong, and C.-H. Liu, “Intra frame
encoding using programmable graphics hardware,” in Advances
in Multimedia Information Processing-PCM 2007, vol. 4810 of
Lecture Notes in Computer Science, pp. 609-618, Springer, 2007.

[24] B. Pieters, C.-E J. Hollemeersch, J. De Cock, P. Lambert, W.
De Neve, and R. Van De Walle, “Parallel deblocking filtering in
MPEG-4 AVC/H.264 on massively parallel architectures,” IEEE
Transactions on Circuits and Systems for Video Technology, vol.
21, no. 1, pp. 96-100, 2011.

[25] Z.Xiao and B. Baas, “A high-performance parallel cavlc encoder
on a fine-grained many-core system,” in Proceedings of the 26th
IEEE International Conference on Computer Design (ICCD 08),
pp- 248-254, October 2008.

19

[26] N.-M. Cheung, X. Fan, O. Au, and M.-C. Kung, “Video coding
on multicore graphics processors,” IEEE Signal Processing Mag-
azine, vol. 27, no. 2, pp. 79-89, 2010.

[27] J. Taibo, V. M. Gulias, P. Montero, and S. Rivas, “GPU-based
fast motion estimation for on-the-fly encoding of computer-
generated video streams,” in Proceedings of the ACM 2Ist
International Workshop on Network and Operating Systems
Support for Digital Audio and Video (NOSSDAV ’11), pp. 75-80,
June 2011.

[28] H. Su, M. Wen, J. Ren, N. Wu, J. Chai, and C. Zhang, “High-
efficient parallel CAVLC encoders on heterogeneous multicore
architectures,” Radio Engineering, vol. 21, no. 1, pp. 46-55, 2012.

[29] Y. Zhang, C. Yan, E Dai, and Y. Ma, “Efficient parallel frame-
work for H. 264/AVC deblocking filter on many-core platform,”
IEEE Transactions on Multimedia, vol. 14, no. 3, pp. 510-524,
2012.

[30] H. Su, C. Zhang, J. Chai, and Q. Yang, “A efficient parallel
deblocking filter based on GPU: implementation and optimiza-
tion,” in Proceedings of the 13th IEEE Pacific Rim Conference
on Communications, Computers and Signal Processing (PACRIM
1), pp. 280-285, August 2011.

[31] H. Su, N. Wu, C. Zhang, M. Wen, and J. Ren, “A multilevel
parallel intra coding for H.264/AVC based on CUDA, in
Proceedings of the 6th International Conference on Image and
Graphics (ICIG 1), pp. 76-81, August 2011.

[32] C.-H. Cheung and L.-M. Po, “A novel cross-diamond search
algorithm for fast block motion estimation,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 12, no. 12, pp.
1168-1177, 2002.

[33] I. Ahmad, Y. He, and M. L. Liou, “Video compression with
parallel processing,” Parallel Computing, vol. 28, no. 7-8, pp.
1039-1078, 2002.

[34] M. A. Baker, P. Dalale, K. S. Chatha, and S. B. K. Vrudhula, “A
scalable parallel H.264 decoder on the cell broadband engine
architecture,” in Proceedings of the 7th IEEE/ACM International
Conference on Hardware/Software-Co-Design and System Syn-
thesis, pp. 353-362, October 2009.

[35] E. Marth and G. Marcus, “Parallelization of the x264 encoder
using OpenCL,” in Proceedings of the ACM SIGGRAPH 2010
Posters (SIGGRAPH °10), p. 72, July 2010.

[36] x264, http://www.videolan.org/developers/x264.html.

[37] J. Ren, Y. He, H. Su, M. Wen, N. Wu, and C. Zhang, “Parallel
streaming intra prediction for full HD H.264 encoding,” in
Proceedings of the 5th International Conference on Embedded
and Multimedia Computing (EMC ’10), pp. 1-6, August 2010.

[38] S.-W. Wang, S.-S. Yang, H.-M. Chen, C.-L. Yang, and J.-L. Wu,
“A multi-core architecture based parallel framework for h.264/
avc deblocking filters,” Journal of Signal Processing Systems, vol.
57, no. 2, pp. 195-211, 2009.

[39] T. Damak, 1. Werda, A. Samet, and N. Masmoudi, “DSP
CAVLC implementation and optimization for H.264/AVC
baseline encoder;,” in Proceedings of the 15th IEEE International
Conference on Electronics, Circuits and Systems (ICECS "08), pp.
45-48, September 2008.

[40] N. Wu, M. Wen, W. Wu et al., “Streaming HD H.264 encoder
on programmable processors,” in Proceedings of the 17th ACM
International Conference on Multimedia (MM 09), pp. 371-380,
October 2009.

http://www.videolan.org/developers/x264.html

