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Neurotransmission at different synapses is highly variable, and
cell-adhesion molecules like α-neurexins (α-Nrxn) and their extra-
cellular binding partners determine synapse function. Although
α-Nrxn affect transmission at excitatory and inhibitory synapses,
the contribution of neurexophilin-1 (Nxph1), an α-Nrxn ligand
with restricted expression in subpopulations of inhibitory neurons,
is unclear. To reveal its role, we investigated mice that either lack
or overexpress Nxph1. We found that genetic deletion of Nxph1
impaired GABAB receptor (GABABR)-dependent short-term depres-
sion of inhibitory synapses in the nucleus reticularis thalami, a re-
gion where Nxph1 is normally expressed at high levels. To test the
conclusion that Nxph1 supports presynaptic GABABR, we expressed
Nxph1 ectopically at excitatory terminals in the neocortex, which
normally do not contain this molecule but can be modulated by
GABABR. We generated Nxph1-GFP transgenic mice under control
of the Thy1.2 promoter and observed a reduced short-term facili-
tation at these excitatory synapses, representing an inverse phe-
notype to the knockout. Consistently, the diminished facilitation
could be reversed by pharmacologically blocking GABABR with
CGP-55845. Moreover, a complete rescue was achieved by addi-
tional blocking of postsynaptic GABAAR with intracellular picro-
toxin or gabazine, suggesting that Nxph1 is able to recruit or
stabilize both presynaptic GABABR and postsynaptic GABAAR. In
support, immunoelectron microscopy validated the localization of
ectopic Nxph1 at the synaptic cleft of excitatory synapses in trans-
genic mice and revealed an enrichment of GABAAR and GABABR
subunits compared with wild-type animals. Thus, our data propose
that Nxph1 plays an instructive role in synaptic short-term plastic-
ity and the configuration with GABA receptors.
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Chemical synapses mediate signal transmission, integration,
and plasticity. Synaptically transmitted signals differ between

synapses of the same type and vary even at individual contacts of
the same neuron (1), depending, for example, on their proba-
bility of release and history of activity (2, 3). Numerous studies
have demonstrated that neurotransmission requires a plethora
of synaptic molecules and signaling events (4). However, the
mechanisms controlling the shaping of synapses with different
properties are mostly unclear. We have addressed this problem
by studying neurexins and their interaction partners (5, 6). Sev-
eral aspects make neurexins candidates to couple local recogni-
tion/adhesion events to synaptic function: first, both extracellularly
longer α-neurexins (α-Nrxn) and shorter β-neurexins (β-Nrxn) are
able to induce functional synapses (7, 8); second, at least α-Nrxn
are essential for synaptic transmission at excitatory and inhibitory
terminals (9, 10); and third, α- and β-Nrxn are highly polymorphic,
mostly presynaptic molecules (11, 12) that interact with trans-
synaptic binding partners like neuroligins (13, 14), LRRTMs (15,
16), or cerebellin/GluRδ2 (17, 18).
In contrast to Nrxn that are expressed throughout the brain

in virtually all excitatory and inhibitory neurons (12), the
α-Nrxn–specific ligand neurexophilin (Nxph) is restricted to
neuronal subpopulations (19, 20). The function of this ligand has

not been studied in detail. Neurexophilins were discovered as
a component of the latrotoxin receptor α-Nrxn (21) and com-
prise a family of four glycoproteins (Nxph1–4) that exhibit the
characteristics of secreted, preproprotein-derived molecules (19,
22). Biochemical studies demonstrated that Nxph1 and Nxph3
interact with the second laminin-sex hormone-binding protein
neurexin (LNS) domain of Nrxn (23). The LNS2 domain is present
only in the extracellular sequences of α-Nrxn that contain six LNS
domains, whereas β-Nrxn contain only a single LNS identical to
the sixth domain of α-Nrxn (6).
In situ hybridization data suggested that Nxph1 is present in

select inhibitory interneurons of the adult brain (19) and in mi-
gratory interneuron precursors (24). Knock-in mice coexpressing
lacZ with Nxph3, in turn, revealed expression in excitatory neurons
of neocortical layer 6b and in the vestibulocerebellum (20). The
localized expression of Nxph variants is contrary to the widespread
distribution of α-Nrxn, raising the question of whether Nxph have
modulatory functions at distinct subpopulations of synapses. We
observed previously that deletion of Nxph1 and Nxph3 in mice
has no major impact on postnatal survival (20, 23), unlike their
cognate receptor α-Nrxn (9), but no information on their phys-
iological roles is available yet.
Here, we show that deletion of Nxph1 impairs GABAB-receptor

(GABABR)–dependent short-term depression of inhibitory syn-
apses in the nucleus reticularis thalami (NRT). In support,
transgenic overexpression of Nxph1 at excitatory contacts in the
neocortex demonstrates the ability to alter the molecular com-
position of synapses because functional GABAA and GABAB
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receptors become enriched and cause an impaired short-term
facilitation.

Results
Nxph1 Functions at GABAergic Synapses in the Thalamus. To de-
termine the physiological role of Nxph1 at synapses, we studied
neurotransmission in Nxph1-deficient (KO) mice. We chose the
NRT as a model system because expression of Nxph1 is normally
high in the NRT (19). In addition, this region is composed of
GABAergic neurons that sustain important brain functions, in-
cluding sleep–wake regulation, cognition, and neuronal attention
(25–27). Whole-cell patch-clamp recordings from Nxph1 KO
neurons in the NRT (Fig. 1A) revealed only a small effect on
spontaneous release because the frequency of miniature in-
hibitory postsynaptic currents (mIPSCs) was increased compared
with wild type (WT) (Fig. 1 B and C). Amplitudes and kinetics
such as decay times of mIPSCs were not different between ge-
notypes (Fig. 1 D and E), and deletion of Nxph1 did not signifi-
cantly alter electrically evoked inhibitory post synaptic currents
(eIPSC amplitudes in WT: 418.5 ± 49.8 pA, n = 19 cells; in
Nxph1 KO: 339.8 ± 54.1 pA, n = 14 cells; P = 0.30), although a
tendency toward smaller responses in KO may exist. To test the
hypothesis that Nxph1 might affect synaptic plasticity more strongly
than basic transmission, we performed paired-pulse experiments

to evoke short-term plasticity in the NRT (Fig. 1F). Short-term
depression of eIPSCs, typical for NRT synapses (28), was im-
paired in KO neurons and replaced by facilitation at short in-
terstimulus intervals, indicating that short-term depression as
analyzed by paired-pulse ratio (ppr) depends on Nxph1 (Fig. 1G).
This finding is supported by a second experimental protocol, a
20-Hz stimulation pulse that also yielded strong depression in
NRT neurons of WT but not of KO mice (Fig. 1 H1, H2, and I),
providing further evidence for a role of Nxph1 in synaptic plas-
ticity. In contrast, basal neuronal cell properties such as mem-
brane input resistance, resting potential, and capacitance were
equal in both genotypes (Table S1). Current-clamp recordings of
low-threshold spikes (LTS), a characteristic rebound response of
NRT neurons (29, 30), also remained unchanged in the absence
of Nxph1 (Fig. 1J and Table S1), suggesting that Nxph1 is not
required for mediating intrinsic properties of the GABAergic
NRT neurons.
Because paired-pulse depression and spontaneous release at

inhibitory terminals of NRT involves activation of GABABR
(31), we probed the possibility that Nxph1 affects the function of
these receptors by applying the antagonist CGP-55845 (Fig. 2A).
We observed that mIPSC frequencies in KO were only weakly
affected by (2S)-3-[[(1S)-1-(3,4-Dichlorophenyl)ethyl]amino-2-
hydroxypropyl](phenylmethyl)phosphinic acid hydrochloride
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Fig. 1. Nxph1 functions in subpopulations of in-
hibitory synapses. (A) Experimental setup for patch-
clamp recordings from neurons in the NRT (green
indicates GAD65-driven GFP for reliable identifica-
tion) and the VB. IC, internal capsule; VL, ventral
posterolateral nucleus. Red arrows indicate GABAer-
gic connections analyzed within the NRT and to the
VB. (B) Representative mIPSC recordings from NRT
neurons of WT (Upper traces) and Nxph1 KO (Lower
traces). (C–E) mIPSC frequencies in KO neurons (green)
show a leftward shift in the cumulative represen-
tation, and an increased average (Inset). Amplitudes
(D) and decay times (E) of mIPSC are similar in both
genotypes. (F) Averaged current traces from paired-
pulse experiments in WT (black) and KO (green) to
evoke inhibitory synaptic short-term depression. (G)
Paired-pulse depression seen in WT at different in-
terstimulus intervals is abolished in KO. (H and I)
Short-term plasticity in NRT neurons evoked by a 20-
Hz stimulus train (H1, sample traces from WT; H2,
sample traces from KO) reveals depression in WT.
Ratios (ppr) were calculated between the 2nd, 4th,
and 10th amplitude to the first amplitude, but de-
pression (<1.0) was hardly observed in KO (I). (J)
Representative current-clamp recording from KO
showing LTS after hyperpolarization (arrow). All
data are means ± SEM (collected from 10 to 19
neurons from at least three mice per condition/ge-
notype). Significance of differences was tested by
Student t test for unpaired values; levels are in-
dicated as *P < 0.05, **P < 0.01, and ***P < 0.001.
n.s., not significant.
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(CGP), whereas in WT, they were increased to the level of
Nxph1-deficient neurons (Fig. 2B). Amplitudes and decay times
of mIPSCs were not changed by CGP treatment in either of the
two genotypes (Fig. 2 C and D), consistent with a lack of phe-
notype in these control parameters (Fig. 1 D and E). More im-
portantly, paired-pulse depression of inhibitory synapses in WT
was reduced upon CGP application (Fig. 2E), approaching val-
ues for KO neurons, whereas the paired-pulse ratio in KO
remained largely unchanged (Fig. 2F). These data show that
deletion of Nxph1 produced a phenotype that behaves as if the
activity of GABABRs is blocked. Our results are consistent with
earlier reports demonstrating that blockade of GABABR at in-
hibitory synapses in NRT cells and elsewhere reverses paired-
pulse depression (31, 32) and that presynaptic GABABR at in-
hibitory terminals are involved in the sustained depression of
GABA-mediated transmission (32–34). Although clearly not all
inhibitory synapses in the brain contain GABAB autoreceptors
(35), addition of the GABABR agonist baclofen in some experi-
ments also confirmed that wild-type NRT neurons are regulated
by these autoreceptors (31) and that Nxph1-deficient cells respond
less to application of the agonist (Fig. S1). Thus, our analysis
demonstrates that deletion of Nxph1 impairs GABABR-mediated
inhibition at GABAergic synapses in the NRT and that Nxph1 is
required for short-term plasticity at these terminals.
Because Nxph were initially characterized as putatively se-

creted, neuropeptide-like molecules based on sequence analysis
(22), a diffuse, paracrine mode of action could not be excluded.
To test if the role of Nxph1 was restricted to brain regions with
abundant expression such as the NRT, we performed control
recordings of pharmacologically isolated GABAergic synapses in
layer 5 of the somatosensory cortex (Fig. 3 A and B), a region
with very low expression of Nxph1 in WT (19). Quantitative
analysis revealed no significant differences between WT and KO
neurons in mIPSC frequency (Fig. 3C), amplitude (Fig. 3D),
decay time (Fig. 3E), and ppr (Fig. 3F). These results support the
conclusion that the observed effects are restricted to regions of
significant Nxph1 expression.
To probe if the impairments were restricted to intrinsic NRT

synapses or present at other terminals of NRT neurons, we
performed additional recordings from neurons of the thalamic
ventrobasal nucleus (VB) that receive GABAergic projections
from NRT neurons (Fig. 1A). In contrast to NRT, quantitative
RT-PCR (qRT-pCR) experiments showed that VB neurons in
mice express very little Nxph1 mRNA themselves (VB: 0.57 ±
0.03; NRT: 5.09 ± 0.53; n = 3, P = 0.0066), in particular com-
pared with α-Nrxn that show an equal distribution (Nrxn3α in
VB: 2.47 ± 0.43; NRT: 2.28 ± 0.59; n = 3, P = 0.84). In line with
this finding, recordings of spontaneous release (Fig. 3G) and
short-term depression (Fig. 3H) failed to detect any changes in
the VB of Nxph1 KO animals, supported by quantification of
mIPSC frequency (Fig. 3I), amplitude (Fig. 3J), decay time (Fig.
3K), and ppr (Fig. 3L). Thus, our results propose that deletion of
Nxph1 causes a remarkably specific impairment of intrinsic
GABAergic NRT synapses that is undetectable at the VB pro-
jection from the same neurons or at inhibitory synapses in brain
regions with only low endogenous Nxph1 expression.

Expression of Nxph1 Has an Instructive Role in Synapses. Based on
our analysis of KO mice, we hypothesized that expression of
Nxph1 at synapses is highly regulated and may stabilize metab-
otropic GABABR. To test this idea, we introduced Nxph1 ec-
topically as a fusion protein with EGFP in transgenic mice
(Nxph1-GFPtg/−, Fig. 4A). Nxph1-GFP was expressed under
control of the Thy1.2 promoter, for example, in a large pop-
ulation of pyramidal neurons in the neocortex of transgenic mice
(Fig. 4B; and Fig. 4C as WT control), indicating that Nxph1-GFP
was present in excitatory neurons, which normally do not contain
this α-Nrxn ligand (19). This strategy was conceived to artificially
drive Nxph1 into synapses that usually lack this molecule, al-
lowing us to compare normal physiological properties to the
effects of introducing Nxph1.

As prerequisite for functional experiments, we first investigated
if Nxph1-GFP was actually localized at excitatory synapses of
transgenic mice. Immunoelectron microscopy was performed
with anti-GFP antibodies in the neocortex of WT and transgenic
animals. We found almost 10-fold more labeling with 10 nm gold
particles at asymmetric type 1 (putative excitatory) synapses in
mutants compared with low background levels in WT samples
(WT: 0.40 ± 0.23/1,000 μm2; Nxph1-GFPtg/−: 3.66 ± 0.70/1,000
μm2; n = 4; P = 0.004). To safeguard against artifacts, three
methods were applied, which all revealed labeled excitatory
synapses in Nxph1-GFPtg/− mice (Fig. 4 D–F). Nxph1-GFP was
frequently located directly over synaptic clefts (Fig. 4 D–F) at the
plasma membrane of presynaptic terminals (Fig. 4G) and at
extrasynaptic sites of the cell surface (Fig. 4H), consistent with
the mobile behavior of its cognate receptor α-Nrxn on axonal
membranes (36). Intracellularly, we observed gold-labeled Nxph1
over vesicular structures in the presynaptic terminal (Fig. 4I) and
inside the lumen of rough endoplasmatic reticulum (rER) and
Golgi cisternae (Fig. 4 J and K), as expected for a glycoprotein
that traverses the secretory pathway (22). To assess if over-
expression of Nxph1 had an effect on synaptic architecture in
general, we studied synapse distribution and ultrastructure in
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Fig. 2. Blockade of GABABR in the NRT mimics the effect of Nxph1 deletion.
(A) mIPSC recordings fromWT neurons in the NRT with the GABABR inhibitor
CGP-55845. (B–D) mIPSC frequencies are increased in the presence of CGP in
WT, whereas KO frequencies remain elevated (B). Amplitudes (C) and decay
times (D) are unaffected by GABABR blockade. (E) Averaged current traces of
paired-pulse experiments in WT neurons of the NRT without (gray) and with
CGP (black). (F) Depression normally seen in NRT neurons at different in-
terstimulus intervals can be blocked by CGP. No significant changes occur
after blockade in KO neurons. All data are means ± SEM (collected from 8
to 19 neurons from at least three mice per condition/genotype). Significance
of differences was tested for several combinations of datasets as shown by
horizontal lines in B (WT vs. WT+CGP, KO vs. KO vs. KO+CGP, etc.) using
Student t test for unpaired values (the same combinations were tested in
C and D, but no differences were found). Levels are indicated as *P < 0.05,
**P < 0.01, ***P < 0.001. n.s., not significant.
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Nxph1-GFPtg/− and WT. The numbers of asymmetric synapses
(type 1; WT: 22.62 ± 0.86/100 μm2; Nxph1-GFPtg/−: 22.75 ± 1.29/
100 μm2; P = 0.93) and symmetric synapses (type 2; WT: 3.15 ±
0.15/100 μm2; Nxph1-GFPtg/−: 3.62 ± 0.41/100 μm2; P = 0.31)
remained unchanged. Similarly, terminal area (WT: 0.197 ±
0.0164 μm2; Nxph1-GFPtg/−: 0.194 ± 0.0214 μm2; P = 0.73),
vesicle density (WT: 203 ± 11/μm2, Nxph1-GFPtg/−: 211 ± 19/
μm2; P = 0.46), length of postsynaptic density (WT: 287.6 ± 9.22
nm; Nxph1-GFPtg/−: 293.6 ± 7.19 nm; P = 0.31), or width of
synaptic cleft (WT: 22.62 ± 0.95 nm; Nxph1-GFPtg/−: 21.69 ±
1.15 nm; P= 0.48) were also not impaired. These results indicate
that overexpression of Nxph1 has no major impact on synapse
morphology, but the localization within the synaptic cleft is in
accordance with a role in short-term plasticity as predicted from
our KO analysis above.
To study the functional consequences of ectopic Nxph1 at

excitatory synapses, we performed whole-cell patch-clamp re-
cordings from layer 5 pyramidal neurons of the primary so-
matosensory cortex. Evoked responses in this region were
elicited by a stimulation electrode placed in layer 5 about 100 μm
laterally of the recorded neurons. No differences between Nxph1-
GFPtg/− and WT were observed for parameters of membrane
properties and for spontaneous release of miniature excitatory
postsynaptic currents (mEPSCs) (Fig. 5 A–D) and inhibitory mini
release (mIPSCs) (Fig. 5 E–H). However, probing short-term
plasticity with paired-pulse experiments at excitatory synapses
that express Nxph1 revealed a striking alteration in ppr. Facili-

tation could be elicited in WT synapses over a wide range of
interstimulus intervals (20–150 ms) but was significantly di-
minished in Nxph1-GFPtg/− mice (Fig. 6A). The impairment even
showed depressing characteristics at longer intervals and was
independent of stimulus intensities (Fig. 6B). As an additional
control, we tested short-term plasticity at inhibitory synapses but
failed to detect differences (Fig. 6 C and D), consistent with our
EM data that detected Nxph1-GFP only at excitatory terminals
(Fig. 4 D–F). Importantly, changes in basal transmission or cel-
lular excitability were not responsible for the alterations of short-
term plasticity because amplitudes elicited by single electrical
stimulation evoked EPSC (eEPSChalfmax in WT: −1,327 ± 97
pA, n = 20 cells; in Nxph1-GFPtg/−: −1,320 ± 107 pA, n = 21
cells; P = 0.96) and time constants of these eEPSCs were
indistinguishable (decay timehalfmax in WT: 24 ± 1.7 ms, n = 20
cells; in Nxph1-GFPtg/−: 25 ± 1.7, n= 21 cells/genotype, P= 0.68).
Because the impairment of paired-pulse facilitation at trans-

genic synapses represents an inverse effect compared with KO
neurons (Fig. 1G), we asked if overexpression of Nxph1 affected
GABABR activity, as did its deletion (Fig. 2). We probed this by
adding the GABABR antagonist CGP-55845 during paired-pulse
experiments (Fig. 7A). Impaired facilitation of evoked post-
synaptic currents at excitatory synapses with Nxph1 could partially
be rescued by the CGP treatment (Fig. 7 A and B), even if ppr
values did not fully reach WT levels at all interstimulus intervals
(Fig. 7B). In contrast, excitatory short-term plasticity of WT
neurons showed almost no significant differences during action of
CGP (Fig. 7B, e.g., at 50 and 100 ms). To test if CGP influenced
the size of eEPSCs in transgenic neurons, we analyzed responses
at low-stimulus intensities to avoid summation effects from large
inward currents that would obscure monosynaptic PSCs. Ampli-
tudes from both genotypes were comparable and independent of
treatment (WT + CGP: −461 ± 24 pA, n = 22 cells/five mice;
Nxph1-GFPtg/− + CGP: −484 ± 46 pA, n = 17 cells/five mice;
P = 0.64), consistent with an intact basal transmission at synapses
with or without ectopic Nxph1. Although these results from
transgenic overexpression are in agreement with our lack-of-
function data by indicating that functional GABABR are one
putative target of Nxph1, at present we cannot say whether this
link involves direct interactions. However, because the impaired
facilitation in Nxph1-GFPtg/− could not be fully rescued to WT
levels by CGP application (Fig. 7B), we suspected that additional
target molecules might be involved in the process.
In fact, previous work already pointed to another putative

target, i.e., the ionotropic GABAAR family because the Nxph1-
binding partner α-Nrxn has been reported to cluster GABAARγ2
subunits (7) and directly associates with GABAARα1 (37).
Therefore, we tested if GABAAR also contributes to the altered
short-term plasticity of transgenic synapses by blocking GABAAR
with intracellular application of picrotoxin or gabazine (Fig. 7 C–E)
and bath application of bicuculline (Fig. 7E) to distinguish be-
tween pre- and postsynaptic GABAAR populations (38). To
ensure that postsynaptic GABAAR can be truely inhibited
by intracellular application of picrotoxin or gabazine from the
approaching pipette, we performed two control experiments: (i)
In two-step tip-filling experiments (39), the recording pipette was
first prefilled up to 500 μm with normal pipette solution without
blocker and then backfilled with internal solution containing
inhibitors (Fig. 7C). After establishment of whole-cell configu-
ration, eIPSCs were recorded from layer 5 WT neurons, revealing
that amplitudes of eIPSCs decreased in a time-dependent manner
as expected for gradual diffusion of picrotoxin or gabazine from
the pipette (Fig. 7C and Fig. S2). (ii) We compared the ppr at WT
and Nxph1-GFPtg/− synapses 1 and 10 min after obtaining the
whole-cell configuration (40) but observed no differences due to
the washout between time points (ppr WT1: 1.13 ± 0.05, n = 16
cells/three mice; WT10: 1.15 ± 0.08, n = 16 cells/three mice, P =
0.86; Nxph1-GFP1: 1.17 ± 0.08, n = 14 cells/three mice; Nxph1-
GFP10: 1.19 ± 0.06, n = 16 cells/three mice, P = 0.83).
Importantly, during intracellular blockade of GABAAR with

200 μM picrotoxin (Fig. 7 D and E) or 50 μM gabazine (Fig. 7E)
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Fig. 3. Low-expressing interneurons are unaffected in Nxph1 KO. (A)
Pharmacologically isolated mIPSCs recorded from neocortical layer 5 neurons
of WT (Upper traces) and KO (Lower traces). (B) Paired-pulse experiments in
these neurons show similar depressing characteristics (gray, WT; green,
Nxph1 KO). (C–E) In contrast to NRT (Fig. 1), mIPSC frequencies in the neo-
cortex are unchanged between genotypes (C), as are amplitudes (D) and
decay time constants (E). (F) Quantification of ppr from experiments shown
in B reveal normal inhibitory short-term plasticity in Nxph1 KO. Similar
recordings of mIPSCs (G) and ppr (H) in the VB of the thalamus also fail to
detect differences in mini parameters (I–K) and synaptic depression (L). All
data are means ± SEM (collected from 8 to 19 neurons from at least three
mice per condition/genotype). Significance of differences was tested by
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in the recording pipette, paired-pulse facilitation at excitatory
synapses of Nxph1-GFPtg/− neurons was indistinguishable from
WT controls (Fig. 7E). These results imply that postsynaptic
GABAAR populations contribute to the Nxph1-GFPtg/− pheno-
type. Consistently, the same results were obtained upon inclusion
of 2 μM bicuculline in bathing medium (Fig. 7E) that inhibits
both pre- and postsynaptic GABAAR populations. As control,
extra- or intracellular addition of antagonists had almost no
effects on ppr in WT neurons (Fig. 7F).
To test if the combined effects of GABAAR and GABABR are

sufficient to fully explain the impaired short-term plasticity, we fi-
nally used the concomitant application of bicuculline and CGP in
bath solution (Fig. 7G). We observed that a simultaneous blockade
of both GABAAR and GABABR reversed the ppr impairments of
transgenic synapses completely (Fig. 7H), reaching values very
similar to WT. In contrast, the combined application of CGP and
bicuculline had no influence on amplitudes of eEPSCs of both

genotypes at low-stimulus intensities (WT + CGP + bicuculline:
−160 ± 20 pA, n = 20 cells/six mice; Nxph1-GFPtg/− + CGP +
bicuculline: −140 ± 15 pA, n = 25 cells/six mice; P = 0.43), in-
dicating that GABARs specifically influenced short-term plasticity.
In absence of any indications for polysynaptic mechanisms that

could explain the unexpected role of GABAR in our paired-
pulse experiments, it is possible that GABABR and GABAAR
subunits become enriched in excitatory synapses of Nxph1-
GFPtg/− neurons. To test if typical subunits of GABAAR and
GABABR were present at these terminals, we first used anti-
bodies against the GABAARα1 subunit for immunoelectron
microscopy in transgenic mice because it should give a low en-
dogenous background at excitatory synapses and is widely dis-
tributed at inhibitory terminals (41). In addition to expected
labeling of symmetric (inhibitory) terminals in the neocortex of
WT and Nxph1-GFPtg/− mice, we found numerous asymmetric,
presumably excitatory, synapses in transgenic samples that

Fig. 4. Ectopic expression of Nxph1 at excitatory
synapses. (A) Several Nxph1-GFPtg/+ transgenic mouse
lines express the fusion protein as evidenced by
immunoblots of brain lysates. (B and C) Light mi-
croscopic images of immunohistochemistry with anti-
GFP antibodies show Nxph1-GFP in brain sections of
transgenic animals (B, line #10 from A). WT sections
are devoid of any staining (C). CC, cerebral cortex;
CA1 region, hippocampus; DG, dentate gyrus. (Scale
bar, 150 μm.) (D–F) Different methods of EM immu-
nolabeling were applied to localize Nxph1-GFP in the
somatosensory cortex of transgenic brains (boxed
area in B). Tokuyasu cryosectioning (D), Lowicryl
postembedding (E), and Epon postembedding (F)
techniques show 10-nm gold particles (circled in
red) at synaptic clefts of asymmetric (presumptive
excitatory) contacts. (Scale bars, 100 nm.) (G–K) In
addition to the synaptic cleft, immunolabeling was
found at the presynaptic plasma membrane outside
active zones (G), at extrasynaptic sites of the cell
surface (H), (I) intracellularly over vesicular struc-
tures in the terminal, and inside the lumen of rER (J)
and Golgi cisternae (K). (Scale bars, 200 nm.)
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displayed 10 nm gold particles over the synaptic cleft (Fig. 8 A
and B). Quantification of gold particles revealed a larger number
of GABAARα1-positive asymmetric synapses in transgenic mice
(WT: 4.7 ± 0.03/1,000 μm2, n = 4 mice; Nxph1-GFPtg/−: 10.4 ±
1.01/1,000 μm2, n = 4 mice; P = 0.011), indicating that ectopic
expression of Nxph1 led to enrichment of receptor subunits. The
few immunolabeled asymmetric profiles detected in WT (Fig.
8C) may reflect colocalization of GABAAR at glutamatergic
synapses reported before (41). As the experiments with in-
tracellular application of picrotoxin and gabazine suggested that
GABAAR are enriched postsynaptically in transgenic synapses
(Fig. 7E), we could probe if they are more likely recruited from
extrasynaptic surface populations or inserted de novo from in-
tracellular pools. We locally applied GABA via a puff pipette
(10 mM) to layer 5 pyramidal neurons and recorded GABAAR-
dependent PSCs. No difference was found between WT and
Nxph1-GFPtg/− without (GABA-evoked amplitudes in WT:
1,197 ± 155 pA, n = 11 cells/five mice; in Nxph1-GFPtg/−: 1,162 ±
122 pA, n = 14 cells/five mice; P = 0.86) or with an additional
block of GABABR by CGP (WTCGP: 1,080 ± 164 pA, n= 11 cells/
five mice; in Nxph1-GFPtg/−CGP: 1,107 ± 125 pA, n = 14 cells/five
mice; P= 0.89). These results suggest that the total surface density

of GABAAR is similar, but a shift from the extrasynaptic pop-
ulation to transgenic synapses may occur if Nxph1 is present.
Because electrophysiological analysis of transgenic excitatory

synapses also suggested enhanced presence of GABABR (Fig. 7),
we tested if they were also enriched by ectopic expression of Nxph1.
Although WT terminals in the neocortex contain functional
GABABR (42, 43), we observed a significantly increased number of
GABABR1-positive asymmetric synapses in transgenic mice (WT:
6.3 ± 0.83/1,000 μm2, n = 3 mice; Nxph1-GFPtg/−: 31.1 ± 3.11/
1,000 μm2, n = 3 mice; P = 0.013). Such an enrichment is con-
sistent with the pharmacological rescue of the transgenic pheno-
type by addition of CGP (Fig. 7) and the finding of impaired
GABABR-dependent plasticity in NRT synapses of knockout
animals (Figs. 1–2). Together, these data demonstrate that ex-
pression of Nxph1 at synapses that normally do not contain this
molecule is able to change their physiological properties and
molecular composition.

Discussion
Neurotransmission at most synapses requires the synaptic cell
adhesion molecules, α-Nrxn (9, 10, 37, 44–47). However, the
ability of synapses to undergo synaptic plasticity (48, 49) and the
local coordination of these rearrangements (50) indicate that
α-Nrxn–mediated functions should be locally modulated. Here,
we propose that the α-Nrxn–specific binding partner Nxph1
subserves such a modulatory role in subpopulations of synapses.

Physiological Role of Nxph1. Two independent experimental strat-
egies support our conclusion because both deletion of Nxph1 in
KO and ectopic overexpression of Nxph1-GFP in transgenic
mice demonstrate a role of this α-Nrxn ligand in synaptic short-
term plasticity. The conclusion is based on the following con-
siderations (a graphical summary is provided in Fig. S3): Analysis
of Nxph1-deficient inhibitory terminals reveals decreased paired-
pulse depression at inhibitory synapses in the NRT (Fig. 1 and
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Fig. 5. Transgenic expression of Nxph1 has no effect on basal synaptic trans-
mission. (A) Sample traces of glutamatergicmEPSCs recorded from cortical layer
5 neurons of WT (Upper trace) and Nxph1-GFPtg/- (Lower trace) mice. (B) Cu-
mulative distribution and averaged (Inset) frequency ofmEPSCs is not altered at
transgenic synapses (WT, gray; Nxph1-GFPtg/−, red). Similarly, peak amplitudes
(C) and decay time constants (D) were not different. Data are means ± SEM
(collected from 17 WT cells from eight animals and 10 cells from seven mice of
Nxph1-GFPtg/−). n.s., not significant. (E) Sample traces of inhibitory minis
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Fig. S3A), and this KO phenotype can be mimicked by blocking
presumably presynaptic GABABR in WT neurons (Fig. 2) (31).
An additional effect of Nxph1 on the GABABR-mediated in-
hibitory potential, required for synchronized burst firing of NRT
neurons (28), is unlikely because unchanged eIPSCs and LTS
generation argue against a strong influence on the postsynaptic
population. Control recordings of GABAergic terminals in
neocortex and the thalamic VB nucleus do not show alterations
(Fig. 3), indicating that Nxph1-dependent effects of GABABR
may have a specific physiological role in the intra-NRT network.
For example, there is a slower oscillatory frequency compared
with VB cells (28), and focal corticothalamic excitatory inputs
result in widespread inhibitory activity (28, 51).
To test the hypothesis from research on KO that Nxph1 sup-

ports presynaptic GABABR, we expressed Nxph1 ectopically at
excitatory terminals in the neocortex, which normally do not
contain this molecule (Fig. 4). Our results show that presynaptic
GABABR and postsynaptic GABAAR together cause the di-
minished facilitation at transgenic excitatory synapses because
the phenotype could be reversed by pharmacologically blocking
GABABR with CGP-55845, and a complete rescue was achieved
by additional blocking of postsynaptic GABAAR with intra-
cellular picrotoxin or gabazine (Fig. 6A; Fig. 7E; Fig. 8; Fig.
S3B). Because GABAR blockers are effective at transgenic ex-
citatory synapses, we conclude that ambient GABA is available

in these contacts, either by co-release with Glu or by spillover
from neighbored GABAergic terminals (52, 53). We suggest
that, during paired-pulse experiments at transgenic synapses, the
depolarization caused by glutamate receptors is countered by
the activation of postsynaptic GABAAR that may short-circuit
the excitation, thus resulting in reduced facilitation. Post-
synaptically caused modulation of long-term synaptic plasticity by
GABAAR has been shown (54), and the presence of a low number
of postsynaptic GABAAR at WT excitatory synapses may serve to
regulate the time course of excitation and to limit glutamatergic
overexcitation and subsequent excitotoxicity as summarized in
ref. 41. Therefore, the recruitment of (additional) postsynaptic
GABAAR triggered by our ectopic expression of Nxph1 may en-
hance a natural process and thus explain the alterations of short-
term plasticity as observed in our study. Moreover, coactivation of
presynaptic GABABR at the transgenic excitatory synapses may
curtail glutamate release itself, thus further decreasing the possiblity
of facilitation (55). In fact, this regulatory action of presynaptic
GABABR is well-documented for many excitatory and inhibitory
synapses (55–60), suggesting that recruitment of (additional) pre-
synaptic GABABR triggered by our ectopic expression of Nxph1
may again only enhance a natural process. Finally, in both mouse
models and types of synapses investigated, evoked release
(eIPSC in NRT and eEPSC in neocortex) was unchanged over
a range of stimulation strengths, suggesting that the efficiency of
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Fig. 7. The effect of Nxph1 on short-term plasticity
depends on functional GABAA and GABAB recep-
tors. (A) Normalized amplitude traces of paired-
pulse experiments from Nxph1-GFPtg/− neurons (red)
change after CGP treatment toward facilitation
(orange). (B) Analysis of different interstimulus in-
tervals demonstrates that reduced ppr in Nxph1-
GFPtg/− is partially rescued by the GABABR inhibitor
(orange), whereas facilitation in WT neurons (light
gray) remains almost unchanged (dark gray). (C)
Averaged current traces of eIPSCs activated by sin-
gle electrical pulses at 0.20 mA from WT neurons
and recorded at indicated times after obtaining the
whole-cell configuration. Patch pipettes were tip-
filled with internal solution free of blockers and
backfilled with solution containing either pictro-
toxin or gabazin. Recorded eIPSCs decreased in
amplitude in a time-dependent manner, indicating
gradual diffusion of gabazine or picrotoxin into the
cell (time of first amplitude reduction defined as 0 s;
for picrotoxin, n = 7 cells/four mice; for gabazine,
n = 8 cells/three mice). (D) Normalized amplitude
traces of paired-pulse experiments from Nxph1-
GFPtg/- neurons without (red) and with intracellular
application of picrotoxin (blue). (E) Treatment of
Nxph1-GFPtg/− (red) with GABAAR inhibitors bicu-
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(gray). (F) Treatment of WT with bicuculline, pic-
rotoxin, or gabazine has almost no effect on ppr.
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shows that normal ppr levels are restored in Nxph1-
GFPtg/−. Data are means± SEM (collected from 7 to 25
neurons from seven to eight mice per condition/ge-
notype). Significance of differences was tested for
several combinations of datasets as shown by hori-
zontal lines in B (in E and F, comparisons are against
the values of the first bar) using Student t test for
unpaired values. Levels are indicated as *P < 0.05,
**P < 0.01, and ***P < 0.001. n.s., not significant.
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basal transmission or probability of release is not prominently
affected by the presence of Nxph1. Analysis of spontaneous re-
lease, in turn, gave uneven results in the two models: Although
the increase in mini frequency in NRT neurons of Nxph1 KO
(Fig. 1C) can be explained by impaired/missing GABABR be-
cause blocking with CGP in WT neurons mimicked this effect
(Fig. 2 B and E), consistent with published results (31), trans-
genic expression of Nxph1 did not affect the mini frequency
in cortical excitatory synapses (Fig. 5B). Such differences of
spontaneous release in response to alterations of presynaptic
GABABR, however, are not very surprising as GABABR-medi-
ated effects are highly dependent on the brain region and/or type
of terminal (43, 61).
The role of Nxph1 in distinct inhibitory synapses of the NRT

as uncovered here is in line with the high expression of Nxph1 in
this thalamic nucleus (19) (and qRT-PCR data in this study).
Moreover, the lack of a significant phenotype at GABAergic
synapses in the VB and the neocortex reflects low expression of
Nxph1 in interneurons of these regions (19) (and qRT-PCR data
in this study). A compensatory role of other members of the Nxph
family is not likely to play a role because Nxph2 is not expressed in
rodent brains (22), Nxph3 expression is restricted to subpopu-
lations of glutamatergic neurons (20), and Nxph4 does barely bind
to α-Nrxn due to a long linker insertion between domains (23).
Future experiments will also have to address the question if the
other α-Nrxn–binding variant, Nxph3, is similarly used to tune
synapse plasticity at excitatory terminals (20).

Nxph1 Alters the Molecular Composition of Synapses. Although our
study shows that Nxph1 modulates the presence of GABABR and
GABAAR, Nxph1 is not generally required for receptor function.
For example, Nxph1 may contribute to the heterogeneity of
GABABR responses as demonstrated recently for KCTD proteins
(62), possibly by stabilizing the receptors at a subpopulation of
synapses. Similarly, the effect on GABAAR is also not ubiquitous
because functional GABAARα1 subunits with fast decay time
constants (63) were found at Nxph1-expressing transgenic synap-
ses, but changes of evoked GABAAR-mediated currents were
largely absent in KO NRT recordings. One possible explanation is

that GABAergic transmission in the NRT relies mostly on
the GABAARα3 subunit (64–66), which may not be a target
of Nxph1.
The involvement of GABAAR at transgenic synapses is a

striking result because it raises the question if it is Nxph1 alone
or the complex of Nxph1/α−Nrxn that is responsible for the phe-
notype.α-Nrxn itself, the only known binding partner forNxph1 thus
far (19, 22, 23), affects inhibitory synaptic function (7, 9, 37, 67) and
even interacts directly with the GABAARα1 subunit (37). The role
of α-Nrxn in synaptic function has attracted attention because
α-Nrxn are essential for neurotransmission and implicated in neu-
ropsychiatric disorders (reviewed in refs. 5 and 6). Apart fromNxph,
prototypical binding partners of Nrxn are neuroligins (13, 14),
LRRTMs (15, 16), and cerebellin/GluRδ2 (17, 18). Physical binding
has also been reported for GABAAR subunits (37); dystroglycan
(68); and, very recently, calsyntenin-3 (67). In addition, research has
identified several molecules, mostly ion channels and receptors,
which are functionally impaired when Nrxn expression is altered.
Nrxn variants have been found to affect voltage-dependent calcium
channels (9, 10), GABAAR (7, 37), NMDAR (44), GABABR (36,
45), nicotinergic acetylcholine receptors (69), and AMPAR (47).
These ionotropic and metabotropic receptors represent “target
molecules” of Nrxn that may include some physical association, but
it appears unlikely that the functional link to all these requires stable
protein–protein interactions. Thus, presence of Nxph1 in complex
with α-Nrxn may modulate the spectrum of target molecules.
Presence of Nxph1 at presynaptic terminals of specific sub-

populations of interneurons may also help to diversify the prop-
erties of inhibitory synapses. In contrast to the mostly splice-code–
dependent trans-synaptic interactions of Nrxn (13, 14, 18, 68, 70,
71), binding of Nxph1 is splice-site independent (23) and has
a high degree of local specificity due to its restricted expression in
subpopulations of GABAergic interneurons (19). This is an im-
portant aspect because the preferred neuroligin variant of α-Nrxn
at GABAergic contacts, neuroligin2 (7, 72), has been shown to
similarly regulate defined subsets of inhibitory connections (73). It
has been argued that α-Nrxn/neuroligin2 represent a strong can-
didate pair for specific inhibitory trans-synaptic interactions (8, 74–
77), and our data on Nxph1 at inhibitory synapses strengthen this
association. These data suggest that the presence of Nxph1 at
synapses represents a previously unrecognized variable that mod-
ulates the activity of GABAR. It is important to note, however,
that our results do not imply that GABAAR or GABABR at in-
hibitory synapses are an exclusive target of Nxph1/α−Nrxn. In fact,
we reported previously that the GABABR-mediated modulation of
CaV2.2 channels, required for its effect on vesicle release (58), was
also impaired at excitatory brainstem synapses of α-Nrxn KO mice
(45). Even more importantly, α-Nrxn is abundantly expressed in
glutamatergic neurons as well (12) and has unequivocal effects on
release from excitatory synapses (9, 44, 46, 78). These results
cannot be explained by a simple association of α-Nrxn with in-
hibitory and, of β-Nrxn with excitatory terminals as cautioned
before (37). Although coexpression of Nxph1 could serve as
a means to diversify the cellular functions of α-Nrxn at sub-
populations of terminals, the mechanistic basis for this possi-
bility remains to be elucidated.

Materials and Methods
Animals. Mice of wild-type, Nxph1-GFP transgenic, or Nxph1-deficient gen-
otypes were used and experiments were approved by the Landesamt für
Natur, Umwelt und Verbraucherschutz, North Rhine-Westphalia (license 84-
02.05.20.11.209), and confirmed by the Institutional Animal Care and Use
Committee of the Medical Faculty of the Westfälische Wilhelms-University,
Münster, Germany. For details, see SI Materials and Methods.

RT-qPCR. For details, see SI Materials and Methods.

Electrophysiological Experiments. WT, Nxph1-GFPtg/−, and Nxph1 KO mice
[postnatal days 14–21(P14–P21)] were used for patch-clamp recordings. After
anesthesia, brains were transferred into ice-cold artificial cerebrospinal fluid
(ACSF) (in mM: 118 NaCl, 3 KCl, 1 NaH2PO4, 20 glucose, 1.5 CaCl2, 1 MgCl2,

Fig. 8. Localization of GABAAR and GABABR subunits at Nxph1-expressing
excitatory synapses. (A and B) Immunogold labeling with anti-GABAARα1 in
Lowicryl-embedded Nxph1-GFPtg/− neocortex frequently demonstrates the pre-
sence of this subunit at asymmetric (presumptive excitatory) synapses compared
with control animals (for quantification, see Expression of Nxph1 Has an In-
structive Role in Synapses). (C) Asymmetric terminals in WT neocortex only
rarely show labeling for GABAARα1 subunits. (D–F) Similar experiment to A–C
using antibodies against GABABR1 subunits. Immunoelectron microscopy
demonstrates more abundant labeling of GABABR at excitatory synapses in the
cortex of Lowicryl-embedded Nxph1-GFPtg/− brains (D and E), but WT terminals
(F) can also contain these subunits (for quantification, see Expression of Nxph1
Has an Instructive Role in Synapses). Red circles mark 10-nm gold particles.
(Scale bars, 100 nm.)
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25 NaHCO3, pH 7.3, ∼305 mOsmol), gassed with 95% (vol/vol) O2 and 5%
(vol/vol) CO2. Frontal slices (300 μm) containing the somatosensory cortex
(WT, Nxph1-GFPtg/−, and Nxph1 KO) and slices containing the NRT of WT and
Nxph1 KO were incubated at 35 °C in ACSF for 1 h before recordings. For
NRT, the extracellular Ca2+ concentration was elevated to 3 mM to analyze
low-threshold spikes.
Recording procedures.Whole-cell patch-clamp recordings in voltage-clamp and
current-clamp mode were performed at 30 °C on layer 5 pyramidal cells
(Nxph1-GFPtg/− and Nxph1 KO) and on GABAergic NRT neurons (Nxph1 KO
mice), using a fixed-stage microscope (water immersion ×40 objective, dif-
ferential interference contrast/infrared optics). Borosilicate glass pipettes
had resistances between 2 and 4 MΩ and were filled with different internal
solutions: (i) for electrically evoked excitatory and inhibitory postsynaptic
currents (eEPSCs and eIPSCs) and excitatory miniature postsynaptic current
(mEPSC) recordings (in mM): 140 K-gluconate, 1 CaCl2, 10 Hepes, 2 MgCl2,
4 Na-ATP, 0.5 Na-GTP, 10 EGTA, pH 7.3, 300 mOsmol, plus 5 mM lidocaine
to prevent sodium spikes; (ii) for mIPSCs, K-gluconate was exchanged by KCl;
and (iii) for current-clamp recordings (in mM): 90 K-gluconate, 20 K-citrate,
0.5 CaCl2, 10 Hepes, 1 MgCl2, 10 NaCl, 15 phosphocreatine, 3 Na-ATP, 0.5 Na-
GTP, 3 K-BAPTA, pH 7.3, 295 mOsmol. For two-step tip-filling experiments
(39), the initial 500 μm of the pipette was prefilled with solution without
blocker and then the remainder of the pipette was backfilled with internal
solution containing 200 μM picrotoxin or 50 μM gabazine. Electrical stim-
ulations used a concentric bipolar electrode. Only neurons with membrane
input resistances between 80 and 560 MΩ, resting membrane potentials
between −55 and −80 mV, and input capacitance of 30–150 pF were selected
for analysis. To analyze intrinsic properties of NRT neurons (LTS), cells were
held near their resting potential at −60 to −70 mV, followed by eight steps
of current injections, starting with −150 pA (increasing in 50-pA steps; 500-
ms duration). The hyperpolarizing current injections evoked LTS bursts, and
depolarizing current injections induced a series of action potentials.
Basal synaptic transmission. mPSCs were recorded in the presence of 500 nM
tetrodotoxin in combination with 5 μM bicuculline for mEPSC at −70 mV or
with 20 μM CNQX (6-Cyano-7-nitroquinoxaline-2,3-dione disodium hydrate)
for mIPSC at −70 mV. CGP-55845 (20 μM) was applied to block GABABR. Only
mPSCs 4× larger than background noise were selected for analysis, and 100
individual events were fitted from each cell. Inter-event intervals, amplitudes,
charge, and rise and decay times were calculated. eEPSCs were recorded at−80
mV (+ 2 μM bicuculline) and eIPSCs at −20 mV [+ 25 μM APV (D-(-)-2-Amino-5-
phosphonopentanoic acid) and 20 μM CNQX], using single 90-μs stimulation
shocks given with increasing strengths (0.02–0.2 mA for neocortex, 0.1–0.5 mA
for NRT) by a stimulation electrode in layer 5. Maximal PSCs and amplitudes at
low and half-maximum stimulation intensities were recorded, and input/out-
put relations, amplitudes, and time constants were calculated.
GABA-dependent PSCs. Local application of 10 mMGABA was delivered through
pipettes filled with extracellular ACSF. The puff pipette was positioned in
proximity to recorded cells with constant puff pressure (13 psi) and duration (500
ms). At least 10 sweeps were recorded at 50-s intervals, and GABA-dependent
PSCs measured at −20 mV in the presence of 20 μMCNQX and 25 μMAPV. CGP-
55845 (20 μM)was added to the bathing solution to block GABABR as indicated,
and 20 μM bicuculline and 20 μM gabazine were applied to block GABAAR for
verification of GABA-dependent PSCs at the end of each recording.
Synaptic short-term plasticity. PPR was calculated from recordings of ePSCs at
half-maximal stimulation intensities for most conditions. Weaker stimulus in-

tensities were used during blockade of GABAR. PPR was defined as the ratio of
second to first amplitude of two consecutive ePSCs. Stimuli were applied 10×
with 20-s breaks, and interstimulus intervals varied from 20 to 200 ms. In 20-Hz
stimulus trains, consisting of 10 pulses, the ratios were defined as the 10th to
the 1st, the 4th to the 1st, and the 2nd to the 1st amplitude. For pharmaco-
logical blocking, 200 μM picrotoxin or 50 μM gabazine was added to the pi-
pette solution to block GABAAR intracellularly (79–83), and PPR was measured
immediately or after 10 min, as indicated. Bicuculline (2 μM) and/or 20 μM
CGP-55845 was added to the bathing solution to block GABAAR and GABABR.
Data acquisition and statistical analysis. Acquisition and analysis used EPC-10
USB amplifiers and software Patchmaster, Fitmaster, MiniAnalysis, and
Microsoft Excel. Statistical significance was tested with a two-tailed unpaired
Student t test using GraphPad Prism software. Exact P values and numbers of
recorded cells per genotype are given in Results or figure legends.

Electron Microscopy. Brain tissue from WT and Nxph1-GFPtg/− mice was em-
bedded in epon resin or Lowicryl HM20 using freeze substitution in meth-
anol. For cryosectioning, anesthetized mice were transcardially perfused
with 70 mL of 0.2% glutaraldehyde (GA) and 2% paraformaldehyde, post-
fixed at 4 °C, and slices were infiltrated with 2.3 M sucrose at 4 °C. Tissue
blocks were frozen in liquid N2, and ribbons of cryosections were cut at−100 °C
and transferred with 2.3 M sucrose/2% methyl cellulose to Formvar-coated
gold or carbon-coated copper grids.
Immunogold labeling. Ultrathin Epon sections were placed on droplets of
blocking solution (0.15% glycine/PBS) for 2 h, followed by 20% normal goat
serum (NGS) for 20 min, incubated with rabbit–anti-GFP in 10% NGS/PBS for
30 min and with 10 nm gold-conjugated secondary goat–anti-rabbit antibody
for 30 min. Staining of Lowicryl sections started with blocking on 2% human
serum albumin/0.05 M tris-buffered saline droplets. Incubation with anti-GFP,
GABAARα1, or GABABR1 followed overnight at 4 °C, and 10 nm gold antibody
for 2 h at room temperature (RT). For cryosections, blocking with 0.05 M
glycine/PBS and 0.1% BSA for 15 min/step was followed by anti-GFP incubation
in 0.1% BSA/PBS at RT for 3 h and 10 nm gold antibody for 2 h at RT. Labeled
sectionswere postfixedwith 1%GA and contrastedwith neutral uranylacetate.
Ultrastructural analysis. Immunogold-labeled synapses were documented with
a Libra 120 TEM (80 kV; 2,048 × 2,048 CCD; ITEM software). For synapse
morphometry, image series including all cortical layers on 17 multiple image
alignment (MIA) pictures were examined (each MIA = 100 μm2). Asymmetric
(type 1) and symmetric (type 2) synapses were quantified as area densities, and
randomly chosen synapses were analyzed for presynaptic terminal area, num-
ber of vesicles per terminal area, postsynaptic-density length, and synaptic cleft
width. Statistical significance was evaluated with GraphPad Prism, and exact
P values and number of samples/repeats are given in Results or figure legends.
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