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Abstract
Simulations of cardiac bioelectric phenomena remain a significant challenge despite continual
advancements in computational machinery. Spanning large temporal and spatial ranges demands
millions of nodes to accurately depict geometry, and a comparable number of timesteps to capture
dynamics. This study explores a new hardware computing paradigm, the graphics processing unit
(GPU), to accelerate cardiac models, and analyzes results in the context of simulating a small
mammalian heart in real time. The ODEs associated with membrane ionic flow were computed on
traditional CPU and compared to GPU performance, for one to four parallel processing units. The
scalability of solving the PDE responsible for tissue coupling was examined on a cluster using up
to 128 cores. Results indicate that the GPU implementation was between 9 and 17 times faster
than the CPU implementation and scaled similarly. Solving the PDE was still 160 times slower
than real time.

I. INTRODUCTION
Computational modeling of the bioelectric activity of the heart has made major contributions
to our understanding of cardiac bioelectric phenomena, such as the tissue response to
stimulation [1], the formation of arrhythmias [2], and their termination by electrical shocks
[3]. The large span of space and time scales involved, ranging from microseconds to
minutes, and from micrometers (cell) to centimeters (organ), makes simulation an inherently
expensive task from the computational standpoint. So far, virtually all studies have had to
find a trade-off between level of detail and usage of resources keep simulations tractable.
While some choose to simplify geometry, using strands, sheets, or slabs, others opt for
coarser spatial discretization or simplified cellular dynamics.

Fueled by recent advances in mesh generation [4], the availability of parallel toolkits [5] that
simplify the implementation of parallel solver strategies for PDEs [6], [7] and ODEs [8], and
the increasing adoption of parallel hardware, current research aims to push the limits of
multiscale in silico models of the heart. Researchers will be able to flexibly decide which
simplifications are made, if any, based on the availability computing resources. Nonetheless,
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highly detailed simulations remain prohibitive. For instance, Plank has reported [9] that a
monodomain simulation of an anatomically realistic rabbit ventricular model with state-of-
the-art cellular dynamics [10] lags real-time by a factor of ~ 4200 when executed on a
cluster with 128 processors. For a full-blown bidomain formulation, the numbers are even
more sobering, with execution times lagging roughly 65,000 times behind real-time. Further,
this problem cannot circumvented simply by increasing the number of processors, since
some components of the solver schemes do not scale well, so a brute-force increase in the
number of cores will not necessarily lead to a meaningful reduction in execution time.

With the advent of new PetaFLOPS machines, it can be expected that some restrictions will
be lifted, but a dramatic change in hardware paradigms will take place. Although it is
controversially debated which paradigm will dominate the near future of high performance
computing or which one will prevail in the long run, it is widely accepted that increasing the
number of computational cores will play a pivotal role. In addition to classical CPU
computing, new paradigms that are currently being discussed include graphical processing
units (GPUs), cell processors, and field-programmable gate arrays. In this study, we explore
the use of GPUs to speed up cardiac monodomain and bidomain simulations. Unlike in a
previous study where significant speedups for solving the elliptic portion of the bidomain
equations on a GPU were reported [11], the focus here is applying GPUs to solve the set of
ODEs that describes cellular. Recent models of cellular dynamics use increasingly detailed
representations of sarcolemmal and subcellular mechanisms, which increase computational
complexity due to an increased number of state variables and a more pronounced property of
stiffness between equations. With such models, a substantial percentage of the overall
computational expense can be attributed to solving the ODEs, which makes it worthwhile to
investigate potential performance benefits from using GPUs.

The objective of this study is to demonstrate the feasibility of offloading the computational
burden of solving the system of ODEs to the GPU. We compare a parallel high-performance
implementation of the recent Mahajan and Shiferaw model [10] with a GPU implementation
which was derived from the same code. Results suggest that a GPU implementation
outperforms the CPU version by a factor of at least 10 to 15.

II. METHODS
A. Governing equations

The bidomain formulation (Plonsey et al. 1988), a continuum approximation that treats
cardiac tissue as a syncytium, states that currents entering the intracellular space must leave
the extracellular space by crossing the cell membrane (or vice versa). The equations can be
written as:

(1)

(2)

(3)
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(4)

where ϕe is the extracellular potential, Vm is the transmembrane voltage,  and  are the
intracellular and extracellular conductivity tensors, β is the membrane surface to cell volume
ratio, Im is the transmembrane current density, Itr is the transmembrane stimulus current
density, Ie is the current density of the extracellular stimulus, Cm is the membrane
capacitance per unit area, and Iion is the density of the total current flowing through the
membrane ionic channels, pumps, and exchangers, which depends in turn on Vm and a set of

state variables . At the tissue boundaries, electrical isolation is assumed, with the
imposition of no-flux boundary conditions. Operator splitting was applied to (2) to decouple
the non-linear parabolic PDE into a linear parabolic PDE and a non-linear set of ODEs. The
Galerkin finite element method was employed for spatial discretization using tetrahedral
elements with linear weighting functions.

B. Reference implementations for the CPU
The LIMPET library is the ionic model backend of the Cardiac Arrhythmia Research
Package (CARP) for solving the set of non-linear ODEs given by:

(5)

The implementation employs numerous optimizations including table lookups, temporal
decoupling of different time scales and dynamic reformulation of equations [8]. When
possible, ODEs are integrated using the Rush-Larsen technique; otherwise, other techniques,
including forward Euler (FE) and Runge-Kutta methods, are used. The technique has been
classified as a non-standard finite difference method with forward Euler (NSFD w/FE) [12].
LIMPET served as a starting point for the GPU implementation and as a reference for
performance comparisons between GPU and CPU.

C. GPU implementation
The code was already optimized for performance under Message Passing Interface using
PETSc, as well as for running under OpenMP. GPU code was derived from CPU code under
the principle of perturbing the code as little as possible. Since the original code was written
in C, and GPU code was compiled using the CUDA (copyright NVIDIA) compiler which
uses C/C++, this was possible. Compiling for any of the particular hardware paradigms is
controlled by preprocessor directives.

All tables and state variables were first computed on the CPU and then copied to the GPU.
Each time step, Vm values for each node were copied to GPU memory, the total ionic current
was computed and then transferred back to the CPU memory. The voltage was then updated

based on Iion. State variables ( ) were kept in GPU memory.

D. Performance Metrics
The computational load associated with solving the set of cellular ODEs is determined by
the degrees of freedom in a tissue model, Nv, the complexity of the model in terms of
number of state variables, Ns, and the stiffness of the system due to fast transients in the
solution. Five different problem sizes, Nv = 0.05e6, 0.1e6, 0.5e6, 1.0e6, 5.0e6, were
considered to reflect the range of vertices required to spatially discretize small mammalian
hearts, ranging roughly from the mouse to rabbit scale, with an average element resolution
of 250 μm or better. This range was estimated to lie between 50,000 (mouse heart at 250
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μm) and 5 million (rabbit heart at 100 μm); The rabbit ventricular cell model published
recently by Mahajan et al. [10] was chosen to describe cellular dynamics.

1) Numerical Setup—All benchmarks simulated electrical activity over one second using
a time step of 25 μs, resulting in sufficiently large number of solver steps to average out
systemic variations in performance. To benchmark ODE performance, all Nv cells were
stimulated with a basic cycle length of 500 ms. Parabolic performance was measured by
applying a transmembrane stimulus to the center of a tissue wedge of 0.25 cm transmural
width, discretized at 100 μm, where the length in circumferential and apicobasal direction
was chosen to arrive at the desired Nv. Temporal discretization of the parabolic PDE
employed either the explicit FE method or the implicit Crank-Nicolson (CN) method using
the same time step as for the ODEs.

2) Comparing performance between a single CPU and a single GPU—From a
computational standpoint, the performance ratio between two different computing
paradigms, in this case CPU versus GPU, and the scaling efficiency when increasing the
number of computational cores, Np, is of primary interest. Benchmarks were run for all
problem sizes on a single CPU and a single GPU. The minimum, average and maximum
time required for advancing the solution by a single time step, Tdt, were recored as well as
the time elapsed for simulating 1 second of activity, T1s.

3) Comparing performance between multiple CPUs and multiple GPUs—
Although the solution of the system of ODEs is considered to be an embarrassingly parallel
computing problem that scales linearly with the number of processors used, when using the
GPU in a hybrid scenario, i.e. parts of the computation such as the parabolic PDE are solved
on the host (CPU) and only the ODEs are solved on the device (GPU), additional
communication arises between host and device, which may deteriorate scalability. To
investigate whether saturation of the available bandwidth between host and device limits the
scalability of hybrid computing schemes, the previous tests were repeated, varying numbers
of CPUs and GPUs between 1 and 4, again for all problem sizes.

4) Estimations of performance of large-scale hybrid parallel simulations—
Based on performance metrics determined for previous benchmarks in a desktop
environment, additional tests were run in a cluster environment to obtain an approximate
measure of the absolute performance one could expect when building a hybrid cluster where
each blade is equipped with 4 GPUs as coprocessors. Such a cluster was not available for
running these tests, but could easily be built with off-the-shelf components.

To measure strong scaling of the ODE solver and parabolic PDE, benchmarks were
conducted on a Linux cluster, The problem size was kept fixed at Nv =1e6 , and the number
of processors Np was increased from 4 to 128 where Np was incremented by doubling.
Execution times spent on solving the ODEs were recorded as well as time dedicated to
solving the parabolic PDE for both FE and CN method. Theoretical performance of a hybrid
CPU-GPU cluster was estimated then by combining the measured performance data with the
GPU performance measured in the desktop environment for the respective local problem
sizes. That is, to estimate the performance for Np processors, the local problem size was
determined by Nl = Nv/Np and the corresponding performance data where taken from the
desktop benchmark.

E. Hardware
Desktop benchmarks were run on a single quad-core computer (AMD Phenom(tm) 9950
Quad-Core Processor, clocked at 2.6 GHz) and equipped with 4 GPUs (GTX 280, 1GB
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memory each, clocked at 1.4 GHz). Benchmarks for Np > 4 were conducted on a Linux
cluster equipped with an Infiniband low-latency network interconnect. Each compute node
was equipped with four cores (AMD Opteron(tm) 2216 Processor).

III. RESULTS
A. Comparing performance between a single CPU and a single GPU

For all problem sizes, the GPU implementation executed between ~ 10.0 and ~ 10.8 times
faster than the CPU analog. Although minor variations in performance were observed
between runs, the speedup factor was robust for all problem sizes under study. As expected,
execution time T1s increased linearly with Nv. Fig. 1 shows single core execution times T1s
for and performance ratios between GPU and CPU as a function of problem size Nv.

B. Comparing performance between multiple CPUs and multiple GPUs
To compare scalability between CPU and GPU implementations, the same benchmarks were
conducted as before, but the number of computational cores Np was varied from 1 to 4.
Results of the scalability benchmark are summarized in Fig. 2. Scalability was slightly better
for the CPU code, but, again, overall performance was substantially better for the GPU code.
On the CPU, a speedup of 3.65 was achieved for the largest test case with Nv = 5 million
when going from 1 to 4 computational cores whereas this factor was slightly lower for the
GPU (3.1). The GPU implementation outperformed the CPU implementation by at least a
factor of 9, but for smaller problems with Nv up to 100,000 a speedup factor of ~ 17 were
achieved.

C. Estimations of performance of large-scale hybrid parallel simulations
Strong scalability was tested for Nv = 1 million vertices with 4–128 processors. The
hypothetical hybrid performance was estimated by dividing the execution time dedicated to
solving the ODEs by the performance gain factor measured for a particular local problem
size. Results are summarized in Fig. 3. Since the time step was common for all subproblems,
the explicit FE scheme outperformed the implicit CN scheme roughly by a factor of 10.
Time spent on solving the set of ODEs on the CPU was comparable to that required for
solving the parabolic PDE with the CN approach. The predicted GPU performance on a
hybrid cluster is within the range of execution times required for the solution of the
parabolic PDE when using the FE scheme. When running on a cluster with equipped with
128 GPUs the performance for the ODE solver step is only 46 times slower than realtime
which is indeed sufficiently close to real-time for most applications. The total execution
time with Np =128 for both components of the computing scheme, the parabolic PDE and
the set of ODEs, lags by a factor of 160 and 1420 behind real-time for the FE and the CN
scheme, respectively.

IV. DISCUSSION
In this study, a high-performance implementation of a recent rabbit ventricular model of
cellular dynamics, designed to perform well on CPUs, was ported to the GPU following the
principle of minimal perturbation. Monodomain simulations were conducted and execution
times spent on the two main computational tasks, the solution of the parabolic PDE and the
set of ODEs, were measured. Two different temporal discretization schemes, explicit FE and
implicit CN, were used to solve the parabolic PDE with varying numbers of CPUs. The
solution of the set of ODEs was computed either on a CPU or on a GPU where the number
of computational cores involved matched those used for the solution of the parabolic PDE.
The performance of CPU and GPU implementation was benchmarked for single and
multiple core scenarios. Benchmark results suggest that implementations for the GPU offer
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significant performance gains over traditional CPU codes. The scalability between the
implementations was comparable with a stable performance advantage for the GPU in the
range between 9.3 and 17. Benchmarks were also executed on a cluster with up to 128 cores.
Hypothetical performance for the same cluster that is equipped with additional GPU blades
to arrive at a 1:1 CPU:GPU ratio were obtained by extrapolating GPU performance data
obtained at a desktop computer. These estimations predict that the solution of the set of
ODEs in isolation can be solved with a near-realtime performance at a rate roughly 50 times
slower than real-time. Depending on the solver strategy applied to solve the parabolic PDE,
execution times lagged a factor of 160 and 1420 behind realtime for FE and CN,
respectively.

V. CONCLUSION AND FUTURE WORK
Results suggest that the GPU implementation was 9 to 17 times faster than the CPU
implementation and scaled similarly. Using clusters equipped with GPU co-processors
indeed allowed to scale down execution times for the ODE portion to a near-realtime
performance. Due to the embarrassingly parallel nature of the ODE problem, further
substantial gains can be achieved by using thousands of processors.
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Fig. 1.
Left panel: Execution times for solving the Mahajan model over 1 second of activity was
measured for varying Nv for both the CPU and the GPU where a single computational core
was employed for both paradigms. Right panel: Performance ratio between GPU and CPU.
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Fig. 2.
Left panel: Scaling results for CPU and GPU implementations for varying numbers of
computational cores and Nv = 5e6 when executing the T1s benchmark. Solid lines represent
linear scaling. Right panel: Performance ratio between GPU and CPU as a function of
computational cores employed for varying Nv.
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Fig. 3.
Left panel: Strong scaling benchmark with Nv = 1e6 vertices for the individual sub-
problems, the parabolic PDE solved with FE and CN scheme and the ODE solver running
on CPU and GPU. Right panel: Strong scaling benchmark for the overall monodomain
problem for different combinations of parabolic PDE solver scheme and ODE hardware
implementation.
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