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Age-associated dementia and Alzheimer’s disease (AD) are cur-
rently epidemic. Neither their cause nor connection to the meta-
bolic syndrome (MS) is clear. Suppression of deacetylase survival
factor sirtuin 1 (SIRT1), a key host defense, is a central feature of
AD. Age-related MS and diabetes are also causally associated with
suppressed SIRT1 partly due to oxidant glycotoxins [advanced gly-
cation end products (AGEs)]. Changes in the modern diet include
excessive nutrient-bound AGEs, such as neurotoxic methyl-glyoxal
derivatives (MG). To determine whether dietary AGEs promote
AD, we evaluated WT mice pair-fed three diets throughout life:
low-AGE (MG−), MG-supplemented low-AGE (MG+), and regular
(Reg) chow. Older MG+-fed mice, similar to old Reg controls, de-
veloped MS, increased brain amyloid-β42, deposits of AGEs, gliosis,
and cognitive deficits, accompanied by suppressed SIRT1, nicotin-
amide phosphoribosyltransferase, AGE receptor 1, and PPARγ. These
changes were not due to aging or caloric intake, as neither these
changes nor the MS were present in age-matched, pair-fed MG−

mice. The mouse data were enhanced by significant temporal cor-
relations between high circulating AGEs and impaired cognition,
as well as insulin sensitivity in older humans, in whom dietary and
serum MG levels strongly and inversely associated with SIRT1 gene
expression. The data identify a specific AGE (MG) as a modifiable risk
factor for AD andMS, possibly acting via suppressed SIRT1 and other
host defenses, to promote chronic oxidant stress and inflammation.
Because SIRT1 deficiency in humans is both preventable and revers-
ible by AGE reduction, a therapeutic strategy that includes AGE re-
duction may offer a new strategy to combat the epidemics of
AD and MS.
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Cognitive dysfunction is currently one of the most prevalent
and important polygenic age-related diseases (1–3). A link

has been identified between dementia, the most frequent form of
which is Alzheimer’s disease (AD), and the metabolic syndrome
(MS) or diabetes type 2 (T2D) (1, 3), conditions largely related
to environmental factors (4, 5). An emerging view suggests that
there is a compromise in innate defense mechanisms preceding
these conditions that is due to sustained elevation of oxidant
stress (OS) (6).
Modulation of the environment, i.e., caloric excess or caloric

restriction (CR), can influence cognitive function (7, 8); how-
ever, the calorie-sensitive pathway(s) involved are unknown.
NAD+-dependent sirtuin 1 (SIRT1), an NAD+-dependent deace-
tylase that positively regulates neuronal, immune, and endocrine
responses, is down-regulated in aging-related diseases and is
thought to contribute to cognitive decline (1, 9–11). Restora-
tion of brain SIRT1 is widely implicated in the benefits of CR on
the aging brain (7–9, 11).
Glycotoxins or advanced glycation end products (AGEs) are

a class of OS-promoting agents implicated in diabetes and aging,
including brain injury due to AD and stroke (6, 12–14). Certain
AGEs, such as the derivatives of methyl-glyoxal-imidazolone-H1

(MG-H1) amplify the proinflammatory properties of amyloid β1–42
(Aβ) or tau protein (15–17). High MG levels in brain or the circu-
lation are linked to cognitive decline in elderly subjects (15, 17, 18).
Food-derived AGEs have emerged as contributors to chronic

diseases due to their abundance in thermally altered nutrients
(19, 20). AGE restriction in nutritionally and nutritionally bal-
anced diets delayed metabolic and vascular diseases and ex-
tended lifespan in mice (21, 22). The role of diet-derived AGEs
in systemic AGE toxicity was confirmed in studies using a defined
MG-supplemented low-AGE diet (MG+). Old MG+ mice, but not
MG− mice, developed age-related MS and kidney and cardiac
fibrosis, associated with inflammation and SIRT1 depletion in
insulin-sensitive tissues (22). AGE restriction also improved in-
sulin resistance and inflammation in humans (23, 24).
We therefore postulated that oral AGEs, in addition to

causing MS, might also predispose to dementia, and these both
might be prevented by AGE restriction (22). The MG+/MG−

mouse model provides an opportunity to explore the link of
oral AGEs to these chronic conditions, free of either genetic or
caloric manipulations.
Herein, we show that cognitive dysfunction develops in par-

allel with metabolic changes in old mice fed defined AGEs
(MG+) but not in AGE-restricted (MG−) mice. These findings
were supported by clinical findings, introducing previously
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unidentified evidence of AGEs as a modifiable risk factor for
both AD and MS.

Results
Chronic Oral MG+ Promotes Systemic and Brain Changes in Old WT
Mice.MG+ (18 mo) mice fed an MG-supplemented diet had higher
body weight than pair-fed age-matched MG− mice fed a low-AGE
diet (Table 1), a finding attributed to the higher amount of AGE-
modified visceral fat found only in MG+ (and Reg 24–26 mo) mice
(22). Higher serum AGEs [serum eN-carboxymethyl-lysine (sCML)
and sMG], plasma 8-isoprostanes, and lower adiponectin levels
were noted in MG+ and Reg mice (Table 1 and Fig. 1A), sug-
gesting elevated OS in these two groups, but not in MG− mice
(22). MG+ and Reg mice were also insulin resistant, based on
higher fasting insulin and leptin levels (Table 1) and on an
abnormal i.p. glucose tolerance test (IGTT) (SI Materials and
Methods) (22).
Both brain protein- and lipid-associated AGE levels in Reg

and MG+ mice were higher than in MG− mice (Table 1 and Fig.
1 B and C). Brain tissue from MG+ mice had reduced protein
levels of SIRT1 and of the [NAD+/NADH]-regulating nicotin-
amide phosphoribosyltransferase (NAMPT), relative to MG−

mice (Fig. 2 A and B), suggesting that exogenous AGEs induce
parallel changes in brain and in the periphery (22). Brain AGE

receptor 1 (AGER1) and PPARγ levels were reduced, and re-
ceptor for AGEs (RAGE) levels were enhanced in MG+, com-
pared with MG−, brain tissue (Fig. 2 A and B) (22).

Oral MG+ Reduces ADAM10 Transcriptional Activity and Promotes Aβ
Accumulation. A disintegrin and metalloproteinase binding protein
10 (ADAM10) modulates amyloid precursor protein (APP) and
soluble APP-beta (APP, etc.) (sAPP-β) levels, limiting the ac-
cumulation of Aβ1–42, and is regulated by SIRT1 (25). In this
context, ADAM10 mRNA and protein levels in MG+ and Reg
brain were significantly lower than in MG− brain (Fig. 3 A and B,
i and ii). Levels of total APP and sAPP-β, the product cleaved by
β-secretase, were similar in MG+ and Reg brains. In contrast,
sAPP-β levels and the sAPP-β:APP ratio were lower in MG−

brains than in MG+ or Reg brains (Fig. 3C). Furthermore, the
levels of Aβ in the MG+ and Reg brains were significantly higher
than in the MG− brain (Fig. 3D).
Morphometric analysis of hippocampal (HC) areas for anti–

GFAP-positive glia indicated significantly more cells and levels of
activation in MG+ than in MG− HC (Fig. 4 A, B, and Inset). MG+

HC had prominent AGE-positive aggregates colocalizing with
GFAP-positive cells in areas of dense glial populations (Fig. 4 C
and D, i and ii). In contrast, MG− HC sections displayed fewer
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Fig. 1. Oral MG+ leads to increased systemic and brain protein and lipid AGEs. Data are from 18-mo WT C57BL6 mice pair-fed MG+ or MG− diet and control
(Reg) mice (24–26 mo, n = 8/group). (A) Serum CML and MG levels. (B) Brain protein CML and protein MG. (C) Brain lipid CML and lipid MG. Data are percent
(mean ± SEM) above or below Reg controls (as shown in Table 1). *P < 0.05, MG+ vs. MG− mice.
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Fig. 2. Oral MG+ alters brain SIRT1, NAMPT, AGER1, RAGE, and PPARγ protein expression in MG+-fed mice brains. (A) Representative Western blots from
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*P < 0.05 vs. MG− mice.
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cells and no AGE-positive clusters (Fig. 4C). No cortical differ-
ences were noted by specific nuclear protein staining.

Neocortical SIRT1 Expression Is Suppressed by Chronic MG+ Excess.
Chronically elevated MG levels could directly or indirectly pre-
dispose fetal neurons to injury. SIRT1 and NAMPT were sup-
pressed in MG+ neuronal cells compared with cells from MG−

cells (Fig. S1 A–C). Reduced AGER1 levels (Fig. S1C) were
consistent with higher intraneuronal RAGE, AGEs, and reactive
oxygen species (ROS) levels in Reg and MG+ neurons than in
MG− neurons (Fig. S1 D and G). Moreover, ADAM10 was
markedly suppressed in MG+ neurons but not in MG− neurons
(Fig. S1E).
Prolonged ex vivo stimulation of Reg neurons with MG-BSA

(>72 h) resulted in a dose-dependent suppression of SIRT1,
AGER1, and ADAM10 (Fig. S2 A and B), changes that were
associated with increased ROS (Fig. S2C).

Chronic MG+ Impairs Learning andMemory.Basic motor coordination
and balance learning skills were first evaluated with the rotarod
test. MG− mice performed for a longer distance and at a higher
speed before falling from the rod compared with MG+mice (Fig. 5

A and B). MG+ mice showed a lower latency than MG− mice (Fig.
5C). On testing object recognition, MG+ fed mice showed poor
exploratory behavior with a lower discriminatory capacity between
a familiar and a novel object than MG− mice (Fig. 5D), which
spent ∼70% of the time exploring the new object. On testing ob-
ject replacement, MG+-fed mice performed better, but this was
not significant (Fig. 5E).

High MG Correlates with Dietary AGE Intake and SIRT1 Suppression in
Older Humans. At baseline, the cohort’s body mass index (BMI)
and metabolic and biochemical parameters (n = 93, ≥60 y old,
educated, 68% female) were within the range expected for their
age, as were calorie and dietary AGE intake (dAGE) (24, 26).
Baseline cognitive function [by Mini Mental State Examination
(MMSE)] was also normal (Table S1).
Baseline sMG levels correlated positively with dAGE intake

(Fig. 6A) and inversely with mononuclear cell (MNC) SIRT1
mRNA levels (Fig. 6B and Table S2). In addition, baseline
dAGE and sMG levels both correlated with sCML, plasma
8-isoprostanes, leptin, MNC TNFα protein, and RAGE mRNA,
but inversely with SIRT1 mRNA and adiponectin levels (Table
S2 and Fig. S3).

Table 1. Mice characteristics

Groups MG− MG+ Reg

Number/group 12 (6 F/6 M) 12 (6 F/6 M) 8 (4 F/4 M)
Body weight (g) 30.8 ± 0.52 35.1 ± 1.8* 33.5 ± 1.5
Brain weight (g) 0.48 ± 0.1 0.46 ± 0.05 0.48 ± 0.1
Brain/body weight ratio 0.017 ± 0.004† 0.013 ± 0.001* 0.014 ± 0.003
Food intake (g/d) 4.8 ± 0.8 4.9 ± 0.05 5 ± 0.7
Food MG intake (nmol/d) 0.67 × 104† 1.9 × 104‡ 1.5 × 104

Serum CML (sCML, U/mL) 21.9 ± 1.2§ 49.9 ± 1.1‡ 42.8 ± 1.5
Serum MG (sMG, nmol/mL) 0.83 ± 0.2† 2.08 ± 0.29‡,{ 1.59 ± 0.2
Fasting blood glucose (mg/dL) 82.6 ± 2.8 81.4 ± 4 83.1 ± 2.4
Fasting insulin (nmol/L) 0.24 ± 0.02§ 0.41 ± 0.07* 0.45 ± 0.02
Adiponectin (μg/mL) 13.7 ± 1.2† 7.8 ± 1.0‡ 8.2 ± 0.4
Leptin (ng/mL) 10.3 ± 0.9† 22.7 ± 0.9‡ 18.0 ± 0.8
8-Isoprostane (pg/mL) 88 ± 5.5† 267 ± 32.4‡,{ 174 ± 22.3
Brain protein CML (U/g brain) 100.3 ± 12.2 166.3 ± 19.4* 142.6 ± 10
Brain protein MG (nmol/g brain) 63.4 ± 6.3 90.1 ± 11.05* 78.4 ± 6.5
Brain lipid CML (U/g brain) 229.5 ± 15.5 352.5 ± 39.2* 290.4 ± 14.3
Brain lipid MG (nmol/g brain) 6.3 ± 1.3 10.0 ± 0.6* 7.5 ± 0.5

Mice were WT C57BL6. MG− denotes 18-mo mice on low-AGE diet. MG+ denotes 18-mo mice on a
MG-supplemented low-AGE diet. Reg denotes 24- to 26-mo control mice on standard NIH-31 open formula diet.
Data are means ± SEM. *P < 0.05 and ‡P < 0.01 between MG+ and MG− mice; {P < 0.05 between MG+ and Reg
mice; †P < 0.05 and §P < 0.01 between MG− and Reg mice.
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High MG Levels in Older Humans Correlate with Temporal Changes in
Cognition and Insulin Sensitivity. High baseline sMG levels pre-
dicted a cognitive decline over time (9 mo, P = 0.041; Fig. 7A),
which remained significant after adjusting for age, sex, educa-
tion, and baseline MMSE. Temporal changes in homeostasis
model assessment (HOMA)-IR, a marker of insulin resistance,
also correlated with changes in sMG (Fig. 7B and Fig. S4A), as
well as with sCML (Fig. S4B). No other metabolic changes
were noted.

Discussion
We report that age-related dementia (AD) and MS may be
causally linked to high levels of food AGEs, specifically MG. The
data extend our previous findings on AGEs promoting the MS in
older animals and humans (22–24). The mouse study further
reproduces the cognitive and metabolic conditions recently found
to be linked in humans (1, 4, 5). The clinical study validates the
mouse model and demonstrates that high sMG, a marker of di-
etary AGE intake and IR (23), may also be a determinant
of dementia in older adults (17). It further validates the relevance
of dietary AGEs to MS and AD in humans. Because AGEs can
be modified in humans, recognition that this underappreciated
risk factor plays a role in AD and MS may open unique therapeutic
avenues.

Brain deposits of AGEs and Aβ are thought to be age related
(13–16, 27–31). The current study shows that both of these ele-
ments were increased in brains of old MG+ mice to levels similar
to those in old Reg controls. An important insight provided herein
is that these changes cannot be attributed to aging or caloric in-
take alone, because the levels of AGEs and Aβ were significantly
lower in strain- and age-matched pair-fed MG− mice.
Brain dysfunction has also been associated with the MS and

T2D, conditions linked to nutrient intake (8, 9, 11). We pre-
viously showed that MG+ mice had features of the MS, including
AGE-modified white adipose tissue (WAT) accumulation and
SIRT1 suppression (22). The effects of calories and CR on
cognition were previously thought to be directly related to brain
SIRT1 expression (10, 11). We found that modern diets are also
replete with prooxidant AGEs, including MG (19–21). These
data, coupled with the fact that the MG+ diet induces systemic
inflammation and SIRT1 suppression in this study independently
of caloric intake (21, 22), provides a clear link between SIRT1
deficiency of the aging brain and glycotoxins. Mouse models of
CR, AD, or SIRT1 expression in mice reveal that SIRT1 plays a
central role in brain function (2, 8, 25). However, the fact that
SIRT1 and NAMPT, AGER1, and PPARγ were suppressed in
MG+ but not in MG− brains indicates that loss of multiple de-
fense mechanisms in aging may reflect the impact of sustained
high OS and that AGEs could play a seminal role (22). The MG−
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mouse data further demonstrate that SIRT1 deficiency may be
preventable in mice regardless of caloric intake.
Changes in the SIRT1 pathway have been linked to AGE re-

ceptor levels (22–24). AGE receptors are expressed in brain neu-
rons, microglia, and endothelium. AGER1, an anti-AGE receptor,
was up-regulated in the brain of MG− mice, whereas RAGE,
a signaling receptor linked to oxidative stress and neurotoxicity,
was decreased (30, 31). Because systemic AGER1 also inhibits
SIRT1 suppression (22), it could have a similar effect on SIRT1 in
the brain. In the current study, we found that neurons from MG−

mice had higher AGER1 levels, which were associated with higher
levels of SIRT1 and lower levels of intracellular AGE and ROS. In
contrast, reduced AGER1 in Reg and MG+ neurons, by delaying
the clearance of AGE-modified proteins such as AGE-Aβ (13),
could account for the increased amounts of AGE deposits, sup-
pression of SIRT1, and glial activation seen in the brains of MG+

mice but not in MG− mice.
The data from neocortical neurons of MG+ mice further suggest

a placental mode of transfer of excessive AGEs to the fetal brain,
which might render the brain more susceptible to OS injury. The
findings might be of relevance to the increasing incidence of de-
mentia in younger adults with the MS or diabetes. Importantly, this
injurious process appears to be preventable in brains of MG−mice,
a finding of significant therapeutic import. Whether this involves
epigenetic changes or an altered gut microbiome is a critical
subject for further inquiry (32, 33).
SIRT1 deficiency leads to impaired insulin receptor signaling

in adipose tissue from MG+ mice (22). It is not known if this
pathway is altered in the brains of MG+ mice, although this might
provide a mechanistic link to the insulin-resistant state shown to
be associated with cognitive decline (1, 3, 34). Nonetheless, the
prominent gliosis noted in the hippocampus of the MG+ mice,
coupled with suppressed SIRT1 and AGER1, is consistent with
an MG-mediated inflammatory response. The AGE aggregates
observed in these mice could have elicited inflammatory responses
(27–30), partly via RAGE activation (14, 35). Whether the effects
in MG+ mice are a reflection of altered blood-brain barrier, high
intracerebral OS, or both, remains to be established. However, the
fact that lower MG levels in MG− brains were associated with
lower OS and RAGE suggests that lowering external AGEs could
exert significant benefits.
In this context, SIRT1 also regulates liver X receptor, fork-

head box subgroup O, and PPARγ, important factors in brain
plasticity (2, 11, 36). Additionally, PPARγ, which promotes
amyloid clearance and suppresses glial activation (37), was
decreased in MG+ and Reg compared with MG− brains. Thus,
low PPARγ may delay Aβ clearance, a hypothesis supported by
higher levels of Aβ levels and gliosis in brains of MG+ and Reg
mice compared with MG− mice.

SIRT1 also limits Aβ accumulation by directing APP pro-
cessing via ADAM10 and α-secretase transcription (25). Because
SIRT1 deficiency in MG+ mice was associated with reduced
ADAM10 levels, this may partly account for the increased APPβ/
total APP ratio and the higher Aβ generation in MG+ and Reg
mice. The absence of these changes in the MG− mice further
supports the view that altered brain homeostasis may stem from
sustained exposure to neurotoxic AGEs.
Importantly, impaired spatial learning and recognition mem-

ory in MG+ mice mirrored cognitive changes in older humans
(11, 38, 39). Significantly, these were absent in MG− mice, of-
fering previously unidentified direct in vivo evidence that oral
AGEs can impair cognition.
Because the MG+ mice also manifested in parallel metabolic

(22) and cognitive changes, the data may identify MG as a causal
link between AD and MS (3, 24). Herein, we found a significant
temporal decline in cognition in subjects with high baseline sMG
level, together with a strong inverse correlation between baseline
levels of dietary or serum AGEs and MNC SIRT1 gene levels
(24). Furthermore, changes in insulin resistance temporally
correlated with changes in serum AGE levels. Together with the
animal data, these clinical findings reinforce the fact that chronic
exposure to exogenous AGEs can weaken host defenses well in
advance of cognitive or metabolic disturbances. A critical finding
afforded by the animal studies is that AGE restriction prevented
the loss of both conditions, highlighting glycotoxins as a modifi-
able risk for AD and MS in humans. Because aspects of the MS
in humans may improve after AGE restriction (23, 24), it is
possible that cognition can also improve in humans. Given the
major public health potential of these findings, larger clinical
trials are warranted.

Materials and Methods
Animal Studies.WeusedWT C57BL/6mice [derived fromNational Institutes of
Aging, CR colony, bred for >10 generations and fed an MG-supplemented
diet (MG+)], because older MG+ mice, similar to older WT Reg mice, develop
MS (SI Materials and Methods) (22). The diets were identical in caloric con-
tent, but MG+ and Reg diets contained ∼2- to 2.3-fold more MG-H1 and CML
than the MG− diet (Table 1) (21). C57BL/6 mice, fed the NIH-31 open formula
(Reg), were used as controls (SI Materials and Methods) (21). Based on an
abnormal IGTT, which appeared in MG+ mice (at 18 mo) and in Reg mice (at
24–26 mo), all mice, including MG− mice (18 mo) were killed; blood and
brain tissues were processed as needed.

AGE Determinations. AGEs in sera (mouse and human), mouse brain tissue,
and cultured neuronal cells were determined by ELISAs for MG-H1 (3D11
mab) and CML (4G9 mab) for protein and lipid AGEs (SI Materials and
Methods) (21–23, 40–42).

Cell Culture and Treatments. Embryonic E14 primary brain neuronal cells from
MG+, MG−, and Reg mice were derived and cultured as described with minor
modifications (SI Materials and Methods) (8, 11). Cell extracts were obtained
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Fig. 6. Serum MG levels correlate directly with dietary AGE intake (A) and
inversely with MNC SIRT1 mRNA (B). Baseline fasting sMG levels, shown as
mean ± SEM (nmol/mL), are plotted against daily dietary AGE intake, shown
as Eq/d (A) or against MNC SIRT1 mRNA of healthy older adults (B). Fitted
regression lines are as shown.

-4

-2

0

2

4

6

0 2

D
el

ta
 M

M
SE

Baseline sMG

r= 0.376
p = 0.007

-4
-3
-2
-1
0
1
2
3

-2 -1 0 1 2

D
el

ta
 H

O
M

A
- IR

r= -0.268
p = 0.041

Delta sMG

BA
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time correlate with changes (Δ) in HOMA-IR over the same period. All tests
were performed in fasting sera; fitted regression lines are as shown.
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immediately or after 24–72 h, as needed. Neuronal cells from Reg brain were
chronically exposed to different doses of MG-BSA or BSA (72 h).

Immunohistochemistry. Anesthetized mice were transcardially perfused with
4% (wt/vol) paraformaldehyde (PF) and the brain was removed, processed
for immunohistochemistry, and viewed by a confocal microscope (Zeiss LSM
510 Meta) (SI Materials and Methods) (8, 36).

Brain Functional Testing. Motor coordination, balance, and motor learning
were tested on the accelerating rotarod device (Series 8; IITC Life Science) (SI
Materials and Methods) (38). Object recognition and placement memory
tests were conducted, and data were video recorded and analyzed (SI
Materials and Methods) (39).

Human Studies. This study was an observational study in healthy adult
(n = 93), ≥ 60-y-old, New York City residents who provided informed
consent. Participants were evaluated at baseline and 9 mo later for time-
dependent changes in serum AGEs, markers of OS, and inflammation,
insulin resistance, and cognition. Information was collected on medical
history, medications, and caloric and AGE intake. Exclusion criteria included
evidence of diabetes, cardiovascular or kidney disease, neuropsychiatric dis-
ease, and cancer. Cognition was assessed by a Clinical Dementia Rating (CDR)
scale and by a MMSE score, with normality defined as a CDR score of 0 (non-
demented) and an MMSE score above the 10th percentile of age and education
norms (17). All cognition tests were performed by trained research coordinators

at the Icahn School of Medicine Alzheimer’s Disease Research Center. After an
initial evaluation, participants underwent MMSE and provided a fasting blood
sample (at 0 and 9 mo). Plasma or sera was used for routine blood tests, and
AGEs (sCML and sMG), adiponectin, leptin, insulin levels, and HOMA index and
MNCs were used for gene assessment by RT-PCR (SI Materials and Methods)
(23, 24).

Statistics. Animal data were expressed as means ± SEM, and differences were
determined by Student t test. For comparisons among the three groups, one-
way ANOVA with Bonferroni correction analysis was performed. The be-
havioral data were analyzed using repeated-measures ANOVA with multiple
comparison tests performed with Bonferroni’s adjustment. Significance was
set at P < 0.05.

Human datawere analyzed for relationships between variables at baseline
using mean ± SD and quartiles, based on regression models and partial
Spearman correlation coefficients and adjusting for age and sex. The tem-
poral relationship between baseline sMG and Δ MMSE was explored using
general linear regression models adjusting for baseline MMSE and years of
education, age, and sex. Also assessed were the correlations of Δ sMG,
Δ sCML, and Δ HOMA-IR, using Spearman correlation coefficients, by Stata,
version 11. Data with two-sided P < 0.05 were considered significant.
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