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Abstract
Availability of multi-modal magnetic resonance image (MRI) databases opens up the opportunity
to synthesize different MRI contrasts without actually acquiring the images. In theory such
synthetic images have the potential to reduce the amount of acquisitions to perform certain
analyses. However, to what extent they can substitute real acquisitions in the respective analyses is
an open question. In this study, we used a synthesis method based on patch matching to test
whether synthetic images can be useful in segmentation and inter-modality cross-subject
registration of brain MRI. Thirty-nine T1 scans with 36 manually labeled structures of interest
were used in the registration and segmentation of eight proton density (PD) scans, for which
ground truth T1 data were also available. The results show that synthesized T1 contrast can
considerably enhance the quality of non-linear registration compared with using the original PD
data, and it is only marginally worse than using the original T1 scans. In segmentation, the relative
improvement with respect to using the PD is smaller, but still statistically significant.

1 Introduction
Synthesizing MRI contrasts is a computational technique that modifies the intensities of a
MRI scan in such a way that it seems to have been acquired with a different protocol. It
finds application in several areas of neuroimaging. For example, in multi-site studies, an
ideal synthesis method would have (in principle) the potential of making it possible to
combine scans from different scanner manufacturers in the analysis without affecting the
statistical power to detect population differences [1]. Contrast synthesis can also be used in
segmentation: many publicly available methods (especially those based on machine
learning, e.g. [2]) are MRI contrast specific and rely on absolute voxel intensities. Synthesis
allows us to apply them to data with other types of MRI contrast [3].

Synthesis also has potential benefits for cross-modality image registration, for which metrics
based on mutual information (MI) are typically used [4]. While MI suffices to linearly
register data, it often fails in the nonlinear case when the number of degrees of freedom of
the transform is high. On the other hand, highly flexible transforms do not represent a big
problem in the intra-modality case, for which metrics such as the sum of squared differences
(SSD) or normalized cross-correlation (NCC) have been proven successful [5]. Synthesis
can be used to convert an ill-posed inter-modality registration problem into an intra-
modality problem that is easier to solve, as recently shown in [6] for microscopic images.

Previous work in synthetic MRI can be classified into three major branches. The first family
of approaches, such as [7], is based on the acquisition of a set of MRI scans that make it
possible to infer the underlying, physical MRI parameters of the tissue (T1, PD, T2/T2*).
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While these parameters can be used to synthesize any arbitrary MRI contrast, data acquired
with such a protocol is scarce, limiting the applicability of this approach. The second branch
uses a single scan to estimate the synthetic image by optimizing a (possibly space
dependent) transform that maps one MRI contrast to the other, often in conjunction with
registration. The transform model can be parametric, such as [8] (a mixture of polynomials),
or a non-parametric joint histogram, as in [9].

The third type of approach is exemplar-based. The underlying principle is to use a pre-
acquired database of images from different subjects, for which two modalities are available:
source, which will also be acquired for new subjects, and target, that will be synthesized.
Given the source of a test subject, the target can be synthesized using patch-matching [10] or
dictionary learning approaches [11, 6]. Exemplar-based approaches are particularly
interesting as they do not model the imaging parameters and they naturally incorporate
spatial context (i.e. neighboring voxels) in the synthesis, as opposed to applying a transform
to the intensity of each voxel independently. They are extremely general and produce
visually attractive results even with image databases of limited size.

While patch-based synthesis can produce results that are visually impressive, it is unclear if
the synthesized images are mere “pastiches” or they can substitute real acquisitions for some
tasks in multi-modal MRI analysis. To answer this question, we used a patch-matching
driven, exemplar-based approach to synthesize T1 data from PD images, for which T1
images were also available. Then, we used a separate dataset of T1 scans to register and
segment: 1. the PD images; 2. the synthetic T1 data; and 3. the true T1 data. These
experiments allow us to quantitatively assess whether more accurate registration and
segmentation can be obtained using the synthesized T1 images rather than the PD data, as
well as the decrease in performance when synthesized T1 images replace the true T1
volumes. Finally, we also compare the performance of the exemplar-based approach with
two intensity-transform-based synthesis techniques.

2 Patch-Based Synthesis Method
Here we use a patch-matching algorithm inspired by the methods in [12, 13] and also Image
Analogies [10]. Given a source image I, the goal is to synthesize a target image S using a

pre-acquired database of coupled images  from N different subjects. We
define an image patch centered in a spatial location x as Wd(x) = {y : ||y −x||2 ≤ d}. Our
method implements patch-matching: for every x, we search the database for the patch in
source modality In(Wd(y)) that best resembles I(Wd(x)). Then we use the information in the
corresponding patch in target modality Sn(Wd(y)) to generate the synthesized value
S(Wd(x)).

Specifically, the search for the most similar patch is formulated as:

(1)

This minimization problem provides an estimate for the synthesized patch as S(Wd (x)) =
Sn*(Wd (y*)). Because each x is included in more than one patch, the method estimates
multiple synthesized intensity values for x, one coming from each patch x is contained in.
Let us denote these different estimates with SWd(x′)(x), i.e., the synthetic value at x as
estimated by the patch centered in x′. Based on this, we compute the final estimate for S(x)
as the average:
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(2)

where |·| is the cardinality of the set.

The optimization in Equation 1 can be computationally expensive, considering that it needs
to be solved if for each voxel x. Two simple cost reduction methods are used here. First, as
done in [12], we assume that all images are linearly aligned, which allows us to restrict the
search window for y as:

(3)

where WD(x) is a patch of size D around x. The second speed-up is to solve the
minimization problem in a multi-resolution fashion using a search grid pyramid. At low
resolution, a large D can be used. The found correspondences can be carried over to the
higher resolution, and the search repeated with a smaller D.

3 Experiments and results
3.1 MRI data

We used two datasets in this study, one for training and one for testing. The training dataset
consists of 39 T1-weighted scans acquired with a MP-RAGE sequence in a 1.5T scanner, in
which 36 structures of interest were labeled by an expert rater with the protocol in [14]. We
note that this is the same dataset that was used to build the atlas in FreeSurfer [15]. The test
dataset consists of MRI scans from eight subjects acquired with a FLASH sequence in a
1.5T scanner. Images with two different flip angles were acquired, producing PD-weighted
and T1-weighted images in the same coordinate frame. The test dataset was labeled using
the same protocol; the annotations were made on the T1 data in order to make them as
consistent as possible with the training dataset.

The brain MRI scans were skull-stripped, bias-field corrected and affinely aligned to
Talairach space with FreeSurfer. The T1 volumes (both training and test) were intensity-
normalized using FreeSurfer. The PD volumes were approximately brought to a common
intensity space by multiplying them by a scaling factor that matched their medians to a
constant intensity value.

3.2 Experimental setup
We performed two sets of experiments to evaluate the use of synthetic MRI on registration
and segmentation. For registration, we first non-linearly registered the training dataset to
the test images, and then used the resulting transform to propagate the corresponding labels.
The Dice overlap between the ground truth and deformed labels was used as a proxy for the
quality of the registrations. To evaluate the algorithms at different levels of flexibility of the
spatial transform, we considered two deformation models: one coarse and one fine. As a
coarse deformation model, we used a grid of widely spaced control points (30 mm.
separation) with B-spline interpolation as implemented in Elastix [16]. As a more flexible
model, we used the symmetric diffeomorphic registration method implemented in ANTS
[17], with Gaussian regularization (kernel width 3 mm).

Five approaches were tested in this experiment. First, registering the training data to the PD
volumes using MI as a metric (computed with 32 bins); Second, registering the training data
to the test T1 volumes using NCC, which works better than MI in intramodality scenarios.
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The output from this method represents an upper bound on the quality of the registration that
can be achieved with synthetic MRI. The other three methods correspond to registering the
training data to synthetic T1 volumes (generated with three different approaches) using NCC
as cost function. The synthesis was carried out in a leave-one-out fashion such that, when
synthesizing the T1 volume corresponding to a PD scan, the remaining seven T1-PD pairs
were treated as the corresponding database.

The three contrast synthesis algorithms were: 1. the exemplar-based method described in
Section 2 (patch size , i.e., 26 neighborhood, and search window size ); 2.
an in-house implementation of the algorithm in [8]; and 3. an in-house implementation of
[9]. In the corresponding original papers, [8] and [9] use the information from the registered
image to estimate the gray level transform and the joint histogram, respectively. Instead, we
compute the transforms directly from the information in the training dataset. For [8], we
used the monofunctional dependendence with a ninth-order polynomial.

In the segmentation experiments, we fed the real T1 scans as well as their synthetic
counterparts (computed with the same three methods) to the FreeSurfer pipeline, which
produces an automated segmentation of the brain structures of interest based on an atlas
built using the training dataset, i.e. 39 T1 images. As in the registration experiment, the
results from the real T1 scans serve as an upper limit of the performance with the synthetic
data. As another benchmark, we segmented the PD scans directly as well. Since FreeSurfer
requires T1 data, we segmented the PD scans using the sequence-independent method
implemented in the software package SPM [18], which is based on a statistical atlas. To
make the comparison with FreeSurfer as fair as possible, we used the statistical atlas from
this package in the SPM segmentation.

Both in the registration and segmentation experiments, statistical significance was assessed
with paired, non-parametric tests (Wilcoxon signed rank). For a more compact presentation
of results, we merged right and left labels and used only a representative subset of the 36
labeled structures in the evaluation: white matter (WM), cortex (CT), lateral ventricle (LV),
thalamus (TH), caudate (CA), putamen (PT), pallidum (PA), hippocampus (HP) and
amygdala (AM).

3.3 Results
Qualitative synthesis results—Figure 1 displays an axial slice of a scan from the test
dataset (both in T1 and PD) along with the corresponding T1 images generated from the PD
data using the three evaluated synthesis methods. The exemplar-based approach, despite
introducing some minimal blurring due to the averaging, produces a visually better synthesis
of the ground truth T1 data. In particular, it displays excellent robustness to noise and
outliers; for instance, the vessels are interpreted as white matter by the other approaches
methods while the exemplar-based method correctly maps them to dark intensities.

Registration—Figure 2 show boxplots for the Dice scores achieved by the different
approaches using the coarse and fine deformation models. For the coarse model, using T1
data (synthetic or real) has little impact on the accuracy for the white matter, cortex,
ventricles, thalamus and caudate. However, it yields a considerable boost for the putamen,
pallidum, hippocampus and amygdala. All synthesis approaches outperform directly using
the PD volume in non-linear registration. The exemplar-based method produces results as
good as the acquired T1, outperforming the other two synthesis approaches.

The flexible model is more attractive in practice because it can produce much more accurate
deformation fields. However, MI becomes too flexible in this scenario, making the inter-
modal registration problem ill posed. Hence, direct registration of T1 to PD data produces
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poor results. Combining synthesis and NCC yields much higher performance. Again, the
exemplar-based approach stays on par with the real T1, outperforming the other two
synthesis approaches.

Segmentation—the boxplot for the Dice scores in the segmentation experiment are show
in Figure 3, whereas numerical results and p-values for the statistical tests are displayed in
Table 1. The decrease in performance of using exemplar-based synthetic T1 with respect to
using the acquired T1 is small. However, considering that scores obtained when directly
segmenting PD images are high, we conclude that the potential benefits of synthetic MRI in
this application are less than in registration. Still, we note that the patch-based approach is
able to significantly outperform the segmentation based on the PD data (2% increment in
Dice, p = 0.04 despite the small N = 8). This suggests that improving the synthesis method
has the potential to make synthesis useful for segmentation.

4 Discussion
This article tried to answer the question whether synthesizing MRI contrast, in particular
with the generic exemplar-based approach based on simple patch-matching, is useful in
inter-modal analysis of brain MRI. Our experiments showed that exemplar-based synthesis
outperforms methods based on intensity transforms. We also found that, in cross-modality
registration, synthesizing a scan that resembles the moving images and using NCC as a
metric produces considerably more accurate deformation fields than directly registering
across modalities with MI. In segmentation, synthesizing a T1 volume and segmenting it
with FreeSurfer was only marginally better than segmenting the original PD data directly.
These results suggest that synthesis can be a poor man’s alternative to acquiring new images
for cross-subject non-linear registration. Future work will include evaluating how synthesis
affects other analyses, e.g., cortical thickness.
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Fig. 1.
Sagittal slice of a sample MRI scan from the test dataset: (a) PD-weighted volue, (b) T1-
weighted volume, (c) T1 volume synthesized from the PD data using [8], (d) synthesized
with [9], (e) synthesized with the exemplar-based method.
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Fig. 2.
Boxplot of Dice scores in the registration experiment with the coarse (top) and symmetric
diffeomorphic (bottom) deformation models. See Section 3.2 for the abbreviations. Color
code: magenta = PD registered with MI, red = synthetic T1 from [8], green = synthetic T1
from [9], blue = synthetic T1 from exemplar-based approach, black = ground truth T1.
Horizontal box lines indicate the three quartile values. Whiskers extend to the most extreme
values within 1.5 times the interquartile range from the ends of the box. Samples beyond
those points are marked with crosses. All the differences are statistically significant at
p=0.001 (sample size 39 × 8 = 312).
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Fig. 3.
Boxplot of the Dice scores in the segmentation experiment. See caption of Figure 2 for the
abbreviations and color code.
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