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We outline a theory to quantify the interplay of entropic and selective
forces on nucleotide organization and apply it to the genomes of
single-stranded RNA viruses. We quantify these forces as intensive
variables that can easily be compared between sequences, outline
a computationally efficient transfer-matrix method for their calcula-
tion, and apply this method to influenza and HIV viruses. We find
viruses altering their dinucleotide motif use under selective forces,
with these forces on CpG dinucleotides growing stronger in influenza
the longer it replicates in humans. For a subset of genes in the human
genome, many involved in antiviral innate immunity, the forces
acting on CpG dinucleotides are even greater than the forces ob-
served in viruses, suggesting that both effects are in response to
similar selective forces involving the innate immune system. We
further find that the dynamics of entropic forces balancing selective
forces can be used to predict how long it will take a virus to adapt to
a new host, and that it would take H1N1 several centuries to adapt to
humans from birds, typically contributing many of its synonymous
substitutions to the forcible removal of CpG dinucleotides. By exam-
ining the probability landscape of dinucleotide motifs, we predict
where motifs are likely to appear using only a single-force parameter
and uncover the localization of UpU motifs in HIV. Essentially, we
extend the natural language and concepts of statistical physics, such
as entropy and conjugated forces, to understanding viral sequences
and, more generally, constrained genome evolution.

he nucleotide sequence of a genome is composed of a variety
of sequence motifs whose organization is influenced by many
forces. Most prominently, amino acid coding sequences are re-
stricted by the genetic code and codon use patterns for a particular
organism or tissue (1-3). Likewise, a variety of cis-acting nucleo-
tide sequences control gene expression profiles, regulating factors
such as timing, quantity, and responses to environmental cues.
Karlin et al. first showed that the relative abundance of dinu-
cleotides in viral genomes could elucidate evolutionary relationships
between groups of viruses, and viruses and their hosts (4). Likewise,
Rabadan et al. (5) and Greenbaum et al. (6, 7) first demonstrated
that in influenza genomes, nucleotide sequence-specific evolution-
ary changes occur over decades and reflect viral transitions from
avian to human hosts. These changes are not driven by amino acid
alterations or codon preference—they largely reduce CpG con-
taining nucleotide sequence motifs by third codon position changes
that have no impact on amino acid composition of the viral pro-
teins. It was posited that this effect was due to differences between
the human and avian innate immune systems, which would recog-
nize (in humans) or not recognize (in birds) CpG dinucleotides in
the RNA of these viruses, possibly via a Toll-like receptor (TLR)
(8). Hence, influenza viruses moving into humans would adapt their
genome sequence motifs to avoid detection and inhibition by the
host immune system. Other patterns of host genome mimicry have
been demonstrated between viruses and their hosts (9, 10). In
viruses such as HIV, host enzyme activity creates biased nucleotide
composition in viral RNA and DNA (11, 12). Additional examples,
such as secondary structures of RNA genomes and bacterial re-
striction enzymes, exert analogous selective forces on sequence
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motifs (13-15). Thus, there are many different forces under
which a genome’s information content may be optimized for a
particular environmental advantage.

There has not been a general quantitative theory designed to
characterize the forces that directly affect nucleotide sequence
organization and how they can change over evolutionary time
when a genome is introduced into a new environment. To ac-
complish this we use an approach from statistical physics (16,
17). We apply our method to the genomes of single-stranded
RNA (ssRNA) viruses, quantifying the degree to which avoid-
ance or enhancement of a nucleotide motif causes a virus to alter
its sequence organization relative to a given background distri-
bution. The magnitude of the effect is captured by a selective
force, conjugated to the number of times a motif occurs. In much
the same way as with thermodynamic forces, acting on the vol-
ume or the number of particles constrain a system, the presence
of selective forces constrains the diversity of viral genomes. By
contrast, the high rates of mutation and replication for these
RNA viruses provide a great deal of sequence diversity, creating
“entropic forces” opposing the selective forces minimizing se-
quence diversity. The larger of these two forces then drives the
evolution of the virus until, eventually, the two forces balance
each other and an evolutionary equilibrium state is reached.

Many viral genomes, such as those for ssSRNA viruses, are
largely devoted to protein coding. In the absence of selective
forces on motifs, and fixing the amino acid sequence for a given
protein, codon use patterns would dictate the diversity of ge-
nome sequences. An “ideal” virus, in the absence of other out-
side forces on motifs, would evolve to have the number of motifs
one would expect given its amino acid sequence and a codon use
bias for the tissue in which it replicates. We can then derive the
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selective force on a motif in a virus by calculating the degree to
which the viral sequence is in a lower probability state than this
ideal virus, given the number of times that motif occurs. In this
work we examine these forces on dinucleotide motifs using both
the codon use bias of the protein sequence under consideration
and the average codon use bias of its host, interpreting the cases
where they differ.

Materials and Methods

Sequence Data. The influenza sequences used in this study were taken from
the National Center for Biotechnology Information Influenza Database (18).
Only those sequences containing complete coding regions were then used in
the analysis. The HIV sequences were taken from the Los Alamos HIV da-
tabase and the same controls were applied (19). The list of all sequences
used appears in Dataset S1. The human genomes used for the codon bias
calculation was Consensus-Coding DNA Sequence (CCDS) Build Hs36.3. The
data were obtained from the University of California, Santa Cruz Genome
Browser (20-22).

Distribution over Sequence Space. We want to quantify the constraints acting
on a nucleotide motif m in a (viral) DNA or RNA sequence, hereafter called Co.
We introduce a model over the set of all codon sequences C = (cy, ¢, ..., 1),
differing from Cy through synonymous changes only. In the absence of con-
straints the probability of a sequence C in our model is simply the product of
the probabilities of its codons, p;(c;), where p; is the codon bias of the ith
codon in Go. In the presence of a constraint over a nucleotide motif m, the
probability of a sequence C becomes

L
P(Clxs) =5 (ls) 1;[ pi(ci)exp(xs Nim(C)) [1]

where Ny (C) is the number of occurrences of the motif m in C, and the
denominator

L
Zxs)= Y TIpilc)exp(xs Nm(C)) [2]

sequences C i=1

ensures that the probability P is correctly normalized. Parameter x;, here-
after called the “selective” force, introduces a bias over P. Positive values for
Xs push the distribution toward sequences with large N, whereas negative x;
favor sequences with a small N.

The choice of the exponential dependence on N in [1] is justified by in-
formation-theoretic arguments: P defined above is the least constrained
distribution (with minimal information, or with maximal entropy), whose
average number of motifs is

Nay (xs) = Z

sequences C

P(CxINm(©) =229 ). I

The value of the selective force x; can then be chosen such that N,,(x;) is
equal to the number of motifs m in the original sequence, Ny(Co). The
formalism above can be easily extended to the case of multiple selective
forces, acting on multiple motifs. Details can be found in S/ Text.

Entropy of Sequences as a Function of the Number of Motifs. Let 5(N) be the
logarithm of the number of sequences C having N repetitions of m, here-
after called “entropy.” ¢(N) is bounded from above by o, the total entropy
of the distribution of sequences in the absence of selective force (x; =0). 5o
is equal to the sum over all 20 amino acids a of the number of codons coding
for a in the sequence Cp, multiplied by the entropy of the codon bias dis-
tribution for this amino acid a. See S/ Text where bounds on its value are
also derived.

Classical equilibrium thermodynamic relations show that &(N) is the
Legendre transform of logZ(x;) (23):

logZ(xs) = m,?x(a(N) —oo+xsN). [4]

The maximization condition over N expresses the balance between the se-
lective force x; and the “entropic” force

do

Xe(N)=W

(N), [51

equal to the derivative of the entropy. At equilibrium, x; and x. sum to zero.
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However, selective and entropic force need not always compensate each other,
as when out-of-equilibrium dynamical effects are present (Dynamical Modeling).

The Legendre formalism [4] provides a parametric representation of the
entropy curve (N,o(N)) under the form (N, (X;),0av (Xs)), which yields N, (x;)
as given by [3], and

Gav(Xs) =00 +109 Z(Xs) — XsNav (Xs). [6]

As x; spans the set of real numbers, the entropy curve is obtained; its maximum
is reached in (N,,(0),64,(0) =00), corresponding to vanishing force, x; =x. =0.

We illustrate the notions above with a very simple example of a sequence Cp
coding for one alanine (L = 1). We assume for simplicity that all four codons ¢ =
GCn, with n = A, U, C, and G, coding for alanine have equal probabilities
p(c)=1/4 (uniform codon bias). The entropy of sequences in the absence of
selective force is oo =log 4, which is the logarithm of the degeneracy of alanine.
In the presence of a selective force x; and for the motif m = CG, we readily obtain
Z(xs)=3/4+e* /4. The average number of motifs is N, (xs)= €% /(3+e*)
according to [3], and the entropy is cav(Xs) =log(3+e%)—x;e% /(3 +€%)
according to [5]. The corresponding entropy curve is plotted parametrically
in Fig. 1A (see legend for further explanations).

In the generic case of a sequence G, of length L, the sum defining Z(x,) in
[2] runs over an exponentially large-in-L number of sequences C. It can,
however, be computed very efficiently, in a time growing linearly with L
only. The method, called “transfer matrix” in statistical physics or “dynamic
programming” in computer science, allows us to compute the entropy even
for very long sequences in a short time. This method is useful for un-
derstanding the properties of a large system based on the interactions be-
tween its subsystems, which in our case are neighboring codons. Simple
examples of the transfer matrix method (Figs. S1 and S2), and details about
its implementation are found in S/ Text.

Given the selective force x; the number N of motifs m in a random se-
quence C fluctuates around the average value N,,(xs), with a variance
var(N|xs). Reciprocally the value of the force such that N,, (x;) is equal to the
number N of motifs in the real sequence C, may fluctuate around its average
value with a variance var(xs|N). Both variances can be computed from the
uncertainty relation

1 _d*logZ

Nixs) =—————=—>5—
var(Njxs) var(xs|N) ox2

(Xs). [7]

The variance in the force on a motif is useful to estimate whether two values
of the forces computed for two sequences are statistically distinct.

Dynamical Modeling. We model the time evolution of N from an initial value
Np to its equilibrium value N,,(x;) under the action of a selective force x;
through a simple relaxation dynamics
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Fig. 1. Entropy curve o(N) as a function of the number N (Nb.) of occur-
rences of a motif. (A) Toy example of a single-codon sequence, coding for
alanine (derived in Materials and Methods). The entropy for an influenza B
isolate (B/Cordoba/2979/1991) is derived for motifs (B) ApA and (C) CpG.
Green and red lines show, respectively, the zero-force and real values of the
numbers of motifs, with the arrows indicating the balance of selective and
entropic forces at the real value. The ApA (B) entropy is flatter than the CpG
(C) entropy around the maximum oo =4,342.6.
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dN(t)
dt

=xe(N(t)) +X;, [8]

where the entropic force, xe, is defined in [5]. The value of N will evolve until
the imposed selection force x; balances the entropic force x.(N), resulting
from the loss of entropic diversity of the sequences. Parameter 7 is a measure
of the time scale on which the number of motifs diminishes by one unit, when
the difference between the forces is of the order of the unity, e.g., at the
beginning of the evolution. As the difference between the forces gets smaller
and smaller with time, the relaxation time to equilibrium is much larger than z.

Results

Forces Relative to Viral and Human Codon Biases. Materials and
Methods presents a procedure to compute the entropy, that is the
logarithm of the number of sequences, as a function of the number
of repetitions of a given motif. The background distribution is
derived from either viral or human codon biases. We also work
through a simple example of how to use these methods, which is
illustrated in Fig. 14.

When the HIN1 influenza A virus entered the human pop-
ulation from a likely avian host in 1918, the CpG dinucleotide
content of the genome was lowered from levels typically associ-
ated with avian viruses toward levels more associated with hu-
man viruses (6-8). For the genomes of influenza B isolates,
a virus for which humans have been a natural host for many
centuries, the number of CpG dinucleotides varies little over
time. Fig. 1B shows the entropy curve for ApA. The curve is flat
and symmetric, and the slope of the curve at the value of ApA in
the real virus is close to zero (the maximum entropy value). The
occurrence of ApA dinucleotides to a large degree may therefore
vary randomly. The number of CpG dinucleotides corresponds
to a location on an entropy curve of high slope, as shown in Fig.
1C. We define the entropic force as the slope at the actual value
of these motifs in the viral genome. Unlike ApA, the selective
force acting on CpG, opposite to the entropic force, is very
different from the zero value corresponding to maximum en-
tropy. Both curves have the same maximum value, as they have
the same entropy when no force is applied. An expression for the
maximum value, and how it is bounded, appears in SI Text.

One can use either the virus or host codon bias to generate the
sequence background distribution relative to which these forces
may be inferred, and the resulting forces must therefore be

interpreted relative to that choice. For the human codon bias, we
use the coding regions of the whole human genome. This is an
average codon use bias that may not reflect more restricted
biases that occur in particular gene families or cell types. Fig. 2
compares the selective forces calculated for all 16 dinucleotides
derived relative to both the host and virus segment codon use
biases, for the longest genes of influenza polymerase basic 2
(PB2) and HIV polymerase (pol). In Fig. 24 the median force
values are given for influenza A HIN1 in 1918 (green) and 2007
(blue), along with those for influenza B (red). Relative to the
host codon use bias, and unlike the viral segment codon bias, the
forces acting on dinucleotides are often nonzero, with CpG being
the only large standout in magnitude. The dispersion of forces over
many dinucleotide motifs, relative to the average host codon use
bias, typically increases with time, and is greatest in influenza B, the
virus adapted to humans for the longest time. UpG and CpA, the
mutational outcomes of CpG avoidance, have a positive force rel-
ative to the host codon bias, and UpA has a negative force (two
mutational events are a less likely path). Most of the forces on
dinucleotides are smaller relative to the viral codon bias than rel-
ative to the human codon bias. Therefore, actual sequences in
a viral genome are closer to ideal viruses generated by the viral
codon use than those generated by human codon use. Thus, there
is a limit to the host mimicry observed in these viruses. The in-
fluenza A PB1 and PA genes are similarly analyzed and can be
found in Fig. S3.

The polymerase gene (pol) from HIV-1 was analyzed in the
same fashion and the results are shown in Fig. 2B, where the same
quantities are calculated for the pol gene from HIV-1, SIV
chimpanzee (SIVcpz), HIV-2, and SIV sooty mangabee (SIVsm),
all related viruses. The selective force on dinucleotides for viruses
changes less between these hosts, which are more closely related
(humans and simians), than in influenza (humans and avians).
One difference between HIV and influenza is that the dinucleotide
ApG in HIV genomes stands out as having a positive force not
observed with influenza virus segments. ApG motifs have been
associated with the action of RNA-editing enzymes on the HIV
genome (11, 12).

Despite their very different genome replication cycles, most
motifs of dinucleotides from HIV and influenza have no force
acting on them relative to the viral codon bias, whereas there are
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Fig. 2. Comparison of selective forces using both segment and human codon biases for all dinucleotides. Forces are derived for (A) influenza PB2 (showing
the 1918 H1N1 segment, and the median values for all 2007 H1IN1 and influenza B segments), and for (B) HIV pol (showing median values for HIV-1, SIVcpz,
HIV-2, and SIVsm). Dinucleotides under large forces are indicated. For PB2, arrows indicate the direction from 1918 to influenza B. In the HIV and SIV, ellipses
contain outlying dinucleotides. (C) Histogram of forces on CpG for all human CDS regions, with a Gaussian fit to the bulk of the distribution. Far left outliers

contain many type | IFNs.
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dinucleotide motifs with forces acting on them relative to the
human codon bias. A parallel analysis of gag and env is pre-
sented in Fig. S4. The forces on HIV may reflect a functional
significance, as shown by the studies of Vabret et al. (24, 25),
who showed that the HIV-1 virus did not replicate as well when
third position codon nucleotides were changed (with no amino
acid changes) in the gag gene.

Host Gene Mimicry. An intriguing result was obtained in Greenbaum
et al. (7), when many of the genes that compose the innate im-
mune system were examined, particularly type I IFN genes in the
human genome. These genes also had very low numbers of
CpG dinucleotides, as was observed with influenza viruses
evolving in human populations. Based on those observations it
was hypothesized that a subset of genes in the innate immune
system are most subject to the forces acting on CpG motifs. The
quantitative theory developed here now allows us to calculate
and quantify those forces. It permits us to test the idea that
forces acting to change CpG content are gene- or function-specific
in the human genome. We show in Fig. 2C the histogram of the
selective forces on CpG for all coding regions in the human ge-
nome. The distribution can be fitted with a Gaussian, with mean
u = —0.7611 and SD o = 0.8551 apart from genes falling well
outside the distribution, with values less than —4. According to
standard extreme value theory the expected minimum value
from the normal distribution is equal to y — o+/2log(N), where
N is the number of normally drawn samples (26). For this case, the
expected minimum value if —4.5674 and all outliers less than —4
also fall outside of that value. A table of the median values of the
forces and their variances, another means of assessing outlier
significance, is shown in Table S1.

Many type I IFN genes appear as outliers on the left of Fig.
2C. The value of the CpG forces these genes are under, along
with other information is shown in Table S2. One would predict
that the effect of such forces on these genes could be used as
a discovery tool for human genes regulated in a similar fashion
with similar functions. This would be a quantitative definition of
a subset of genes that populate the human innate immune sys-
tem. As an experiment, we explored all genes whose CpG force
values were less than that observed in PB2 for influenza B. The
results are depicted in Table S3. Strikingly, not only are the type
I IFN genes depicted, but other innate immune genes are present
in this group.

For the same force to be causing these effects on both a host
and viral gene set, causing the virus to mimic the very genes that
respond to it, many mutational events must occur. The force could
be driven by a receptor that observes and interacts with the RNA
CpG motif, leading to the transcription of genes that limit viral
replication (8). The force would act on a set of host response
genes, as well as viral genes, so the mRNA of the host genes would
minimize CpG content to prevent a positive feedback loop from
occurring. Innate immune recognition of CpG in DNA is known
to occur via TLRY, and TLR7 and -8 recognize ssSRNA (8, 27).
CpG methylation occurs in the DNA of host genes protecting
them from these innate responses, whereas methylation is not
observed in RNA viral genomes lacking a DNA intermediate step.

A Dynamical Model for the Influenza A Virus. In HIN1 human in-
fluenza viruses, the force on CpG levels declines over time ap-
proaching levels seen within influenza B viral genomes. The effect
is strongest in the three longest genome segments, and is less no-
ticeable in the HA gene, presumably due to strong selection from
the adaptive immune system on the HA protein. As seen in the
previous section, these dynamical changes which occur when in-
fluenza viruses switch from avian to human hosts, are not observed
when HIV and SIV are compared, likely reflecting the fact that
HIV came into the human population from a more closely related
simian reservoir.

Greenbaum et al.

A dynamical model was used to better understand how forces and
motifs evolve with HIN1 influenza viruses with time. In this model,
the number of motifs evolves under a (negative) selective force,
which increases the magnitude of the entropic force (reducing se-
quence complexity) until both the selective and entropic forces
compensate one another, and equilibrium is reached (Materials and
Methods). For PB2, PB1, and PA, we first determine the selective
force under the assumption that the influenza B genome represents
the equilibrium force value for that segment, as it has evolved in
humans for many years. The equilibrium force xp is estimated by the
mean value of the selective forces computed for all influenza B
sequences (Table 1). For the initial condition xo we choose the
corresponding force value for the HIN1 sequence from 1918 when
HINI was first introduced into humans (Table 1). Our dynamical
model then gives the entropic force as a function of time, x,(¢),
where ¢ measures years of evolution. The opposite of the entropic
force interpolates between —x, (0) =x, and —x, (f > o) =xp.

The outcomes of this analysis are shown in Fig. 3. The model
includes a single time scale, 7, which represents the elementary
time for motif loss, and is fitted to make —x, (¢) best coincide with
the HIN1 data over the available time range. Because the HIN1
virus disappeared from the human population in the early 1950s,
and a nearly identical virus reappeared in 1977, the 27 y that
HIN1 was not circulating in the human population are not in-
cluded in the time that this virus evolved in humans (28). The
three rates (1/7) for evolutionary change range from 0.17 per
year for PA, to about 0.4 per year for PB1 and PB2. Those
estimates are 2-5 times larger than the average time for a syn-
onymous substitution to happen in the corresponding genes (of
comparable lengths), about 0.07 per year (29). This would imply
that one in two synonymous substitutions in PA and one in five in
PB1 and PB2 result in the loss of a CpG motif. In addition,
according to the model it would take about five centuries for the
PA segment to reach equilibrium (Fig. 3). Remarkably all of
these sequence data fall within one SD (calculated according to
[7] and [8]) forming a narrow strip around the model prediction
as seen in Fig. 3.

Motif Localization. To visualize how these forces affect where the
motifs are likely or unlikely to be found in a viral genome, we
examined the local motif density, as described in SI Text. To do so,
we calculated the probability that a motif appears at a given po-
sition along the genome, both with the viral sequence and human
codon bias. Compared with the positions of dinucleotides from
sequence data this then becomes a test of the validity of the ap-
proach. Locations with high probabilities can be directly compared
with the real locations of motifs from the viral sequence data.

To get a sense of what these distributions might look like in an
equilibrium setting, the case of influenza B was examined. Both
CpG and UpG dinucleotides were calculated with the viral seg-
ment codon bias. In the former case the motif has a negative force,
and is therefore suppressed. In the latter the force is positive and
the motif is enhanced.

The local probability landscape for CpG dinucleotide motifs with
C in the third codon position is shown in Fig. 44. The locations of
CpGs determined from sequence data clearly tend to coincide with
peaks in the probability landscape. To better visualize this effect,
in Fig. 4B, the occupation probability predicted by our model,

Table 1. Dynamical parameters in HIN1 CpG force evolution
Segment

Parameters PB2 PB1 PA

Equilibrium force xp -1.99 -2.04 -2.2

Initial force xq -1.21 -1.34 -1.15

Time scale ¢ 23 2.4 6.0
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Fig. 3. Dynamical simulation of force equilibration using real values from
H1N1 for PB2, PB1, and PA, with the human codon bias. PA has the longest
time scale. Red dots show the selective force and year for one isolate; mul-
tiple isolates may come from a given year. The negative average entropic
force in the model is shown as a function of time in blue (continuous line),
with +1 SD (dashed lines). Selective forces for influenza B for each segment
are in green (each dot corresponds to a virus sequence). Dotted green lines
indicate the equilibrium force xg.

averaged over the positions at which CpGs occur in the viral se-
quence, is plotted along with the same probability averaged over
the positions where the motif is absent from the RNA sequence.
The average probability associated with CpG occurrences from the
sequence data are consistently higher than the one corresponding
to locations with no CpG in the sequence data. Even though
the values of the force on CpG dinucleotides declines over time
(Dynamical Modeling), the ratio of the average probability asso-
ciated with actual CpG occurrences in a sequence to the
probabilities associated with sites where no real CpG occurs
remains essentially fixed.

Next, local probability landscapes for two examples of motifs
under positive selective forces were examined. Fig. 4C examines
the dinucleotide UpG, which undergoes a meaningful positive
force with respect to the viral segment bias. Unlike with CpG,
UpG is not a rare dinucleotide, so the fact that most sequence
occurrences of the dinucleotide come at high probability “hot-
spots” is clear.

Finally, we note that in HIV-1, a retrovirus with a very dif-
ferent replication cycle than influenza, localization of motifs also
occurs. Fig. 4D shows the HIV-1 gag dinucleotide probability
landscape with respect to the human genome bias for the di-
nucleotide UpU. There is a clear cluster toward the end of the
gag gene. This cluster is located in the region shown by Pavlakis
and colleagues to be a regulatory feature for the timing of the
gag gene expression, and is more precisely defined here (30, 31).
Here the selective forces for optimal replication of the virus
limits the sequence motif entropy. UpU motifs have also been
associated with the activation of a TLR (TLRS) (32).

Discussion

We have developed a quantitative method for the analysis of the
entropic and selective forces that act to shape the distribution of
nucleotide motifs in a genome. Although the genetic code and
codon use clearly shape nucleotide sequence motifs in a genome,
forces such as motif specific receptors and enzymes also play a
role. Our approach quantifies these forces, shows their effect on
sequence entropy, and allows direct comparisons between ge-
nomes as intensive quantities, meaning that their value is not re-
flective of the size of the genome considered, and one can thus
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compare their value between sequences with different origins. In
addition to providing a more formal theoretical framework, this
approach is computationally far faster than other attempts to
measure similar parameters (6), where a set of randomized vi-
ruses had to be created to infer the number of significant motifs.

By far the strongest repressive forces altering viral genome
landscapes act on CpG dinucleotides. This can be observed in
very diverse viral genomes such as human influenza strains, HIV,
and SIV, taking as a reference both the viral codon bias and the
human codon bias. The observation is consistent with previous
observations (6), where CpG was found to be underrepresented
in influenza with respect to the viruses own codon bias, as well as
in all other mammalian ssSRNA viruses.

Likewise, in the HIN1 strain of influenza A, UpG and CpA
are enhanced and UpA is repressed. With respect to the viral
codon bias, those forces are essentially zero for HIV, SIV, and
influenza B, but they differ from zero for the large majority of
dinucleotides when using the human codon bias as reference. The
fact that this occurs in viruses that have been replicating in
humans (or simians) for a very long time indicates that, at equi-
librium, the entropic and selective forces described in this paper
generically reflect a divergence away from the typical human
codon bias and the viral codon bias, limiting genome sequence
motif mimicry. However, in the human genome a subset of genes
have evolved very similar motif distributions to those observed for
the viruses studied here. Many genes with strongly negative forces
on CpG, correspond to genes of the innate immune system,
providing a quantitative definition for detecting a gene that is part
of the innate immune response to infections by these viruses.
Indeed it is likely that diverse classes of viruses trigger different
innate immune responses and we will detect different host genes
by mimicry using different viruses.

Although innate immunity is one source of explanation for the
observed effects, it is not the only one. Common RNA structural
motifs could also provide an explanation for why some nucleotide
motifs are subject to positive and negative forces, as well as other
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Fig. 4. (A) Probability of finding a CpG motif at a given third position along
a sequence for PB2 in an influenza B isolate (blue lines), whereas a red x
indicates where a real motif occurs. (B) Occupation probability for third
codon positions computed from our model as a function of year of evolu-
tion, averaged over sites where a real motif occurs (red) and sites with no
real motif but a nonzero probability of occurrence (blue). The former is
higher by a ratio of about 1.6. (C) Same as A for PB2 under a force on UpG
and using its segment codon bias. (D) Same as A for gag with a force on UpU
using the human codon bias.
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protein-RNA interactions involved in other processes besides
innate immunity. There is a growing body of evidence that codon
use, tRNA concentrations, and other rate-limiting translational
factors will impact the sequence motifs used by a virus (33-36). As
these methods are applied to other genomes besides viruses, a
wider set of phenomena may underlie these forces.

Moreover, there is the issue of the larger set of forces that
appear relative to the human codon bias, as opposed to the viral
bias. We offer two possible explanations for this effect. First, it
may be that codon use for the different cell types in which a given
virus replicates is not the same as the average human codon bias.
Certainly, tRNA use may vary between cell types. To remedy this,
one would ideally use a cell-specific codon bias in future appli-
cations. Moreover, some viruses are known to manipulate host
tRNA use to their advantage, which would induce selective forces,
and may be responsible for the general dispersion of forces rela-
tive to the human codon bias, but not the viral codon bias. For
instance, HIV-1 was postulated to modulate actively the tRNA
pool under which it replicates, to maximize replication efficiency
for its A-rich genome (33). Indeed relative to the human codon
bias, ApA is the motif in HIV-1 with the greatest positive force on
it. An enhancement of A-rich dinucleotides relative to the human
codon bias may well reflect such a tendency, and the observance of
a similar dispersion of dinucleotide forces in influenza B may show
that such phenomena are a common viral strategy.

The model permits one to predict locations where a dinucle-
otide is more or less likely to occur along a sequence due to a
given force, and to demonstrate regions where many occurrences
of a motif localize, as was the case for UpU motifs in gag, as-
sociated with the timing and levels its protein. In addition the
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model can be constructed to show how these forces evolve. With
only a time-scale parameter, we can fit through the dynamical
model the evolution of CpG forces during the history of influenza
A HINI1 segments and use this parameter to predict how long it
will take for the virus to attain the level of force found in in-
fluenza B. The model showed an excellent fit of the predicted
data points to the actual results as the HIN1 virus evolved be-
tween 1918 and 2007. It therefore provides an estimate for how
long it may take an avian strain to equilibrate in a human host, as
well as provides an estimate for the degree to which CpG forces
contribute to its overall evolutionary rate.

The ideas presented here give a language for taking into account
nonprotein coding features in a quantitative evolutionary theory.
The approach is very general, can be used to study longer motifs, and
can be generalized for many other types of sequence constraints. In
doing so we hope to uncover other forms of latent information
hidden beneath known constraints in genomes, and use this infor-
mation as a tool for biological discovery. The generality of the ap-
proach comes from statistical physics, where forces describing the
ordering of a system have a natural framework for characterization.
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