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Ultraperformance liquid chromatography coupled with quadrupole time-of-flight synapt high-definition mass spectrometry
metabolomics was used to characterize the urinary metabolic profiling of diet-induced hyperlipidaemia in a rat model. Analysis
was done by orthogonal partial least squares discriminant analysis, correlation analysis, heat map analysis, and KEGG pathways
analysis. Potential biomarkers were chosen by S-plot and were identified by accurate mass, isotopic pattern, andMS/MS fragments
information. Significant differences in fatty acid, amino acid, nucleoside, and bile acid were observed, indicating the perturbations
of fatty acid, amino acid, nucleoside, and bile acid metabolisms in diet-induced hyperlipidaemia rats. This study provides further
insight into the metabolic profiling across a wide range of biochemical pathways in response to diet-induced hyperlipidaemia.

1. Introduction

Metabolomics is the quantitative measurement of the dyna-
mic multiparametric metabolic responses of living systems
to pathophysiological stimuli or genetic modifications [1].
Metabolomics is based on the determination of global
metabolite profiles in biological fluids and tissues with sub-
sequent data analysis via a range of multivariate statistical
approaches [2]. As a powerful analytical platform, the appli-
cation of metabolomics has dramatically increased in the
fields of physiological evaluation, disease diagnosis, disease
prognosis, therapy, biomarker discovery, drug therapy mon-
itoring, and safety and toxicity evaluation [3].

Hyperlipidaemia, as a major risk factor of coronary heart
disease, is one of the most important public health prob-
lems, with increasing rates of incidence and prevalence [4].
Hyperlipidaemia is defined as a disorder of lipid metabolism
leading to abnormal increase of triglycerides (TG), total
cholesterol (TC), low-density lipoprotein cholesterol (LDL-
C), very low-density lipoprotein cholesterol (VLDL-C), and
decrease of high-density lipoprotein cholesterol (HDL-C) [5].
As a progressive chronic and metabolic disease, cardiovascu-
lar disease begins in adult and progresses to morbidity and
mortality throughout the lifespan. Hyperlipidaemia has an
important effect on development and progression of various
cardiovascular diseases and atherosclerosis. Both moderate

Hindawi Publishing Corporation
Journal of Analytical Methods in Chemistry
Volume 2014, Article ID 184162, 9 pages
http://dx.doi.org/10.1155/2014/184162

http://dx.doi.org/10.1155/2014/184162


2 Journal of Analytical Methods in Chemistry

hyperlipidaemia and severe hyperlipidaemia are associated
with cardiovascular disease [6]. Recent study indicates that
a fundamental defect is an overproduction of large VLDL-C,
which triggers a sequence of lipoprotein changes, leading to
increased remnant particles, smaller LDL-C, and decreased
HDL-C [7]. LDL-C is the primary target for the lipid-
lowering therapy and cardiovascular diseases prevention.

Mass spectrometry (MS) and proton nuclear magnetic
resonance (1H NMR) spectroscopy are two analytical tools
commonly used in metabolomics. Recently, an increasing
number of 1H NMR and gas chromatography-MS (GC-MS)
based on metabolomics have been conducted to character-
ize hyperlipidaemia models and to assess drug treatment
[8–12].

Proteomic profiling from insulin resistance and meta-
bolic dyslipidemia rats demonstrated hepatic ER proteins
ERp29, ERp46, and ER60; TAP1 and glutamate dehydro-
genase were downregulated, whereas P-glycoprotein, 𝛼-
glucosidase, protein disulfide isomerase, fibrinogen, GRP94,
and apolipoprotein E were upregulated in the hepatic ER of
the fructose-fed hamster [13]. 1H NMR-based metabolomics
indicated that major metabolic processes like Krebs cycle,
cholesterol metabolism, and osmoregulation are perturbed
in hypercholesterolaemic rats [9]. GC-MS based on metabo-
lomics showed amino acids (alanine, valine, aspartic acid,
phenylalanine, etc.), fatty acids (octadecadienoic acid, arachi-
donic acid, etc.), and propanoic acid, and glucose and
cholesterol were identified as biomarkers in diet-induced
hyperlipidaemia rats [12]. Among the analytical techniques in
metabolomics research, liquid chromatography is recognized
as one of the best analytical techniques in selectivity, sensitiv-
ity, and reproducibility [14]. Furthermore, among the various
liquid chromatography platforms, ultraperformance liquid
chromatography (UPLC) is considered to be suitable for
metabolite profiling and metabolomics study, especially for
large-scale untargetedmetabolic profiling due to its enhanced
reproducibility of retention time. UPLC operates with sub-
2 𝜇m chromatographic particles and a fluid system capable of
operating at pressures up to 15000 psi, providing an increased
chromatographic resolution compared to conventional high
performance liquid chromatography (HPLC) using larger
particles.

In 2005, Wrona et al. introduced the mass spectro-
metryElevatedEnergy (MSE) data collection technique [15], in
which two scanning functions are simultaneously used for
data collection. In other words, MSE can provide paral-
lel alternating scans for acquisition at either low colli-
sion energy to obtain precursor ion information or high
collision energy to obtain full-scan accurate mass frag-
ment, precursor ion, and neutral loss information [14].
MSE involves a simultaneous acquisition through alterna-
ting between high and low collision energies during a single
chromatographic run. This ability is of major importance, as
it offers the structural information required for the identifi-
cation of unknown biomarkers in the context of untargeted
analyses. Recently, the novel quadrupole time-of-flight mass
spectrometry with MSE technique has been proven to be
a powerful and reliable analytical approach for metabolite

identification [16–20]. UPLC Q-TOF/HDMS with MSE tech-
nique is becoming increasingly popular in the analysis of
biological fluids in the field of metabolomics because it
provides high resolution, accurate mass measurement, and
structural information [14, 16–20]. Amethod using UPLCQ-
TOF/HDMS/MSE-based metabolomics combined with mul-
tivariate statistical analysis was applied to rapidly identify
urinary metabolite profiling of diet-induced hyperlipidaemia
in a rat model. Orthogonal partial least squares discriminant
analysis (OPLS-DA), correlation analysis, heat map analysis,
and KEGG pathways analysis were performed for investigat-
ing the metabolic changes of diet-induced hyperlipidaemia
and control rats, and the potential biomarkers were identified
accordingly.

2. Materials and Methods

2.1. Animals and Sample Collection. The studywas conducted
in accordance with the Regulations of Experimental Animal
Administration issued by the State Committee of Science and
Technology of People’s Republic of China. All procedures
and the care of the rats were in accordance with institutional
guidelines for animal use in research. Male Sprague-Dawley
rats were obtained from the Central Animal Breeding House
of Fourth Military Medical University (Xi’an, China). They
were maintained at a constant humidity (ca. 60%) and
temperature (ca. 23∘C) with a light/dark cycle of 12 h. Male
rats underwent an adaptation period of several days, during
which they were fed a commercial feed. After that they were
separated randomly into two groups (𝑛 = 8/group). Rats
were randomly assigned into a diet-induced hyperlipidaemia
group and control group. The control group was fed with
the common diet during the whole experimental period, and
the diet-induced hyperlipidaemia group was fed with high
fat diets including 81% basic diet, 10% yolk powder, 7.5%
lards, 0.3% sodium cholate, 0.2% methylthiouracil, and 1%
cholesterol for continuous 6 weeks. After 6 weeks, individual
rats were placed in metabolic cages (1 per cage) to obtain 24-
hour urine collections. When urine samples were collected,
rats were only freely accessible to water. All the samples were
stored at −80∘C before analysis.

2.2. Sample Preparation. Prior to analysis, urine samples
were thawed at room temperature and then centrifuged
at 13000 rpm for 10min to remove solid materials. The
supernatant was diluted at a ratio of 3 : 1 with distilled water,
mixed, and centrifuged for UPLC analysis.

2.3. Chromatographic Separation. The UPLC analysis was
performed on a Waters ACQUITY Ultra Performance LC
system (Waters, USA) equipped with a Waters Xevo G2
QTof MS. Chromatographic separation was carried out at
45∘C on an ACQUITY UPLC HSS T3 column (2.1mm
× 100mm, 1.8 𝜇m). The mobile phase consisted of water
(A) and acetonitrile (B), each containing 0.1% formic acid.
The optimized UPLC elution conditions were 0–0.5min, 1%
B; 0.5–12.0min, 1–30% B; 12.0–15.0min, 30–99% B; 15.0–
16.0min, 99% B; 16.0–20.0min, 99.0–1.0% B. The flow rate
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was 0.45mL/min. The autosampler was maintained at 4∘C.
Every 2 𝜇L sample solution was injected for each run.

2.4. Mass Spectrometry. Mass spectrometry was performed
on a quadrupole and orthogonal acceleration time-of-flight
tandem mass spectrometer. The scan range was from 50 to
1200𝑚/𝑧. For both positive and negative electrospraymodes,
the capillary and cone voltage were set at 2.5 kV and 45V,
respectively. The desolvation gas was set at 900 L/h at a
temperature of 550∘C; the cone gas was set at 50 L/h; the
source temperature was set at 120∘C. The mass spectrometry
was operated in W optics mode with 12,000 resolution using
dynamic range extension.The data acquisition rate was set to
0.1 s, with a 0.1 s interscan delay. All analyses were acquired
using the LockSpray to ensure accuracy and reproducibility.
Leucine-enkephalin was used as the lockmass at a concen-
tration of 300 ng/mL and flow rate of 5 𝜇L/min. Data were
collected in centroid mode, the LockSpray frequency was
set at 10 s, and data were averaged over 10 scans. All the
acquisition and analysis of data were operated by Waters
MassLynx v4.1 software.

2.5. Analytical Method Assessment. The precision and repea-
tability of this experiment were tested for assessment of the
developedUPLC-MSmethod according to different chemical
polarities and 𝑚/𝑧 values; 8 ions including 𝑚/𝑧 284.2934,
340.1060, 282.2779, 256.2620, 367.1490, 296.2360, 372.2366,
and 330.0618 were extracted for the assessment according to
the variation of their peak areas and retention times. The six
parallel random samples were injected to evaluate the sample
preparation repeatability. Sample of quality control (QC) was
injected. There were six control rats and six diet-induced
hyperlipidemia rats; six batches of data from one QC sample
could be obtained to evaluate the stability of the UPLC-MS
system for the large-scale sample analysis.

2.6. Data Analysis. The raw data were analyzed using the
MarkerLynx XS software. This software allowed deconvolu-
tion, alignment, and data reduction to give a list of mass
and retention time pairs with corresponding intensities for
all the detected peaks from each data file in the data set.
The main parameters were set as follows: retention time
range 1–18min,mass range 50–1000 amu,minimum intensity
1%, mass tolerance 0.01, retention time window 0.20, mass
window 0.05, marker intensity threshold 500, and noise
elimination level 6. All of the data were normalized to
the summed total ion intensity per chromatogram, and
the resultant data matrices were introduced to the EZinfo
2.0 software for OPLS-DA. Metabolite peaks were assigned
by MSE analysis or interpreted with available biochemical
databases, such as HMD, ChemSpider, and KEGG. Potential
markers were extracted from S-plots. Correlation analysis
and heatmapswere analyzed byMetaboAnalyst software.The
other statistical analysis was performed by SPSS 11.0.The sig-
nificant differences between control group and diet-induced
hyperlipidemia group were assessed by analysis of variance
(ANOVA) followed by 𝑡-test formultiple comparisons.When

comparing with the control group, 𝑃 values less than 0.05
were considered significant.

3. Results and Discussion

3.1. Sample Preparation and UPLC-MS Analysis. Urine is a
complex sample containing various endogenous and exoge-
nous acidic, basic, and neutral compounds with high polar-
ity. Sample preparation by conventional methods including
solid-phase extraction or liquid-liquid extraction may lead
to loss of high polarity and high hydrophilicity metabolites.
While metabolomics is an untargeted analysis of the global
changes in endogenous metabolites, conventional methods
may cause loss of potential biomarker. Therefore, minimal
sample preparation steps were performed on urinary samples
in order to avoid the loss of the endogenous metabolites.
Urinary samples were centrifuged and diluted prior to the
direct injection into UPLC-MS.

The complexity of the urinary sample makes the sepa-
ration very difficult and consequently results in severe ion
suppression. UPLC employs sub-2 𝜇m particle size column,
which generates high efficiency to the compound separation
and concurrently increases sensitivity and resolution. Thus,
UPLC was applied to urinary metabolomics of diet-induced
hyperlipidaemia rats in the positive and negative ESI modes.
Representative base peak intensity (BPI) chromatogram of
the urine of diet-induced hyperlipidaemia rats in the pos-
itive ESI mode is shown in Figure 1. Reproducibility was
determined from six replicated analyses of the same urinary
sample. The variations of 𝑚/𝑧 values and retention times
of selected peaks in positive ESI mode were less than
8mDa and 0.05min, respectively, and the relative standard
deviations of peak area and retention time are below 2.9%
and 0.78%, respectively. These results indicated the excellent
reproducibility and stability during the whole sequence.

3.2. Multivariate Data Analysis. Metabolomics aims at the
comparison of samples from a control group and from a
case group. The OPLS-DA is an extension of the partial least
squares discriminant analysis which integrates an orthog-
onal signal correction filter to distinguish variations that
are useful for prediction of a quantitative response from
variations that are orthogonal to prediction. OPLS-DA was
demonstrated as a powerful tool for the analysis of qualitative
data structures. OPLS-DA score plot was performed on the
urinary metabolites from diet-induced hyperlipidemia rats
and control rats. According to UPLC-MS data, 8642 peaks
of positive ions were detected and processed by MarkerLynx
using the same acquiring method. Figure 2(a) shows the
OPLS-DA score plot of the diet-induced hyperlipidemia rats
and control rats. The OPLS-DA score plot revealed good
fitness and high predictability of the OPLS-DA model with
high statistical values of 𝑅2 and 𝑄2. The 𝑅2 and 𝑄2 values are
0.975 and 0.933, respectively. S-plot is a tool for visualization
and interpretation of multivariate classification models. It
images both the covariance and correlation between the
metabolites and the modeled class designation for identifica-
tion of statistically significant and biochemically interesting
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Figure 1: Base peak intensity (BPI) chromatograms obtained from the positive ion UPLC-MS analyses of control (a) and diet-induced
hyperlipidemia (b) rats.
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Figure 2: (a)OPLS-DA score plot based on the urinarymetabolic profiling of the hyperlipidemia (e) and control (󳵳) rats; the results indicated
that the urinary metabolic pattern was significantly changed in the diet-induced hyperlipidemia rats. (b) S-plot used in our biomarkers
selection.The variables marked (◻) are the metabolites selected as potential biomarkers.The significant metabolites were selected as potential
biomarkers from S-plot and these urinary metabolites are associated with diet-induced hyperlipidemia.

metabolites which can avert the increase of false positives
(type I error). The significant metabolites were selected as
potential biomarkers fromS-plot (Figure 2(b)).These urinary
metabolites are associated with diet-induced hyperlipidemia.

3.3. Identification of Potential Biomarkers. For metabolomics
research, the biggest challenge is the identification of poten-
tial biomarkers obtained from comparative samples, par-
ticularly when they are novel and published work on the
compound class is unavailable or prior information is lacking
otherwise. All the detected ions were arranged in descending

order according to VIP (Variable Importance in the Projec-
tion) values, which reflect the influence of each metabolite in
control rats and diet-induced hyperlipidemia rats. The more
the variable deviates from the origin, the higher the VIP
value will be obtained. According to the result of S-plot and
reported methods, 16 variables were predicted by comparing
the accurate MS and MSE fragments with the metabolites
searching in ChemSpider, HMDB, and KEGG, and according
to the possible fragment mechanisms, compounds without
the givenmass fragment information were removed from the
candidate list and only the most probable compounds were
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Table 1: 13 biomarkers of hyperlipidemia detected by UPLC Q-TOF/MS in negative ion mode in the 4th week.

Number Mass Metabolite i-FITa, elemental
composition Molecular weight Formula Trendb Related pathway

1 284.2934 Octadecanamide 0.9, C18H38NO 283.4925 C18H37NO ↑
∗∗ Fatty acid metabolism

2 282.2779 Oleamide 1.2, C18H36NO 281.2718 C18H35NO ↑
∗∗ Fatty acid metabolism

3 188.0713 Tryptophan 0.9, C11H10N1O2 204.2252 C11H12N2O2 ↑
∗∗ Amino acid

metabolism
4 193.1235 Citric acid 0.7, C6H9O7 192.1243 C6H8O7 ↓

∗∗ TCA cycle

5 330.0618 Adenosine 2󸀠,3󸀠-cyclic
phosphate 1.0, C10H13N5O6P 329.2059 C10H12N5O6P ↓

∗∗ Purine metabolism

6 393.3002 Ursodeoxycholic acid 0.8, C24H41O4 392.5720 C24H40O4 ↑
∗∗ Bile acid metabolism

7 114.0641 Creatinine 1.2, C4H8N3O 113.1179 C4H7N3O ↑
∗∗ Energy metabolism

8 281.0979 Ascorbalamic acid 0.9, C9H17N2O8 263.2014 C9H13NO8 ↑
∗∗ Carbohydrate

metabolism

9 259.0913 3-Methyluridine 1.2, C10H15N2O6 258.228 C10H14N2O6 ↑
∗∗ Nucleoside

metabolism

10 212.1025 3-O-Methyldopa 1.7, C10H14NO4 211.2145 C10H13NO4 ↓
∗∗ Amino acid

metabolism

11 162.1108 Proline 0.7, C7H13O3 115.1305 C7H12O3 ↓
∗∗ Amino acid

metabolism

12 282.1216 1-Methyladenosine 1.2, C11H16N5O4 281.2679 C11H15N5O4 ↓
∗∗ Nucleoside

metabolism

13 162.0538 Indole-3-carboxylic
acid 0.8, C9H8NO2 161.1574 C9H7NO2 ↑

∗∗ Amino acid
metabolism

14 368.1594 Tryptophyl-tyrosine 1.2, C20H22N3O4 367.3984 C20H21N3O4 ↑
∗∗ Amino acid

metabolism

15 166.0708 Phenylalanine 0.9, C9H12NO2 165.1891 C9H11NO2 ↓
∗∗ Amino acid

metabolism

16 126.0643 5-Methylcytosine 1.3, C5H8N3O 125.1286 C5H7N3O ↓
∗∗ Nucleoside

metabolism
ai-FIT; the i-FIT is the correctness of isotope patterns of elemental composition. The lower i-FIT normalized values mean high precision of the elemental
composition; bchange trend of hyperlipidemia rats versus control rats. The potential biomarkers were labeled with (↓) downregulated and (↑) upregulated.
∗
𝑃 < 0.05 and ∗∗𝑃 < 0.01.

reserved [21, 22]. MassLynx i-FIT algorithm is used to screen
suggested elemental compositions by the likelihood that the
isotopic pattern of the elemental composition matches a
cluster of peaks in the spectrum, increasing confidence in
identified compounds and simplifying results. The lower
the i-FIT value, the better the fit [23]. By comparing the
retention times and mass spectra to the authentic chemicals,
16 compounds were tentatively identified and shown in
Table 1.

3.4. Study of Metabolic Changes and Biochemical Interpreta-
tion in Diet-Induced Hyperlipidemia Rats. Differences in the
levels of metabolites between diet-induced hyperlipidemia
rats and control rats were compared using OPLS-DA. The
metabolic profiling andmultivariate pattern recognitionmay
observe a wider range of metabolites. Since metabolites can
be regulated through a number of metabolic pathways, an
investigation of the overall features rather than of several
selectedmetabolites enabled us to understand the underlying
pathophysiological status more comprehensively.

To investigate the change of identifiedmetabolites in diet-
induced hyperlipidemia rats, relative intensity of identified
metabolites compared diet-induced hyperlipidemia rats with

control rats. Increased urinary octadecanamide, oleamide,
tryptophan, ursodeoxycholic acid, creatinine, ascorbalamic
acid, 3-methyluridine, indole-3-carboxylic acid, and trypto-
phyl-tyrosine and decreased urinary citric acid, adeno-
sine 2󸀠,3󸀠-cyclic phosphate, 3-O-methyldopa, proline, 1-
methyladenosine, phenylalanine, and 5-methylcytosine were
observed in diet-induced hyperlipidemia rats (Figure 3(a)).
Above-mentioned metabolites might play important roles in
the metabolic changes of diet-induced hyperlipidemia rats.
OPLS-DA loading plot was also generated in diet-induced
hyperlipidemia rats and control rats. The loading plot indi-
cated that identified metabolites were quantitatively higher
or lower in diet-induced hyperlipidemia rats compared with
control rats. Concentrations of identified metabolites includ-
ing octadecanamide, oleamide, tryptophan, ursodeoxycholic
acid, creatinine, ascorbalamic acid, 3-methyluridine, indole-
3-carboxylic acid, and tryptophyl-tyrosine were significantly
increased in diet-induced hyperlipidemia rats, whereas the
concentrations of citric acid, adenosine 2󸀠,3󸀠-cyclic phos-
phate, 3-O-methyldopa, proline, 1-methyladenosine, pheny-
lalanine, and 5-methylcytosine were decreased in diet-
induced hyperlipidemia rats (Figure 3(a)), which are in agree-
ment with the changes of relative intensity (Figure 3(b)). The
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Figure 3: (a) Comparison of the relative intensity and (b) OPLS-
DA loading plot of putative potential biomarkers in control and
diet-induced hyperlipidaemia rats. The loading plots represent
whichmetabolites are quantitatively higher or lower in diet-induced
hyperlipidaemia rats compared with control rats. Numbers consist
with Table 1.

results demonstrated that these upregulated or downregu-
lated metabolites are associated with diet-induced hyperlipi-
demia.

To further understand the metabolic differences between
diet-induced hyperlipidemia rats and control rats, identi-
fied metabolites were analyzed using correlation analysis
and clustering heat maps. Correlation analysis showed the
relation of differential metabolites. From the above plots,
identified metabolites could be considered as being respon-
sible for the separation between diet-induced hyperlipi-
demia rats and control rats and were therefore regarded
as potential biomarkers. Heat map showed directly the
variation of each metabolite, and the identified metabolites
were visualized in a clustering heat map. Identified metabo-
lites are showed in heat map, which shows the relative
increase (red) or decrease (green) compared with control
rats (Figure 4(a)). The hyperlipidemia model was capable of
distinguishing diet-induced hyperlipidemia rats from con-
trol rats. The metabolites octadecanamide, oleamide, tryp-
tophan, ursodeoxycholic acid, creatinine, 3-methyluridine,
indole-3-carboxylic acid, and tryptophyl-tyrosine showed
an increasing tendency in diet-induced hyperlipidemia rats.

Although these metabolites showed similar tendencies to
increase, some of the metabolites showed different increasing
levels in diet-induced hyperlipidemia rats. In contrast, the
metabolites citric acid, adenosine 2󸀠,3󸀠-cyclic phosphate, 3-
O-methyldopa, proline, 1-methyladenosine, phenylalanine,
and 5-methylcytosine showed a decreasing tendency in diet-
induced hyperlipidemia rats.These results are consistent with
the relative intensity and OPLS-DA loading plots.

Amino acids serve as substrates for protein synthe-
sis, metabolic energy (oxidation through TCA cycle), or
gluconeogenesis and ketogenesis [24]. Increased urinary
tryptophan and tryptophyl-tyrosine and decreased urinary
phenylalanine were observed in diet-induced hyperlipidemia
rats. Tryptophan is essential amino acid which cannot be
synthesized by the body. Tryptophan either participates
in proteins or is broken down for energy and metabolic
intermediates. Dopamine is an important neurotransmitter
as 5-hydroxytryptamine, which is derived from tryptophan
metabolism. 3-O-Methyldopa is one of the main biochem-
ical markers for aromatic amino acid decarboxylase defi-
ciency, which affects dopamine biosynthesis. An obvious
decrease of 3-O-methyldopa was observed in diet-induced
hyperlipidemia rats compared with control rats. Indole-3-
carboxylic acid is themetabolite of tryptophan, the precursor
of neurotransmitter 5-hydroxytryptamine. Level of indole-3-
carboxylic acid was significantly increased in diet-induced
hyperlipidemia rats compared with control rats. Phenylala-
nine is an essential amino acid and its hydroxylation by
phenylalanine hydroxylase to tyrosine is the major metabolic
pathway for phenylalanine. Significant fate of tyrosine is a
conversion to the catecholamines, for example, dopamine,
norepinephrine, and epinephrine [25]. Diet-induced hyper-
lipidemia associated with dysfunction of tryptophan and
phenylalanine, which were identified as potential biomarkers
for hyperlipidemia or atherosclerosis, has been demonstrated
[9, 26]. Proline is the catabolite of peptide degradation
by proline iminopeptidase and is a precursor of pyruvate.
Pyruvate can be converted into acetyl-CoA, which is the
main input for a series of reactions known as the TCA
cycle. Decreases in levels of proline and citric acid were
observed in diet-induced hyperlipidemia rats. Decrease in
proline was related to the glutamate/P5C synthase pathway
via inactivating P5C synthase or other enzymes involved [27].
The previous study demonstrated that urinary citric acid was
significantly decreased in diet-induced hyperlipidemia [9].
These results indicated that amino acids metabolism and
TCA cycle were disturbed in diet-induced hyperlipidemia
rats.

Increased 3-methyluridine and decreased 1-methylade-
nosine and 5-methylcytosine were observed in diet-induced
hyperlipidemia rats. It has been demonstrated that 3-
methyluridine and 1-methyladenosine were significantly
increased in the pathogenesis of Alzheimer’s disease [28].
1-Methyladenosine is one of the modified nucleosides; the
level is elevated in urine of patients with malignant tumors.
Examination of expression of 1-methyladenosine is expected
to be useful for the histological diagnosis of intraocular
tumors. However, the previous study did not report that
3-methyluridine, 1-methyladenosine, and 5-methylcytosine
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Figure 4: Correlation analysis (a) of the differential metabolites in control rats and diet-induced hyperlipidaemia rats. Heat map (b) for
identified metabolites in control rats and diet-induced hyperlipidaemia rats. The color of each section is proportional to the significance of
change of metabolites (red, upregulated; green, downregulated). Rows: samples; columns: metabolites. Numbers consist with Table 1.

were identified as potential biomarkers in diet-induced
hyperlipidemia rats.

The concentrations of octadecanamide and oleamide
were higher in diet-induced hyperlipidemia rats than in
control rats. Fatty acids are reported to be associated with
atherosclerotic and inflammatory diseases because they are
the major components of the cytoplasmic membrane and
the precursor fatty acids for prostaglandins and leukotrienes
[29]. Bile acids have many important physiological func-
tions such as lipid absorption, cholesterol homeostasis,
and generation of bile flow that help in the recirculation
and excretion of exogenous and endogenous metabolites.
Increased urinary ursodeoxycholic acid was observed in diet-
induced hyperlipidemia rats compared with control rats. It
has been demonstrated that increased ursodeoxycholic acid
was associated with atherosclerosis and ursodeoxycholic acid
was identified as a potential biomarker in atherosclerosis
rats [26]. In addition, the previous study demonstrated
that urinary cholesterol was significantly increased in diet-
induced hyperlipidemia [12]. Creatinine is usually produced
at a relatively constant rate by the human body. Although
serum creatinine is a commonly used indicator of renal
function, increased urinary creatinine is observed only when
significant injury occurs in renal function. Therefore, an
increased level of urinary creatinine observed in the diet-
induced hyperlipidaemia rats might indicate renal injury
caused by hyperlipidaemia.

4. Conclusions

Urinary metabolomics based on UPLC Q-TOF/HDMS, a
novel MSE data collection technique, and a multivariate sta-
tistical technique has been used to study diet-induced hyper-
lipidaemia in a rat model. The OPLS-DA score plot showed
the complete distinction of diet-induced hyperlipidaemia rats
and control rats. Furthermore, significant differences in the
urinary levels of fatty acids, amino acids, nucleosides, and
bile acids were observed in diet-induced hyperlipidaemia
rats. These results demonstrated the perturbations of fatty
acids metabolism, amino acid metabolism, and nucleosides
metabolism of diet-induced hyperlipidaemia. This research
also demonstrated that UPLC-MS-based metabolomics was
a promising tool to find and identify potential biomarkers in
diet-induced hyperlipidaemia rats.
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