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Abstract
Demyelination is a major contributor to the general decay of neural functions in children with
Krabbe disease. However, recent reports have indicated a significant involvement of neurons and
axons in the neuropathology of the disease. In this study, we have investigated the nature of
cellular inclusions in the Krabbe brain. Brain samples from the Twitcher mouse model for Krabbe
disease and from patients affected with the infantile and late onset forms of the disease were
examined for the presence of neuronal inclusions. Our experiments demonstrated the presence of
cytoplasmic aggregates of thioflavin-S reactive material in both human and murine mutant brains.
Most of these inclusions were associated with neurons. A few inclusions were detected to be
associated with microglia and none were associated with astrocytes or oligodendrocytes.
Thioflavin-S reactive inclusions increased in abundance paralleling the development of
neurological symptoms and distributed throughout the Twitcher brain in areas of major
involvement in cognition and motor functions. Electron microscopy confirmed the presence of
aggregates of stereotypic β-sheet folded proteinaceous material. Immunochemical analyses
identified the presence of aggregated forms of α-synuclein and ubiquitin, proteins involved in the
formation of Lewy bodies in Parkinson’s disease and other neurodegenerative conditions. In vitro
assays demonstrated that psychosine, the neurotoxic sphingolipid accumulated in Krabbe disease,
accelerated the fibrillization of α-synuclein. This study demonstrates the occurrence of neuronal
deposits of fibrillizated proteins including α-synuclein, identifying Krabbe disease as a new α-
synucleinopathy.
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Introduction
Brain inclusions of misfolded proteins develop in Sandhoff and Tay-Sachs lysosomal
storage diseases (LSDs) [1]. The functional significance of these deposits and the extent to
which they occur in other LSDs is unclear. Krabbe disease is caused by over a hundred
different mutations in the β-galactosylceramidase (GALC) gene [2] and the subsequent
deficient lysosomal degradation of galactosylsphingolipids. Affected patients develop
progressive demyelination, cognitive and developmental deficiencies and die very young.
These neuropathological features are largely caused by the accumulation of undegraded
psychosine[3–6]Psychosine is a lipid raft-associated neurotoxin, affecting a number of
cellular functions that lead to demyelination, oligodendrocyte death, axonal degeneration,
inhibition of axonal transport [3,7–17]. Patients suffer from muscle rigidity and atrophy,
ataxia, and neuronal deficits [17–20], suggesting the presence of brain lesions affecting
major neuronal pathways. The pathogenic mechanism causing this neuronal dysfunction is
still unclear, but it appears to involve at least defects on fast axonal transport and on the
neuronal cytoskeleton [17,21]. Much of the research on Krabbe has been performed on the
naturally occurring Twitcher murine model, an enzymatically equivalent model of Krabbe
disease [22]. Twitcher mice carry a single mutation that abolishes the lysosomal activity of
GalC [23,24]. Inclusions of electron dense material have been reported in the Twitcher brain
but the chemical composition and relevance of these inclusions remained unaddressed.

α-Synuclein is a soluble protein of unknown function, primarily localized at the presynaptic
terminus of central axons [25,26]. Deposits of fibrillizated α-synuclein and other proteins
such as ubiquitin have been associated with neurological defects in α-synucleinopathies,
which include Parkinson’s disease, dementia with Lewy bodies, multiple system atrophy
(MSA), some variants of Alzheimer’s disease [27–32] and recently some LSDs [1]. How α-
synuclein leads to neuropathology is unclear but it may involve abnormal gain-of-function
signaling initiated by intermediate α-synuclein oligomers formed during the process of
fibrillization [33–35]. Fibrillization involves the formation of intermediate α-synuclein
oligomers [36], which are more toxic than the mature fibrils [37–40]. Several mutations
increase the rate of fibrillization of α-synuclein [41–47]. However, for the most part, the
molecular mechanism of fibrillization of α-synuclein in vivo is still unknown.

Here, we investigated the hypothesis that Krabbe disease, as seen in other LSDs, is
compounded by neuronal inclusions of misfolded protein aggregates. Our experiments
identified neuronal inclusions in both the human and murine Krabbe brain, revealing these
protein inclusions to consist primarily of aggregated α-synuclein, increase in frequency
during disease, and affect specific brain areas. Furthermore, psychosine was found to
facilitate α-synuclein fibrillization.

Materials and Methods
Animals and human tissue

Twitcher mice were identified by PCR [23]. Frontal cortex specimens from infants affected
by Krabbe disease, Parkinson’s disease and age-matched control tissue were obtained from
the National Institutes of Health Brain Tissue bank at University of Maryland (cases 575,
5100 and 4247) and from the Harvard Brain bank (case 1414). Animal and human work in
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this study was performed under approved protocols from the Animal Care Committee
(Protocol 12–123) and the Office for Protection of Human Subjects (Protocol # 2011-0515)
at the University of Illinois at Chicago.

Thioflavin-S staining
Free-floating brain tissue slices were washed with TBS, mounted onto slides, air-dried and
then rehydrated with ultrapure water. Sections were stained with 0.1% Thioflavin-S ethanol/
PBS for 5 minutes, rinsed in 80% ethanol for 5 minutes and mounted using Vectashield
(Vector laboratories).

Fibrillization assay
Recombinant synuclein was dissolved in α-synuclein was dissolved in PBS and filtered
through a 0.22μm filter to yield 0.5mg/ml. Thioflavin T (Sigma) was dissolved in ultrapure
water at 0.3% w/v. Psychosine (Matreya) was dissolved in ethanol. Fifteen micrograms of
α-synuclein was dispensed in 1 ml of PBS in the presence of psychosine at final
concentrations ranging from 0.01 μM to 1μM or vehicle (0.005% ethanol/PBS) in dark glass
bottles. Solutions were shaken at 37°C at 600rpm. Fifty microliter aliquots (in triplicates)
were removed at different time points and loaded onto black 96 well plates and mixed with 5
μL of Thioflavin-T stock solution. Samples were analyzed using a DTX880 Spectrometer
(Beckman) at 450/535 nm excitation/emission. Additionally, 3 μL from each experimental
condition was processed for transmission electron microscopy as described below.

Transmission electron microscopy
Tissue was fixed with 2.5% glutaraldehyde, and embedded in Araldite. Ultrathin sections
(60-nm) were processed for transmission electron microscopy (TEM). Aliquots (3 μL) from
each fibrillization condition were transferred onto carbon-coated 400 mesh nickel grids.
Grids were negatively stained with 2% w/v uranyl acetate. Immunoelectron microscopy was
performed on 100 μm thick sections using free floating penetration of primary antibodies
followed by Aurion (0.8 nm) gold-secondary antibodies. Sections were post-processed for
TEM as described above. Grids were viewed using a 120kV JEOL JEM-1220 equipped with
a Gatan Es1000W 11MP CCD camera.

Stereology
Sagittal brain sections (50-micron) (one every 10 sections) were stained with thioflavin-S.
Thioflavin-S positive inclusions were quantified from 6 sections using the design-based
stereology system (StereoInvestigator version 8, MBF Bioscience, Williston, VT, USA).
Briefly, the caudate putamen was traced under a 5× objective and thioflavin-S positive cells
were counted under a 63× objective. Sampling parameters were set up for the coefficient of
error to range between 0.09 and 0.12 using the Gundersen test, normally with a counting
frame size of 100×100 micron, optical dissector height of 20 microns, and an average of 10
sampling sites per section.

Extraction protocol and western blotting
Tissue was homogenized in 15 volumes of 1mM PMSF, 2mM sodium orthovanadate, 1mM
NaF and 300nM okadaic acid in TBS. Samples were centrifuged at 100,000g at 4°C for 1
hour. The TBS soluble supernatant was removed and kept frozen. The pellet was
resuspended in 15 volumes (w/v) TBS with 1% Triton-X 100 (TBS-X) and rotated for 30
minutes at 4°C before centrifugation at 100,000 g at 4°C for 1 hour. The supernatant was
removed and frozen. The pellet was resuspended in 400μL of 70% formic acid and rotated
for 1 hour before neutralization by the addition of 20 volumes of 1M Tris. Protein extracts
were separated by SDS-PAGE and electrotransferred onto PVDF membranes. Blots were
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incubated with primary antibodies at 4°C overnight. The following antibodies were used:
monoclonal antibody against α-synuclein cat#610786 (BD Biosciences, 1:1000 dilution),
polyclonal antibody A11 cat# AHB0052 (Invitrogen, 1:1000 dilution), and monoclonal
antibody against actin cat# A2066 (Sigma, 1:6000 dilution). Immunocomplexes were
visualized using enhanced luminescence (Thermo Sci.).

Real Time-Polymerase Chain Reaction
RNA was extracted using Trizol. Two micrograms of RNA was used for synthesis of cDNA
(Invitrogen). The amplification cycle was monitored with SYBR-490 and the mRNA
expression level was deduced from the fold differences between control and sample and
differences within each sample group. Primers were designed with NCBI and verified by
mFold software tools. α-Synuclein primers were: Forward, 5′-
AGCAGTGGTGACGGGTGT and Reverse, 5′-GGGCTCCTTCTTCATTCTTGCC;
GAPDH, Forward 5′-GAGTCAACGGATTT GGTCGTA and Reverse 5′-
CCATGTAGTTGAGGTCAATGAAGG.

Immunohistochemistry
Mice were anesthetized and perfused with saline followed by 4% paraformaldehyde and
processed for cryosectioning. Cryosections (20 micron) were incubated with monoclonal
antibodies against α-synuclein cat#2628 (Cell Signaling, 1:100 dilution), proteolipid protein
(AA3 1:10 dilution), GFAP cat#Ab9598 (Millipore 1:500 dilution), and Amyloid Beta
(MOAB-2) cat#M-1586-100 (Biosensis 1:500 dilution). Immunofluorescent-complexes
were visualized using a Zeiss Meta 510 confocal microscope. Some experiments were
developed using the peroxidase-diamino-benzidine (DAB) method and imaged using a
DM5500 Q Microscope with a Leica DFC 500 Camera.

Psychosine determination
Psychosine was quantified as detailed elsewhere [48]. Briefly, after extraction with
chloroform and methanol and fractionation on a cation exchanger column, samples were
analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS) using a
Shimadzu LC-10Advp. Positive ion electrospray tandem mass spectrometry was performed
using an Applied Biosystems (Foster City, CA) API 4000 triple quadrupole mass
spectrometer with a collision energy of 29 eV for psychosine and 37 eV for the internal
standard, lyso-lactosylceramide.

Statistical Analysis
Data was analyzed using ANOVA assuming non-gaussian distributions. p-Values <0.05
were considered significant. Graphs represent the mean of independent measurements (with
sample size between 3–6) and ± SEM.

Results
Anatomical and temporal distribution of protein aggregates in the Twitcher mouse

Thioflavin-S positive inclusions were detected in the Twitcher brain (Figure 1) throughout
the postnatal life. The first detectable inclusions appeared in the pontine region (pons) at P10
(Figure 1A, inset). At P20, two other foci were detected in the pontine grey area (Fig. 1B,
#1) and the superior olivary complex (Fig. 1B, #2). Inclusions were also detected throughout
the medulla (Fig. 1B, #3) and the spinal nucleus of the trigeminal nerve (Fig. 1B, #4).
Inclusions were abundant in the midbrain region (Fig. 1B, #5), substantia nigra (Fig. 1B,
#6), the reticular nucleus (Fig. 1B, #7), the inferior region of the superior colliculus (Fig. 1B,
#9), the inferior colliculus (Fig. 1B, #10), hypothalamus (Fig. 1B, #11) and caudate putamen
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(Fig. 1B, #12). Inclusions were also present in the rostral portions of the nucleus accumbens
(Fig. 1B, #13), the olfactory tubercle (Fig. 1B, #14), internal granular layer in the
cerebellum (Fig 1B, #16) and the CA2 region of the hippocampus (Fig. 1B, #15). At this
postnatal age, the Twitcher cerebral cortex was essentially devoid of inclusions.

At P30, inclusions were detected spreading caudally and ventrally in the caudate putamen
region (Fig. 1C, #12), engulfing the nucleus accumbens (Fig. 1C, #13). More inclusions
were evident in the lateral pre-optic area of the hypothalamus (Fig. 1C, #17), the optic tract,
superior red nucleus (Fig. 1C, #18), the superior colliculus (Fig. 1C, #9), rostral areas of the
thalamus including the lateral dorsal nucleus (Fig. 1C, #19a), anteroventral nucleus (Fig. 1C,
#19b) and the reticular nucleus (Fig. 1C, #19c). Inclusions were detected throughout the
cerebellar arbor vitae (Fig. 1C, #20), the vestibular nuclei (Fig. 1C, #21) and more scarcely,
in the posterior regions of cortical layer 1 (Fig. 1C, #22).

The P40 Twitcher brain developed additional inclusions within the cerebellar cortex (Fig.
1D, #16), posterior regions of layers 1 (Fig. 1D, #22), 3/4 (Fig. 1D, #23), and 6b (Fig. 1D,
#24) (along the corpus callosum). Deposits in these layers were primarily localized to the
retrosplenial, anterior cingulate and somatomotor areas of the cerebral cortex, yet were
noticeably fewer in the frontal cortex (Fig. 1D, #25). Inclusions were also abundant in the
thalamus (Fig. 1D, #19). In addition to inclusions within the CA2 region, aggregates were
also detected in the subiculum (Fig. 1D, #26) and dentate gyrus (Fig. 1D, #27). Magnified
images (5× and 63×) depicting inclusions in multiple anatomical regions of the P40
Twitcher are shown in Figure 2. Wild type brains were devoid of any thioflavin-S positive
inclusions (Fig. 1E, Fig. 2) at any time point, as well as mice heterozygous for the mutation
(Sup. Fig. 1). Unstained, fresh P40 Twitcher brain tissue (Fig. 1F, H) was imaged under a
480nm filter to detect the presence of autofluorescent material (such as accumulated
lipofucsin) that was non-specific to thioflavin-S staining. The unstained area imaged was
recorded and the same location was re-imaged after subsequent thioflavin-S staining (Fig.
1G, I). Autofluorescent deposits were rarely seen in Twitcher tissue (arrowheads) compared
to the abundant deposits of thioflavin-S reactive material (arrows). Positive control of
autofluorescent lipofucsin deposits is shown in aged human cortex (Fig. 1J, K), which also
contained sporadic thioflavin-S reactive deposits. Changes in the density of thioflavin-S
positive inclusions during the progression of the disease were evident in the Twitcher brain.
Stereology inclusions within the caudate putamen showed significant increases at each time
point from P20 to P30 (p=0.001–0.005) to P40 (p=0.002) (Fig. 2).

Thioflavin-S inclusions are predominantly neuronal
Thioflavin-S stained brain slices were co-immunolabeled to visualize neurons, astrocytes,
oligodendrocytes and microglia. Thioflavin-S inclusions were not detected in GFAP positive
astrocytes (Fig. 3E, F) or APC positive oligodendrocytes (data not-shown). In contrast,
thioflavin-S inclusions almost exclusively co-localized with NeuN positive neurons (Fig.
3A, B) and occasionally in isolectin IB4 positive cells (Fig. 3C, D), suggesting that some
inclusions either form in activated microglia or are engulfed by these cells.

Ultrastructure of neuronal protein aggregates
TEM identified neuronal aggregates in Twitcher brains at P40, which ranged in density,
shape and size (arrows in Fig. 3J). These were never detected in wild-type brains (Fig. 3I).
Intracellular deposits surrounded by membranes were frequent (Fig. 3K). A closer
examination of these membrane-bound inclusions showed the presence of abundant ~5nm
wide electron dense spheroid material, (asterisk in Fig. 3L). In some cases, these spheroids
appeared to form large concatenated tubular structures ranging from 200 to 400nm in length
(arrowheads in Fig. 3L). In addition, aggregates devoid of membrane were also detected
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(Fig. 3M). These structures appeared as electron dense fibrils of approximately 100 to
150nm in width and up to 700 nm in length (Fig, 3N–P), bearing the stereotypic structure of
fibrils seen in Parkinson’s and Alzheimer’s diseases.

α-Synuclein and ubiquitin are components of Krabbe inclusions
Immunohistochemistry using a panel of specific antibodies was performed to identify the
protein components of the inclusions detected in the Twitcher brain. Figure 4A–E shows
confocal images taken from P40 Twitcher brain sections double labeled for thioflavin-S and
α-synuclein. Orthogonal views from z-stack confocal analyses showed strong co-
localization of α-synuclein within the core of thioflavin-S positive inclusions. Co-
localization of α-synuclein in thioflavin-S was observed at all time points from P10 to P40
(data not-shown). α-Synuclein inclusions were not found in either wild-type or heterozygous
twitcher (Supplementary Fig. 2). Immunoelectron microscopy further confirmed the
association of α-synuclein immunoreactivity with inclusions observed in Twitcher neurons
(Fig. 3F and inset). Specificity of the anti-α-synuclein antibody was confirmed using
immunohistochemistry on brain tissue from α-synuclein knockout mice (SCNA KO)
(Supplementary Fig. 2). The presence of α-synuclein positive aggregates in the Twitcher
brain was not associated with gross changes in expression of α-synuclein mRNA (Fig. 3H)
or protein (Fig. 3I). In addition to α-synuclein, ubiquitin was also found to be associated
with most thioflavin-S positive inclusions (Supplementary Fig. 3A, B). We were unable to
detect the presence of other neurological protein markers such as β-amyloid (Supplementary
Fig. 2) or amyloid precursor protein (data not-shown).

α-Synuclein inclusions in the brain of Krabbe patients
To determine whether similar inclusions affect the brain of human Krabbe patients, brain
sections from three available infantile Krabbe cases were stained with thioflavin-S (Fig. 5A–
F). Figure 5A–C shows the presence of numerous thioflavin-S positive inclusions in grey
areas from frontal lobe samples in the three infantile cases. There was a disparity in the
abundance of thioflavin-S reactive material in human samples, with inclusions very
abundant in all infantile onset cases. At higher magnification, the majority of inclusions
appeared as amorphous aggregates (Fig. 5D). In addition, other deposits appeared as
filamentous arrays of aggregated material (Fig. 5E and inset magnified in 5F).
Unfortunately, the limited availability of human material from Krabbe disease patients
prevented any stereological analysis of the regional distribution of inclusions. Most
thioflavin-S reactive inclusions co-stained positively with antibodies against α-synuclein
(Fig. 5H, I). Control tissues from healthy age-matched brains were devoid of any detectable
thioflavin-S positive inclusions (Fig. 5G).

Detection of high molecular weight aggregates of α-synuclein in the Krabbe brain
We studied whether the Krabbe inclusions were accompanied by changes in the expression
level, solubility and aggregation of α-synuclein. TBS, TBS-triton X-100 (TBS-X), and
Formic Acid extracts [49] were prepared from basal ganglia samples from two Krabbe infant
cases, the age-matched control, a Parkinson’s disease case as a positive control of α-
synuclein aggregates [50], and tissue from a SNCA KO mouse as a negative control. A
detectable level of α-synuclein extracted more efficiently in TBS-X and FA fractions from
the Krabbe samples (Fig. 5L), suggesting a decrease in solubility of this protein in the
Krabbe brain. Increased levels of high molecular weight species of α-synuclein were
detected in both Krabbe samples, similar to that seen in the Parkinson’s case, suggesting an
accumulation of aggregated α-synuclein protein. Using the antibody A11, which detects
oligomeric forms of amyloid protein but does not react with monomeric or mature fibril
amyloid forms [51], we confirmed the presence of A11 immunoreactive material in neuronal
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inclusions from caudate neurons in the P40 Twitcher brain (Supplementary Fig. 4A) and of
immunoreactive bands primarily in TBS extracts in both Krabbe cases (Supplementary Fig.
4C).

Inclusions are more abundant in areas rich in psychosine
To determine the extent of co-localization of thioflavin-S inclusions with psychosine
accumulation, P40 Twitcher brains were microdissected and the local levels of psychosine
were determined by LC-MS-MS. Table I shows psychosine elevated in all brain regions in
Twitcher mice. Importantly, brain areas containing the most thioflavin-S positive aggregates
also accumulated the highest levels of psychosine. For example, the caudate putamen and
most of the midbrain contained the highest levels of psychosine and also the highest density
of inclusions (Fig. 1D). Of interest, areas such as the cortex that contained the lowest levels
of psychosine also contained the lowest density of inclusions (Fig. 1D).

Psychosine induces fibrilization of α-synuclein in vitro
To test whether or not psychosine affects α-synuclein aggregation, in vitro fibrillation assays
using 0.01 to 1μM psychosine and pure recombinant human α-synuclein were conducted.
Fibrillization was measured by changes in the fluorescent emission of thioflavin-T. α-
Synuclein incubated with increasing concentrations of psychosine produced significantly
more fluorescence than vehicle-treated α-synuclein 96 hours after initiation of shaking (Fig.
6A, B), suggesting that psychosine may facilitate the rate of fibrillization of α-synuclein in a
dose-dependent manner. Psychosine did not have any fibrillization effect on β- and γ-
synuclein (Fig. 6B). Fibrillized α-synuclein was analyzed by gel separation 4 days after
incubation, showing a dose-dependent increase of high molecular weight bands of
aggregated protein in the presence of increasing concentrations of psychosine (Fig. 6C).
Similar albeit less intense bands were detected in vehicle treated conditions but at later time
points (7 days, Fig. 6C).

Ultrastructural TEM studies showed the presence of large filamentous α-synuclein
structures after 48 hours of shaking in the presence of 0.5 μM psychosine (Fig. 6D). These
structures developed into even larger aggregates after 4 days of incubation (Fig. 6E, 6F). In
comparison, vehicle-treated α-synuclein showed filamentous structures of noticeably
smaller size and abundance at either time point.

Discussion
In 1916, Knud Krabbe provided the first clinical description of children affected with a
diffuse form of myelin sclerosis [20]. Over decades, a detailed symptomatology of Krabbe
disease became well established. In addition to demyelination and globoid cells, affected
patients develop motor and cognitive disabilities. How these neurological disabilities
originate is unknown. The discovery of neuronal α-synuclein inclusions in the brains of
Krabbe patients provides a possible mechanism behind some of the observed symptoms,
adding to the current proposed mechanisms of neurodegeneration [15–17]. The regional
distribution of α-synuclein inclusions provide an interesting connection to some of the
described neurological symptomatology.

Using the Twitcher mouse model, we were able to determine the regional and temporal
distribution of α-synuclein inclusions. These inclusions were first observed in the pons and
medulla of P10 Twitcher brains. The nuclei of the pons and medulla are major relay zones in
the brain, playing a critical role in swallowing and emesis [52]. One of very first symptoms
in infantile Krabbe disease is a growing difficulty in feeding, with impaired swallowing and
vomiting [53]. Swallowing movements are primarily controlled by two groups of neurons in
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the dorsal and ventrolateral medulla [54]. The medulla contains the center of emetic
circuitry [55]. However, two areas of special note responsible for much of the emetic
process are the lateral reticular formation, called the “vomiting center” of the medulla,
coordinating somatic and visceral efferents responsible for vomiting [52] and the nucleus
tractus solitaries, which produces outputs to the hypothalamus and the amygdala and
receives vagus nerve inputs [55]. These areas are some of the first to show α-synuclein
inclusions in the Twitcher.

Krabbe patients also undergo vision deterioration leading to blindness [56]. This has
previously been attributed to atrophy of the optic nerve [57]. However, α-synuclein
inclusions formed in the superior colliculus of P20 Twitcher brains, which then expanded to
the hypothalamus at P30 and the lateral geniculate nucleus at P40. The temporal and
regional distribution of these inclusions, affecting three subcortical structures that receive
projections from the retina [58–60], suggests specific neuronal dysfunctions that may
contribute to defects in Krabbe patients’ vision.

One of the most striking deficits observed in Krabbe disease is the deterioration of motor
movement, suggesting cerebellar degeneration. α-Synuclein has been shown to aggregate in
the white matter and Purkinje cell axons of the cerebellum in patients with Parkinson’s
disease and dementia with Lewy bodies [61] and as well as in A30P transgenic mouse
models of Parkinson’s disease [62]. In Krabbe disease, the cerebellum undergoes atrophy
without a compromise in cerebellar metabolic activity [63]. α-Synuclein inclusions were
detected in the cerebellum as early as P20, coinciding with the onset of motor deficiencies in
the mutant. Inclusions appeared to primarily affect the internal granular layer and later, the
Purkinje and molecular layers. This progression may interfere with neuronal communication
between the cerebellum and outer projections, compromising motor control. These neuronal
defects likely contribute to the neurological symptoms and compound demyelination,
magnifying the motor phenotype observed in mutant mice and affected patients.

The dorsal thalamus is the main relay area for all sensory and limbic pathways, sans
olfaction, projecting to the cerebral cortex. Thalami of Parkinson’s disease [64], GM1-
gangliosidosis [65] and Sandhoff disease [66] patients contain abundant α-synuclein
inclusions. While there is little experimental evidence showing thalamic components of
Krabbe disease, two studies found hyperdensity of the thalamus when analyzed by CT scans
[67,68]. Similarly, CT scans revealed increased densities in the caudate putamen of Krabbe
patients [68]. Hypometabolism in the caudate of these patients [63] and of Parkinson’s
patients with severe motor dysfunction [69] has also been observed suggesting loss of
cellular function. Likewise, α-synuclein inclusions in the caudate nucleus, the putamen and
substantia nigra of Twitcher brains suggest that defects of the dopaminergic system may
contribute to the impairment of motor movement and cognitive function in Krabbe disease.

α-Synuclein aggregation is a nucleation-dependent first-order process with a lag phase, an
elongation phase and a steady-state phase [70,71]. Before the elongation phase begins a
process called “seeding” occurs shortening the lag phase, and thus, increasing the rate of
fibril formation [47]. During the elongation phase, α-synuclein exists in a soluble amyloid-
like oligomeric phase before large insoluble filaments are formed. These oligomers,
heterogeneous in structure [36,72,73], have been shown to form in vivo [74,75]. The toxic
oligomer hypothesis states that oligomeric species are toxic forms causing neuronal
dysfunction, while large fibrils are less toxic and possibly protective by sequestering toxic
oligomers [36,39,76–78]. Protein formations resembling small oligomers, straight midsized
fibrils, and larger fibril aggregates were detected in the Twitcher brain. Furthermore,
psychosine was sufficient to induce a shortening of the lag phase, leading to the formation of
large and abundant branched fibrils. These findings correlate with previous studies of both
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in vitro and in vivo α-synuclein aggregation [39,76,79]. α-Synuclein binds synthetic and
brain derived membranes [80–82] and oligomerizes in lipid droplets [83]. Lipid membrane
binding is controversial, decreasing [84,85] or increasing aggregation [84]. α-Synuclein
binds to lipid rafts and the A30P mutation decreased the protein levels in the synapse.
Interestingly, blocking cholesterol or sphingolipid synthesis also depletes the levels of
synaptic α-synuclein, suggesting that proper lipid raft architecture is essential for α-
synuclein localization [86]. We have previously shown that psychosine accumulates in lipid
rafts of the Twitcher mouse and Krabbe disease patients, disrupting architecture and
function [4]. Thus, disruption of lipid raft architecture by psychosine in the Krabbe brain
may affect α-synuclein localization to synapses, and increasing its aggregation in the
neuronal cytoplasm as found in this study. Additionally, psychosine may alter α-synuclein
conformation by direct binding to the protein (Santos and Bongarzone, Unpublished results).
This pathogenic model may provide an alternative pathway for the mislocalization of α-
synuclein from the presynaptic terminal, thereby affecting synaptic transmission and
contributing to early synaptic dysfunction in Krabbe disease.

The discovery of α-synuclein neuronal inclusions is novel to Krabbe disease, granting
consideration of Krabbe disease as a demyelinating synucleinopathy. Whether Krabbe
disease shares some characteristics with MSA, a synucleinopathy with inclusions of α-
synuclein in neurons and oligodendrocytes [87–89], needs further investigation Several
questions remain to be studied, including whether or not these inclusions are true Lewy
bodies, the mechanism regulating neuronal vulnerability in Krabbe disease and the
spreading mechanism of α-synuclein inclusions throughout the Krabbe brain. The
availability of a natural mouse model for this disease will facilitate exploration into these
research areas.
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Figure 1. Distribution of Thioflavin-S reactive material in the Twitcher brain
A–E) Composite mapping of thioflavin-S (Thio-S) reactive deposits at 10 (A), 20 (B), 30
(C) and 40 (D) days of age in the Twitcher (TWI) brain. E shows the composite image of
thioflavin-S staining of a 40 day-old wild type (WT) brain. Insert in A marks the pontine
region (pons). 1, pontine grey area; 2, superior olivary complex; 3, medulla; 4, spinal
nucleus of the trigeminal nerve; 5, midbrain; 6, substantia nigra; 7, reticular nucleus; 8,
dorsal lateral geniculate nucleus; 9, superior colliculus; 10, inferior colliculus; 11,
hypothalamus; 12, caudate putamen; 13, nucleus accumbens; 14, olfactory tubercle; 15,
hippocampus; 16, cerebellar internal granular layer; 17, hypothalamic pre-optic area; 18,
superior red nucleus; 19, thalamus; 19a, lateral dorsal nucleus; 19b, anteroventral nucleus;
19c, reticular nucleus; 20, cerebellar arbor vitae; 21, vestibular nuclei; 22, cortex layer 1; 23,
cortex layers 3 and 4; 24, cortex layer 6b; 25, frontal cortex; 26, subiculum and 27, dentate
gyrus. Composite images were taken using a 5× objective and each contain 60–70 individual
images. F–K) Unstained (F, H) and thioflavin-S stained (G, H) TWI caudate and thalamus
tissue imaged under 480nm filter. Scarce autofluorescent material (arrowhead) seen in TWI
compared to abundant thioflavin-S reactive inclusions (arrows). Positive control of
autofluorescent lipofucsin accumulations (arrowheads) compared to thioflavin-S reactive
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deposits (arrows) shown in aged human frontal cortex (J, K). Images in (F–K) taken with
10× objective.
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Figure 2. Regional distribution of thioflavin-S deposits and stereological quantification of
thioflavin-S reactive deposits during postnatal development of the Twitcher caudate putamen
A) Magnified (5× and 63×) images of thioflavin-S reactive inclusions in multiple anatomical
regions of the P40 Twitcher (TWI) and P40 wild type (WT) brain regions. B–D) Confocal
microscopy shows increasing abundance of thioflavin-S reactive inclusions in the Twitcher
caudate putamen at 20 (B), 30 (C) and 40 (D) days of age. E) Stereological quantification of
the density of thioflavin-S (thio-S) deposits (inclusions/mm3) shows significant (ANOVA)
increases in inclusion density at each time point. Data is expressed as the mean +/− SEM of
3 mice per time point.
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Figure 3. Thioflavin-S material is primarily localized in neurons
A–D) Sections of P30 Twitcher brain were doubly stained for thioflavin-S (thio-S) (A, C)
and the neuronal antigen NeuN (B) and the microglial lectin IB4 (D). E–H) Confocal
imaging confirmed the absence of Thio-S staining in twitcher GFAP positive astrocytes (E,
F) and wild-type (WT) neurons (G, H). All images were collected using a 63× objective. I–
P) Electron microscopy analysis performed on ultrathin sections of P40 Twitcher caudate
putamen showed pathological inclusions only in Twitcher (arrowheads in J) but not in wild-
type neurons (I). A stereotypical inclusion (K) is magnified in L (boxed area) showing the
presence of globular (asterisk in L) and fibrillizated material (arrowheads in L). Other
neuronal inclusions consist of stereotypic assemblies of fibrillizated material (M). Two of
these inclusions (boxed areas in M) are shown in higher magnification in N-P. These
inclusions consist of long tubular, typically straight, fibrils of approximately 100–150nm in
width, and can be up to 1.5μm in length. Scale bars: I, J, 2μm; K, 500nm; L, 200nm; M,
1μm; N, 100nm; O, 200nm; P, 100nm.
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Figure 4. Thioflavin-S reactive inclusions contain α-synuclein
A–E) Sections of P30 Twitcher brain were doubly stained with a monoclonal antibody to α-
synuclein (A, D) and thioflavin-S (B, D). Sections were scanned using confocal microscopy
and orthogonal yz, xz reconstructions rendered using ImageJ software (NIH). α-synuclein
was detected to be predominantly associated with thioflavin-S reactive inclusions. F, G)
Free floating sections of mutant caudate were immunostained for α-synuclein and processed
for immunoelectron microscopy using secondary antibodies conjugated with 0.8 nm gold
particles. Inclusions in mutant neurons (F, inset) showed positive immunoreaction. Control
of non-specific binding using secondary-Au antibodies showed no reaction (G, inset). H, I)
Analyses for mRNA (H) and protein (I) levels of α-synuclein were done by RT-PCR and
immunoblotting using P7 and P30 Twitcher and WT brain. Immunoblotting was performed
with antibodies recognizing actin and monomeric forms α-synuclein. Detectable bands
representing α-synuclein where quantified as the fold increase over actin using ImageJ
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software (NIH). Levels of α-synuclein mRNA and protein were not significantly different
between Twitcher and WT at either time point.
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Figure 5. Thioflavin-S reactive inclusions of aggregated α-synuclein are present in the brain of
Krabbe human patients
A–G) Autopsied frontal cortex samples from three human cases of infantile Krabbe disease
were obtained and processed for thioflavin-S staining. All three cases of infantile Krabbe
disease were affected by abundant thioflavin-S reactive deposits, which were primarily
located in the cortical grey matter. Most inclusions appeared as an amorphous material (D)
but others showed a core of dense thioflavin-S positive material decorated with filamentous
fibrils irradiating from the core center (inset in E magnified in F). Sections from age-
matching control human brains were devoid of thioflavin-S reactive material (G). H–K)
Double immunohistochemistry detected the presence of aggregated α-synuclein (I) in most
thioflavin-S inclusions (H). Images in J, K are controls of background fluorescence and
show non-specific fluorescence originating from blood cells in brain vessels. Images in A–C
and G–K were collected using a 40× objective. Images in D–F were collected using a 63×
objective. L) SDS-PAGE separations of TBS, TBS-triton-X (TBS-X) and formic acid (FA)
protein extracts from age-matching control and infantile Krabbe basal ganglia were
immunoblotted with monoclonal antibodies against epitopes in monomeric α-synuclein.
Monomeric α-synuclein (~15kDa) was present only in the TBS and some TBS-X fractions.
An increased amount of high molecular weight aggregates of α-synuclein (α-synhma) were
visible in the Krabbe samples for all fractions. A sample of frontal cortex from a Parkinson’s
disease case was included as a positive control showing levels of high molecular weight α-
synuclein similar to the amount seen in Krabbe tissue. Whole cell brain lysate from a one
month-old SNCA KO mouse was also included which showed no detectable monomeric α-
synuclein and only a few additional non-specific bands.
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Figure 6. Psychosine increases the rate of α-synuclein fibrillation
A, B) An in vitro fibrillization assay was performed by incubating recombinant human α-
synuclein (α-syn) in the presence of increasing concentrations of psychosine (Psy) or
vehicle (0.005% ethanol/PBS) and measuring emitted fluorescence from thioflavin-T (thio-
T) for up to 96h. Significant (ANOVA, p<0.05) increases of thioflavin-T fluorescence were
measured in the presence of psychosine in a dose dependent manner. Psychosine alone did
not show fluorescence above background levels from thioflavin-T. Psychosine did not cause
fibrillization of either β- or γ-synucleins. C) Aliquots of fibrillizated α-synuclein in the
presence or absence of different concentrations of psychosine were analyzed by gel
separation. Protein bands were developed using Sypro fluorescent stain and scanned using a
Typhoon fluorometer. D–I) Transmission electron microscopy detected the presence of
abundant fibrillizated α-synuclein in the presence of 0.5 μM psychosine 48 hours after
treatment (D). Fibrillization of α-synuclein was more abundant at 96 h of incubation in the
presence of psychosine (E, F). α-Synuclein formed straight groups of filaments
approximately 50–75nm in width and also formed larger, branched aggregates
approximately 300–700 nm in length (E, F). Smaller and less abundant α-synuclein fibrils
were detected in vehicle-treated conditions (G–I). Scale bars: D, E, G, H, 200 nm; F, 2μm; I,
1μm.
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Table I

Distribution of Psychosine in the Twitcher brain

Psychosine (pmol/mg protein)

Area Twitcher Wild-Type

Cortex

 Frontal 31.6±6.3* <1

 Olfactory 42.8±11.3* <1

 Parietal 32.8±4.5* <1

 Enthorinal 29.3±2.9* <1

Thalamus 289.2±15.7* <1

Brainstem 440.2±52.2* <1

Hippocampus

 Anterior 65±17.9* <1

 Posterior 107.9±29.3* <1

Cerebellum 150.2±28.3* <1

*
ANOVA significant p<0.0001
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