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Studies in adolescents and adults have demonstrated that poly-
morphisms in putative psychiatric risk genes are associated with
differences in brain structure, but cannot address when in develop-
ment these relationships arise. To determine if common genetic
variants in disrupted-in-schizophrenia-1 (DISC1; rs821616 and
rs6675281), catechol-O-methyltransferase (COMT; rs4680), neuregu-
lin 1 (NRG1; rs35753505 and rs6994992), apolipoprotein E (APOE;
ɛ3ɛ4 vs. ɛ3ɛ3), estrogen receptor alpha (ESR1; rs9340799 and
rs2234693), brain-derived neurotrophic factor (BDNF; rs6265), and
glutamate decarboxylase 1 (GAD1; rs2270335) are associated
with individual differences in brain tissue volumes in neonates,
we applied both automated region-of-interest volumetry and tensor-
based morphometry to a sample of 272 neonates who had received
high-resolution magnetic resonance imaging scans. ESR1
(rs9340799) predicted intracranial volume. Local variation in gray
matter (GM) volume was significantly associated with polymorph-
isms in DISC1 (rs821616), COMT, NRG1, APOE, ESR1 (rs9340799),
and BDNF. No associations were identified for DISC1 (rs6675281),
ESR1 (rs2234693), or GAD1. Of note, neonates homozygous for the
DISC1 (rs821616) serine allele exhibited numerous large clusters of
reduced GM in the frontal lobes, and neonates homozygous for the
COMT valine allele exhibited reduced GM in the temporal cortex
and hippocampus, mirroring findings in adults. The results highlight
the importance of prenatal brain development in mediating psychia-
tric risk.

Keywords: catechol-O-methyltransferase, cortex, disrupted-in-
schizophrenia-1, neonate, neuroimaging

Introduction

Decades of research have generated many putative psychiatric
risk genes. Intriguingly, many of these genes are not specific to
a particular diagnosis. For example, polymorphisms in DISC1
are associated with schizophrenia (Hennah et al. 2003; Ekelund
et al. 2004; Qu et al. 2007), bipolar disorder (Hodgkinson et al.
2004; Hennah et al. 2009), major depression (Hashimoto et al.
2006), and autism spectrum conditions (Kilpinen et al. 2008).
In addition, meta-analyses reveal extensive overlap in neuroana-
tomical changes associated with schizophrenia, bipolar dis-
order, and autism (Cheung et al. 2010; Yu et al. 2010). This
strongly suggests that there are common, genetically deter-
mined neurodevelopmental pathways to risk for psychiatric
illness in general, but the mechanisms by which genetic
variants alter neurodevelopmental trajectories resulting in the
eventual emergence of illness remain unclear.

Imaging genetics represents a powerful strategy for
characterizing neural systems affected by risk variants

(Meyer-Lindenberg et al. 2006; Tan et al. 2008; Bigos and
Weinberger 2010). Studies in adolescents and adults demon-
strate that polymorphisms in putative psychiatric risk genes
predict individual differences in brain structure in healthy
controls and in individuals with mental illness (Scharinger
et al. 2010; Johnstone et al. 2011). However, studies, to date,
are limited to adults and older children in whom gene–brain
relationships may be confounded by medication, years of
environmental and gene–environment interaction effects, and
progression of disease. Such studies are also unable to
address the reality that mental illnesses are unfolding develop-
mental processes, which can have different consequences at
different stages. Studies in infants would minimize these
issues and allow a better understanding of age-specific
effects, including prenatal effects. The perinatal period is an
extremely dynamic stage of brain development, characterized
by rapid synaptogenesis (Huttenlocher and Dabholkar 1997),
exuberant dendritic (Petanjek et al. 2008) and axonal growth
(Kasprian et al. 2008), and extensive myelination (Brody et al.
1987). These changes are reflected in dramatic increases in
gray and white matter (WM) volumes as indexed by magnetic
resonance imaging (MRI; Gilmore et al. 2007; Knickmeyer
et al. 2008). This is a critical period for childhood-onset ill-
nesses such as autism (Hazlett et al. 2005, 2011; Wolff et al.
2012). There is also extensive evidence that adult-onset dis-
eases, such as schizophrenia, originate in early brain develop-
ment (Rapoport et al. 2005; Fatemi and Folsom 2009). Early
aberrations in neurodevelopment relevant to adult-onset dis-
orders can be captured via MRI as evidenced by a recent
study, showing that male neonates at high genetic risk for
schizophrenia have larger intracranial, cerebrospinal fluid
(CSF), total gray matter (GM), and lateral ventricle volumes
than controls (Gilmore et al. 2010).

We tested whether variants in disrupted-in-schizophrenia-1
(DISC1), catechol-O-methyltransferase (COMT), neuregulin 1
(NRG1), apolipoprotein E (APOE), estrogen receptor alpha
(ESR1), brain-derived neurotrophic factor (BDNF), and gluta-
mate decarboxylase 1 (GAD1) are associated with neonatal
brain structure using both automated region-of-interest (ROI)
volumetry and tensor-based morphometry (TBM). In TBM,
brain images are warped to a canonical template. The applied
deformation is used as an index of volume differences
between each subject and the template and, subsequently,
between groups. The advantage of TBM over traditional
voxel-based morphometry (VBM) is that false-positive find-
ings due to systematic group differences in registration
errors are less likely (Hua et al. 2008; Lepore et al. 2008). ROI
volumetry and TBM approaches are complementary. Due to
its summarizing nature, ROI volumetry captures overall size

© The Author 2013. Published by Oxford University Press. All rights reserved.
For Permissions, please e-mail: journals.permissions@oup.com

Cerebral Cortex May 2014;24:1230–1246
doi:10.1093/cercor/bhs401
Advance Access publication January 2, 2013



differences reliably, but cannot localize differences. TBM has
the advantage of being able to identify group differences that
are confined to small areas or that do not follow the anatom-
ical boundaries segmented by the atlas. TBM analyses focused
on localized GM changes. Localized WM changes are also of
interest, but we felt that these would be best addressed
through diffusion tensor imaging (DTI).

Selected genes have received significant research attention
as putative psychiatric risk genes (Table 1) and have well-
documented roles in brain development. DISC1 participates
in neural migration, neurite outgrowth, and dendritic arbori-
zation (Porteous et al. 2011). COMT is a critical enzyme in the
degradation of catecholamines, including dopamine (Yavich
et al. 2007). NRG1 encodes protein isoforms that participate
in neuronal migration and specification, oligodendrocyte
differentiation and myelination, regulation of acetylcholine,
and expression of glutamate and γ-aminobutyric acid (GABA)
receptors (Mei and Xiong 2008). APOE is a very-low-density
lipoprotein thought to have a key role in neuronal develop-
ment, brain plasticity, and repair (Vance and Hayashi 2010).
ESR1 mediates estrogen effects on synaptogenesis, growth
factor production, and responses to oxidative stress (Sunder-
mann et al. 2010). BDNF regulates cell survival, axonal out-
growth, dendritic growth, and synaptic plasticity (Reichardt
2006). GAD1 is one of the 2 major isoforms of the enzyme
that converts glutamate to GABA, which plays diverse roles in
corticogenesis (Wang and Kriegstein 2009). Selected variants
are related to neuroimaging phenotypes in older samples and
have minor allele frequencies (MAF) high enough to allow
study. In light of the genotyping method employed, only
single-nucleotide polymorphisms (SNPs) were included.

Materials and Methods

Subjects
This study included two hundred and seventy-two neonates (152
males and 120 females, 144 singletons, 128 twins). Mothers were
recruited during the second trimester of pregnancy from outpatient
obstetrics and gynecology clinics at University of North Carolina
(UNC) hospitals. Exclusion criteria at enrollment were the presence of
abnormalities on ultrasound or major medical illness in the mother.
Demographic data are found in Table 2. The sample is enriched for
individuals with parental psychiatric history (Table 3). Imaging gen-
etics studies often focus on healthy individuals to minimize potential
contamination of signal from nongenetic illness-related factors.
However, studying “healthy volunteers” exclusively runs the risk of
identifying genetic effects with little or no relationship to illness
(Rasetti and Weinberger 2011). This dilemma is more complex in the
neonate as many “high-risk” neonates will never develop a psychiatric
illness, and some proportion of “low-risk” neonates will. As the distri-
bution of genotypes did not significantly differ between groups (Sup-
plementary Table S1), we ran our main analyses without “risk” as a
covariate. We also ran sensitivity analyses with risk as a covariate.
Results were highly similar.

To minimize false positives due to population stratification, only
individuals whose reported maternal ethnicity was white are included
in this analysis. Ethnicity classification was by maternal report. We
used maternal ethnicity as we expected it to be more reliable than
paternal ethnicity (see Supplementary Table S2 for paternal ethnicity).
Approximately 70% of mothers enrolled in the parent study report
their ethnicity as white. This study was approved by the Institutional
Review Board of the UNC School of Medicine. Written informed
consent was obtained from the participants’ mothers prior to the
study.

Genotyping
DNA was extracted from buccal samples using standard methods de-
scribed in the Puregene® DNA Purification Kit (Gentra Systems) using
supplies from Qiagen. Genotyping was performed by Genome
Quebec using Sequenom® iPLEX® Gold Genotyping Technology,
which is based on a multiplex polymerase chain reaction followed by
a template-directed single base extension using the probes of various
sizes. The products are separated and detected by Matrix-assisted
laser desorption-ionization time-of-flight mass spectrometry. Positive
and negative controls are included on each 96-well plate. The geno-
typing call rate was >98%. The visual examination of intensity cluster
plots supported high genotyping accuracy. The rate of concordant
results between duplicate control samples was 100%. Genotype fre-
quencies did not deviate from Hardy–Weinberg equilibrium (Table 4).
The 2 SNPs in APOE were treated as a haplotype to permit direct
comparisons to the existing literature. In the 3 other cases, where we
examined 2 SNPs within the same gene (DISC1, NRG1, and ESR1),
we treated the variants separately. Again this permitted a direct com-
parison with the existing literature. Linkage disequilibrium between
the 2 variants as measured by r2 was <0.80 in all 3 cases (Gaunt et al.
2007).

Image Acquisition
MRI was performed at the UNC MRI Research Center on a Siemens
head-only 3-T scanner (Allegra, Siemens Medical System, Inc., Erlan-
gen, Germany), as previously described (Gilmore et al. 2007). All sub-
jects were studied without sedation. Once a child was asleep, he/she
was fitted with earplugs and placed in the MRI scanner with head in a
vac-fix immobilization device, and additional foam padding to dimin-
ish the sounds of the scanner. Scans were performed with a neonatal
nurse present, and a pulse oximeter was used to monitor the heart
rate and oxygen saturation. T1-weighted images were obtained using
a 3-dimensional (3-D) spoiled gradient [fast low angle shot (FLASH)
repetition time (TR)/echo time (TE)/flip angle 15/7 ms/25°]. Proton
density and T2-weighted images were obtained with a turbo spin-echo
sequence [fast low angle shot (FLASH) repetition time (TR)/echo time
(TE)/flip angle 6200/20/119 ms/150°). Spatial resolution was
1 × 1 × 1 mm3 voxel size for T1-weighted images and 1.25 × 1.25 × 1.5
mm3 voxel size with a 0.5-mm interslice gap for proton density/T2-
-weighted images.

Automated ROI Volumetry
Brain tissue was classified as GM, unmyelinated WM, myelinated WM
(mWM), and CSF using an automatic, atlas-moderated expectation
maximization segmentation tool as previously described (Prastawa
et al. 2005; Gilmore et al. 2007). Parcellation of each subject’s brain
into regions was achieved by nonlinear warping of a parcellation atlas
template as previously described (Hazlett et al. 2005; Gilmore et al.
2007; Knickmeyer et al. 2008). For the neonatal brain parcellation, left
and right hemispheres were subdivided into 4 regions along the
anterior–posterior axis (roughly corresponding to prefrontal, frontal,
parietal, and occipital regions). The cerebellum, brainstem, and sub-
cortical structures are represented separately (Supplementary
Figure S1). Note that subcortical structures are combined into a single
“exclusion” area as individual subcortical structures cannot be reliably
defined at this age. After deformation, the parcellation template is
combined with the tissue classification maps and results in estimates
of GM, WM, mWM, and CSF for each region. The volume of mWM in
the cortex was very small and likely represented partial-volume
effects; therefore, we did not perform statistical tests on cortical
mWM. The neonatal lateral ventricles are segmented using InsightS-
nap (SNAP), a semiautomated 3-D segmentation tool, which uses a
level-set evolution method (Yushkevich et al. 2006). SNAP is con-
trolled by a user-defined initialization and data-specific segmentation
protocols with region-growing parameters that operate in conjunction
with the probabilistic CSF map generated during tissue segmentation.
Segmentation results were reviewed by an expert rater, and poor
quality segmentations were excluded from the analysis (final n = 236).
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TBM: Image Preprocessing
Brain tissue was extracted from the original T2-weighted images and
corrected for intensity inhomogeneity using an expectation maximiza-
tion segmentation algorithm (Prastawa et al. 2005). T2-weighted
images were used as these had better signal-to-noise ratio in our neo-
natal sample. The skull stripped images were then rigidly aligned to
match the center and orientation, and the average image was calcu-
lated afterwards, serving as the template of the following affine align-
ment. The rigid and affine registrations were employed with AFNI
software (Cox 1996). Intensity histogram matching was then applied
on the affine aligned images to prepare for nonrigid registration. The
unbiased large deformation nonrigid group-wise registration method
(Joshi et al. 2004) was used to construct the atlas and to estimate
deformation fields mapping each input images to the atlas. To get the
final transformation from the original image space to the atlas space,
we composed both the affine transformation matrix and the nonrigid
deformation field. The deformation fields were examined by an image
processing expert and ones with unusually large distortions were
excluded (final n = 248).

Data Analysis
For demographic and descriptive data, as well as the results of auto-
mated ROI volumetry, statistical analyses were performed using the
SAS statistical software, version 9.2. Mixed models were used to study
the relationship between brain volumes and genetic markers. Rather
than exhaustively testing all possible genetic models, comparisons
were selected based on published literature (Table 4). Because many
of these variants are somewhat rare, in most cases, a presence/
absence approach was used rather than a genotypic approach; this
increases statistical power. Mixed models methodology was used to
treat twins as repeated measures, whereas singletons had no repeated
measures. In other words, twin pairs were treated as a single subject.
This means that the effective sample size for ROI volumetry was 186
(119 singletons and 67 unique twin mothers). The compound sym-
metry covariance structure was used to capture the correlation
between twins in a pair (with only 2 twins in a pair there is only 1
off-diagonal correlation) (Munoz et al. 1986). Models were adjusted
for gender, intracranial volume (ICV), and gestational age at MRI. All
statistical hypothesis tests were 2-tailed. Tests were conducted at a sig-
nificance level of 0.005 (0.05/10; Bonferroni corrected for the number
of genetic tests conducted). We did not perform additional corrections
for the number of phenotypes examined. However, analysis was re-
stricted to the following variables: ICV, total GM, total WM, total CSF,
lateral ventricle volume, cerebellar volume, and lobar GM and WM
(14 volumes total). For significant results, we also ran 3 sensitivity
analyses; one with “psychiatric risk” as a covariate, one including only
1 individual from each monozygotic (MZ) pair, and one with birth-
weight as a covariate.

For TBM, associations between brain structure and genetic markers
were examined by fitting a multiscale adaptive generalized estimation
equation (MAGEE) model to the Jacobian determinant of the defor-
mation matrix at each voxel of the template. The MAGEE method
extends the multiscale adaptive regression model (MARM; Zhu et al.
2009; Li et al. 2011) method to the correlated sample setting. The
MAGEE methodology treated the twins as repeated measures. The ef-
fective sample size for TBM analyses was 154 (94 singletons and 60
unique twin mothers). The MAGEE integrates a commonly used ap-
proach for analyzing the correlated data called generalized estimation
equation (GEE; Liang and Zeger 1986) with adaptive smoothing
methods. GEE models account for within-twin correlation among re-
peated measures via the specification of a “working” correlation struc-
ture in parameter estimation. Specifically, the compound symmetry
covariance structure was used to capture the correlation between
twins in a pair. An attractive feature of GEE models is that the esti-
mated regression coefficients and their associated standard deviations
are valid even if the correlation structure assumed for modeling the
within-twin correlation is not precisely correct (e.g., correlations may
differ between MZ and dizygotic twins). As a sensitivity analysis, we
also ran these tests including only 1 individual from each MZ pair.

Our primary scientific interest was to localize GM regions that
differ significantly between 2 groups (for the presence/absence
models) and 3 groups (for additive models) for each variant, thus
when testing for significant regions, WM was masked and only GM
was examined. The final form of the estimating equations in MAGEE
included genotype, while adjusting for gender, ICV, and gestational
age at MRI. Sensitivity analyses controlling for birthweight were also
run. To clarify the details, we interpret comparisons in statistical
context. For example, for rs4680 and the comparison GG versus
Other, we set up a linear model:

yijðdÞ ¼ b0 � 1þ b1 � genderþ b2 � ageþ b3 � 1ðgenotype
¼ GGÞ þ b4 � ICV þ eiðdÞ þ 1ijðdÞ

where eiðdÞ � N ð0;se2 Þ and 1ijðdÞ � N ð0;sa2 Þ. y(d) is the imaging
measure at the dth voxel, 1(·) is an indication function, and ei(d) is
the shared correlation between subjects within the ith twin pair. We
are interested in the estimation of the coefficient β3 and testing
whether β3 = 0 is statistically significant. The value of β3 can be nega-
tive or positive at a specific voxel, if it is positive, it indicates that the
imaging measure in the GG group is statistically higher than that in

Table 2
Demographic data for participants

Variable

Maternal age at start of study (years) 30.19 (5.68) 17–47
Mean (SD) range, n= 272
Maternal education level (years) 15.55 (3.12) 8–25
Mean (SD) range, n= 272
Total household income $77 943 ($50 103) 0–288 000
Mean (SD) range, n= 261
Gestational age at birth (days) 261.4 (19.85) 205–295
Mean (SD) range, n= 272
Birth weight (g) 2916 (706.2) 1289–4701
Mean (SD) range, n= 272
Gestational age at MRI (days) 294.2 (17.93) 261–433
Mean (SD) range, n= 272
Gender

Female, n (%) 120 (44%)
Male, n (%) 152 (56%)

Singleton versus twins
Singleton, n (%) 144 (53%)
Twins, n (%) 128 (47%)

Within twins
Dizygotic, n (%) 70 (58%)
Monozygotic, n (%) 50 (42%)

Table 3
Parental psychiatric history for participants

Diagnosis Singletons Twins

Bipolar disorder, n (%) 30 (21%) 4 (3%)
Schizophrenia, n (%) 2 (1%) 4 (3%)
Schizoaffective disorder, n (%) 3 (2%) 0 (0%)
Depression, n (%) 30 (21%) 24 (19%)
Alcohol dependence/abuse, n (%) 21 (14%) 4 (3%)
Drug dependence/abuse, n (%) 21 (14%) 6 (5%)
Anxiety/OCD, n (%) 13 (9%) 26 (20%)
ADD/ADHD, n (%) 3 (2%) 8 (6%)
Other, n (%) 13 (9%) 1 (1%)
Total in sample with parental psychiatric history, n (%) 65 (45%) 45 (35%)
Total in sample with no parental psychiatric history, n (%) 79 (54%) 83 (65%)
Psychotropic medications

Antidepressants, n (%) 25 (17%) 16 (13%)
Antipsychotics, n (%) 14 (10%) 4 (3%)
Mood stabilizers, n (%) 12 (8%) 0 (0%)
Antianxiety, n (%) 3 (2%) 2 (2%)
ADHD, n (%) 1 (1%) 0 (0%)

Total in sample with psychotropic medication use, n (%) 38 (26%) 16 (13%)

ADD, attention deficit disorder; ADHD, attention deficit hyperactivity disorder; OCD, obsessive
compulsive disorder.
Note: parental history was based on maternal report. Active drug or alcohol abuse/dependence
was an exclusion criteria at the time of enrollment. However, 4 women did report drug use later
in the pregnancy.
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other genotype groups, denoted as GG >Other; otherwise, GG is stat-
istically lower than Other, denoted as GG <Other.

For all hypothesis tests, cluster-based inference was used to identify
significant genetic effects on localized GM volumes (Cao 1999; Worsley
et al. 1999; Hayasaka et al. 2004). Cluster-based inference is based on
random field theory, a widely used multiple testing method for deter-
mining corrected significances while accounting for the high level of
spatial dependencies between adjacent voxels (Worsley et al. 1996).
First, we detected clusters of contiguous suprathreshold voxels using a
cluster-forming threshold of P < 0.005. We used a threshold of 0.005 to
adjust for the number of genetic tests conducted (0.005 = 0.05/10; Bon-
ferroni corrected for the number of genetic tests conducted). Secondly,
we calculated a P-value for each contiguous cluster on the basis of its
size/mass to test whether a ROI size was significant or not using a con-
servative level of P < 0.001. To further minimize false positives, a con-
servative cluster size threshold of 100 was applied both before and
after the clustering test. The manual and code of the nonstationarity
correction toolbox for cluster size P-values are available at http://www.
fmri.wfubmc.edu/. Anatomical locations of clusters were established
using a 90 region parcellation template for the infant brain (Gilmore
et al. 2011), and regions correspond to those in the Anatomical Auto-
matic Labeling template (Tzourio-Mazoyer et al. 2002).

Results

In the automated lobar volumetry analyses, ESR1 (rs9340799)
predicted ICV. AA homozygotes had 3.7% larger ICV than G
allele carriers (P = 0.0028). This comparison remained signifi-
cant when including only 1 individual from each MZ twin pair
(P = 0.0011), and when including birthweight as a covariate
(P = 0.0037). It approached significance when controlling for
parental psychiatric history (P = 0.0057). No other variants were
associated with global or regional brain tissue volumes (Sup-
plementary Tables S3 and S4). However, TBM revealed signifi-
cant local GM variation associations with DISC1 (rs821616),
COMT, NRG1, APOE, ESR1 (rs9340799), and BDNF (Table 5).

For DISC1 (rs821616), TBM identified multiple areas of
reduced volume in Ser/Ser homozygotes in the frontal lobes,
particularly in supplementary motor areas, paracentral
lobules, and the right medial superior frontal gyrus, and to a
lesser extent, in the occipital lobes and lateral temporal cortex
(Table 5 and Fig. 1).

For COMT, TBM revealed multiple clusters of reduced
volume in Val/Val homozygotes in the temporal cortex that
included portions of the right hippocampus, right parahippo-
campus, right fusiform, and bilateral middle and superior
temporal gyri. One cluster of reduced volume was identified
in the right occipital lobe and consisted primarily of calcarine

and lingual areas, and another cluster of reduced volume was
identified in the right parietal lobe (precuneus) and over-
lapped with the posterior cingulate. TBM also revealed mul-
tiple clusters of increased volumes in Val/Val homozygotes,
including the supplementary motor areas and parietal and oc-
cipital cortex (Table 5 and Fig. 2).

For NRG1 (rs35753505), TBM identified 5 clusters where
TT homozygotes had reduced volumes, which encompassed
temporal, parietal, and occipital regions. For NRG1
(rs6994992), TBM identified 7 clusters where TT homozy-
gotes had greater volume than other genotypes, primarily in
the frontal and temporal lobes. TBM also identified 20 clusters
of reduced volumes in TT homozygotes, which were widely
distributed across the brain with 2 large clusters in the left
temporal cortex (Table 5 and Fig. 3).

For APOE, TBM revealed that ɛ3ɛ4 heterozygotes had sig-
nificant reductions in volumes in temporal regions, including
bilateral hippocampus, parahippocampus, and fusiform, and
middle and inferior temporal gyri when compared with ɛ3
homozygotes and reductions in frontal and parietal lobes.
ɛ3ɛ4 heterozygotes had significantly greater volumes in exten-
sive areas of the parietal lobe and, to a lesser extent, in frontal
and occipital cortex (Table 5 and Fig. 4).

For ESR1 (rs9340799), TBM identified multiple regions of
decreased volume in AA homozygotes in the frontal lobes
(bilaterally), particularly in the frontal superior and middle
gyri. Another large cluster was located in the right parietal
cortex and consisted primarily of supramarginal gyrus. There
were also a number of smaller clusters, broadly distributed
across the brain, where AA homozygotes showed increased
volumes (Table 5 and Fig. 5).

For BDNF, TBM identified 2 clusters of increased volume
in Val/Val homozygotes, 1 primarily consisting of the right
occipital cortex and 1 consisting of the portions of left hippo-
campus, parahippocampus, fusiform gyrus, and inferior tem-
poral gyrus. TBM also revealed multiple clusters of decreased
volume in Val/Val homozygotes, particularly in the primary
motor and somatosensory cortex (Table 5 and Fig. 6).

No associations were identified for DISC1 (rs6675281),
ESR1 (rs2234693), or GAD1.

Results are highly similar when controlling for parental
psychiatric history, when including only 1 individual from
each MZ pair [with the exception of ESR1 (rs9340799, AA >
Other) and BDNF], and when controlling for birthweight
(Supplementary Tables S5–S7).

Table 4

Variant Homozygotes major allele Heterozygotes Homozygotes minor allele Missing Model

Genotype frequencies for participants, n (%)
DISC1 rs821616 TT 141 (52%) AT 102 (38%) AA 28 (10%) 1 (>1%) AA versus Other
DISC1 rs6675281 CC 191 (70%) TC 75 (28%) TT 5 (2%) 1 (>1%) CC versus Other
COMT rs4680 GG 69 (26%) GA 137 (50%) AA 61 (22%) 5 (2%) GG versus Other
NRG1 rs6994992 CC 93 (34%) CT 126 (46%) TT 52 (19%) 1 (>1%) TT versus Other
NRG1rs35753505 TT 112 (41%) TC 115 (42%) CC 44 (16%) 1 (>1%) TT versus Other
ESR1 rs9340799 AA 110 (40%) GA 129 (47%) GG 32 (12%) 1 (>1%) AA versus Other
ESR1 rs2234693 TT 76 (28%) TC 143 (53%) CC 52 (19%) 1 (>1%) Additiveb

BDNF rs6265 GG 182 (67%) GA 77 (28%) AA 12 (4%) 1 (>1%) GG versus Other
GAD1 rs2270335 GG 133 (49%) GA 116 (43%) AA 22 (8%) 1 (>1%) Additive

Haplotype Frequencies for participants, n (%)
APOE ɛ3ɛ3 ɛ3ɛ4 Othera

156 (57%) 66 (24%) 47 (17%) 3 (1%) ɛ3ɛ3 versus ɛ3ɛ4

aIncludes ɛ2ɛ2, ɛ2ɛ3, ɛ2ɛ4, and ɛ4ɛ4.
bFor genotypes with 3 levels an ordinal model was imposed.
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Table 5
Results of TBM analyses

Variant and model Cluster no. Cluster size Maximum t-value Maximum P-value Cluster P-value Anatomical regions

DISC1 (rs821616)
AA(Ser/Ser) < Other 1 1699 6.52 <0.0001 <0.0001 Supp_motor_area_R (627)

Supp_motor_area_L (543)
Paracentral_lobule_L (238)
Paracentral_lobule_R (198)
Cingulum_mid_L (36)
Cingulum_mid_R (35)
Postcentral_L (22)

2 881 5.27 <0.0001 <0.0001 Occipital_mid_L (432)
Temporal_mid_L (376)
Occipital_inf_L (47)
Temporal_inf_L (13)
Angular_L (9)
Temporal_sup_L (3)
Supramarginal_L (1)

3 244 5.69 <0.0001 <0.0001 Temporal_inf_L (163)
Temporal_pole_mid_L (49)
Fusiform_L (32)

4 202 4.41 <0.0001 <0.0001 Frontal_sup_medial_R (119)
Frontal_sup_R (80)
Frontal_mid_R (3)

5 150 6.13 <0.0001 <0.0001 Precentral_R (141)
Frontal_sup_R (9)

6 115 4.22 <0.0001 0.0001 Frontal_inf_orb_R (114)
Temporal_pole_sup_R (1)

7 115 4.24 <0.0001 0.0001 Occipital_mid_R (87)
Angular_R (28)

8 112 4.89 <0.0001 <0.0001 Temporal_Pole_Sup_L (112)
9 112 3.78 0.0001 0.0004 Precentral_R (94)

Frontal_sup_R (18)
10 111 4.69 <0.0001 <0.0001 Temporal_mid_R (57)

Temporal_sup_R (54)
11 102 4.77 <0.0001 <0.0001 Temporal_sup_R (71)

Supramarginal_R (31)
DISC1 (rs6675281) None
COMT (rs4680)

GG(Val/Val) > Other 1 1611 4.12 <0.0001 0.0001 Supp_motor_area_L (63)
Supp_motor_area_R (59)
Frontal_sup_medial_L (18)
Frontal_sup_medial_R (14)
Cingulum_mid_R (7)

2 462 4.10 <0.0001 0.0001 Cuneus_R (42)
Occipital_sup_R (263)
Occipital_mid_R (65)
Parietal_sup_R (91)
Angular_R (1)

3 165 3.84 0.0001 0.0002 Cuneus_L (21)
Occipital_sup_L (120)
Occipital_mid_L (19)
Parietal_sup_L (1)
Parietal_inf_L (4)

4 159 3.63 0.0002 0.0004 Angular_R (65)
Parietal_inf_R (48)
Parietal_sup_R (46)

GG(Val/Val) < Other 5 536 4.60 <0.0001 <0.0001 Temporal_sup_R (463)
Temporal_mid_R (36)
Insula_R (33)
Heschl_R (4)

6 220 3.89 0.0001 0.0001 Calcarine_R (130)
Lingual_R (83)
Fusiform_R (6)
Cuneus_R (1)

7 206 4.29 <0.0001 <0.0001 Precuneus_R (158)
Cingulum_post_R (48)

8 204 4.30 <0.0001 <0.0001 Hippocampus_R (144)
Parahippocampal_R (38)
Fusiform_R (22)

9 101 3.38 0.0004 0.0008 Temporal_sup_L (98)
Temporal_mid_L (3)

NRG1 (rs35753505)
TT < Other 1 232 3.75 0.0001 0.0003 Temporal_mid_L (110)

Temporal_sup_L (83)
Supramarginal_L (39)

2 203 4.11 <0.0001 0.0001 Supramarginal_L (166)
Temporal_sup_L (37)

3 141 4.12 <0.0001 0.0001 Precuneus_R (131)
Cuneus_R (9)
Occipital_sup_R (1)

(continued )
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Table 5 Continued

Variant and model Cluster no. Cluster size Maximum t-value Maximum P-value Cluster P-value Anatomical regions

4 108 4.15 <0.0001 0.0001 Precuneus_R (97)
Cuneus_R (6)
Calcarine_R (5)

5 100 3.71 0.0001 0.0004 Precuneus_L (96)
Cuneus_L (2)
Calcarine_L (2)

NRG1 (rs6994992)
TT > Other 1 746 ∞ <0.0001 <0.0001 Temporal_sup_R (430)

Temporal_mid_R (301)
Temporal_pole_sup_R (12)
Heschl_R (2)
Temporal_pole_mid_R (1)

2 598 8.91 <0.0001 <0.0001 Temporal_mid_L (367)
Temporal_sup_L (184)
Supramarginal_L (33)
Temporal_inf_L (14)

3 550 ∞ <0.0001 <0.0001 Frontal_mid_L (406)
Frontal_sup_L (144)

4 251 7.69 <0.0001 <0.0001 Rolandic_oper_R (197)
Heschl_R (51)
Insula_R (3)

5 131 6.22 <0.0001 <0.0001 Paracentral_lobule_R (109)
Supp_motor_area_R (17)
Precuneus_R (5)

6 126 5.72 <0.0001 <0.0001 Temporal_sup_L (57)
Temporal_mid_L (56)
Insula_L (12)
Temporal_pole_sup_L (1)

7 124 5.13 <0.0001 <0.0001 Temporal_mid_L (112)
TT < Other 8 4192 ∞ <0.0001 <0.0001 Temporal_inf_L (1577)

Temporal_mid_L (1479)
Temporal_pole_sup_L (312)
Temporal_sup_L (294)
Temporal_pole_mid_L (262)
Frontal_inf_orb_L (192)
Fusiform_L (74)
Rolandic_oper_L (2)

9 2564 ∞ <0.0001 <0.0001 Temporal_inf_R (1004)
Temporal_mid_R (568)
Temporal_sup_R (290)
Rolandic_oper_R (149)
Temporal_pole_mid_R (136)
Precentral_R (99)
Frontal_inf_oper_R (88)
Fusiform_R (83)
Temporal_pole_sup_R (69)
Postcentral_R (64)
Frontal_inf_tri_R (11)
Heschl_R (3)

10 2163 ∞ <0.0001 <0.0001 Parahippocampal_L (656)
Hippocampus_L (394)
Lingual_L (329)
Caudate_L (215)
Olfactory_L (118)
Fusiform_L (77)
Putamen_L (71)
Precuneus_L (69)
Insula_L (57)
Amygdala_L (50)
Pallidum_L (44)
Cingulum_post_L (35)
Frontal_inf_orb_L (30)
Thalamus_L (6)
Frontal_sup_orb_L (6)
Rectus_L (6)

11 576 ∞ <0.0001 <0.0001 Cuneus_R (180)
Calcarine_L (166)
Calcarine_R (103)
Lingual_R (57)
Cuneus_L (40)
Occipital_sup_R (30)

12 394 6.65 <0.0001 <0.0001 Cuneus_L (140)
Cuneus_R (129)
Occipital_sup_R (51)
Occipital_sup_L (46)
Precuneus_L (28)

(continued )
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Table 5 Continued

Variant and model Cluster no. Cluster size Maximum t-value Maximum P-value Cluster P-value Anatomical regions

13 385 7.59 <0.0001 <0.0001 Insula_L (219)
Frontal_inf_tri_L (126)
Frontal_inf_oper_L (36)
Frontal_inf_orb_L (4)

14 346 5.84 <0.0001 <0.0001 Supp_motor_area_R (127)
Supp_motor_area_L (104)
Frontal_sup_R (51)
Frontal_sup_medial_L (31)
Frontal_sup_medial_R (26)
Cingulum_mid_R (7)

15 310 6.84 <0.0001 <0.0001 Frontal_inf_orb_R (99)
Putamen_R (86)
Insula_R (81)
Temporal_pole_sup_R (23)
Caudate_R (21)

16 265 ∞ <0.0001 <0.0001 Insula_R (199)
Frontal_inf_oper_R (65)
Rolandic_oper_R (1)

17 259 6.96 <0.0001 <0.0001 Parietal_inf_L (105)
Parietal_sup_L (104)
Occipital_mid_L (29)
Angular_L (21)

18 183 ∞ <0.0001 <0.0001 Parahippocampal_R (133)
Amygdala_R (30)
Hippocampus_R (20)

19 181 ∞ <0.0001 <0.0001 Precentral_R (158)
Frontal_mid_R (20)
Postcentral_R (3)

20 179 7.33 <0.0001 <0.0001 Occipital_mid_R (93)
Occipital_sup_R (77)
Angular_R (9)

21 155 5.16 <0.0001 <0.0001 Cingulum_ant_L (82)
Cingulum_ant_R (52)
Frontal_sup_medial_L (18)
Cingulum_mid_R (3)

22 148 ∞ <0.0001 <0.0001 Frontal_inf_orb_R (106)
Temporal_pole_sup_R (33)
Frontal_inf_tri_R (6)
Frontal_inf_oper_R (3)

23 148 7.25 <0.0001 <0.0001 Occipital_mid_R (133)
Occipital_inf_R (12)
Temporal_mid_R (3)

24 141 7.62 <0.0001 <0.0001 Precentral_R (120)
Postcentral_R (21)

25 122 5.62 <0.0001 <0.0001 Paracentral_lobule_L (65)
Postcentral_L (49)
Precuneus_L (8)

26 115 7.09 <0.0001 <0.0001 Parietal_inf_L (108)
Angular_L (7)

27 110 6.91 <0.0001 <0.0001 Supramarginal_R (110)
APOE

ɛ3ɛ3 < ɛ3ɛ4 1 2795 ∞ <0.0001 <0.0001 Parietal_sup_L (1088)
Parietal_inf_L (646)
Precuneus_L (347)
Occipital_sup_L (205)
Occipital_mid_L (191)
Postcentral_L (182)
Angular_L (80)
Cingulum_post_L (47)
Cuneus_L (9)

2 960 ∞ <0.0001 <0.0001 Postcentral_R (731)
Parietal_inf_R (143)
Paracentral lobule_R (27)
Parietal_sup_R (22)
Supramarginal_R (20)
Precentral_R (16)
Precuneus_R (1)

3 449 7.52 <0.0001 <0.0001 Angular-R (199)
Occipital_sup_R (106)
Parietal_sup_R (120)
Parietal_inf_R (9)
Precuneus_R (3)
Occipital_mid_R (9)
Cuneus_R (3)

(continued )
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Table 5 Continued

Variant and model Cluster no. Cluster size Maximum t-value Maximum P-value Cluster P-value Anatomical regions

4 376 ∞ <0.0001 <0.0001 Precentral_R (298)
Frontal_mid_R (76)
Postcentral_R (2)

5 240 ∞ <0.0001 <0.0001 Postcentral_L (220)
Precentral_L (20)

6 237 ∞ <0.0001 <0.0001 Frontal_inf_oper_R (207)
Frontal_mid_R (15)
Frontal_inf_tri_R (12)
Precentral_R (3)

7 155 8.75 <0.0001 <0.0001 Frontal_sup_orb_L (89)
Rectus_L (57)
Frontal_mid_orb_L (8)
Frontal_med_orb_L (1)

8 135 6.85 <0.0001 <0.0001 Paracentral_lobule_R (34)
Paracentral_lobule_L (28)
Supp_motor_area_R (22)
Precuneus_L (22)
Precuneus_R (12)
Cingulum_mid_R (12)
Cingulum_mid_L (5)

9 134 7.41 <0.0001 <0.0001 Rolandic_oper_R (48)
Supramarginal_R (42)
Postcentral_R (37)
Temporal_sup_R (6)
Heschl_R (1)

10 114 5.46 <0.0001 <0.0001 Precuneus_R (63)
Parietal_sup_R (48)
Precuneus_L (3)

11 102 8.13 <0.0001 <0.0001 Frontal_sup_R (101)
Frontal_mid_R (1)

12 100 7.27 <0.0001 <0.0001 Temporal_inf_R (55)
Occipital_inf_R (45)

ɛ3ɛ3 > ɛ3ɛ4 13 514 ∞ <0.0001 <0.0001 Fusiform_L (125)
Hippocampus_L (117)
Temporal_inf_L (90)
Temporal_mid_L (71)
Temporal_sup_L (68)
Parahippocampal_L (43)

14 188 ∞ <0.0001 <0.0001 Frontal_mid_L (143)
Frontal_sup_L (39)
Precentral_L (6)

15 133 ∞ <0.0001 <0.0001 Frontal_inf_oper_R (118)
Frontal_inf_tri_R (10)
Frontal_mid_R (5)

16 123 ∞ <0.0001 0.0002 Fusiform_R (67)
Parahippocampal_R (48)
Hippocampus_R (8)

17 109 ∞ <0.0001 <0.0001 Parietal_sup_R (107)
Precuneus_R (2)

ESR1 (rs9340799)
AA > Other 1 195 6.52 <0.0001 <0.0001 Parietal_sup_L (119)

Parietal_inf_L (47)
Occipital_mid_L (19)
Angular_L (10)

2 184 5.16 <0.0001 <0.0001 Postcentral_R (178)
Parietal_inf_R (6)

3 162 6.48 <0.0001 <0.0001 Frontal_mid_R (16)
Frontal_inf_oper_R (138)
Frontal_inf_tri_R (8)

4 111 4.56 <0.0001 <0.0001 Precentral_R (106)
Frontal_Mid_R (5)

5 102 ∞ <0.0001 <0.0001 Postcentral_R (35)
Temporal_sup_R (30)
Rolandic_oper_R (27)
Precentral_R (8)
Heschl_R (2)

AA < Other 6 3549 ∞ <0.0001 <0.0001 Frontal_sup_R (1260)
Frontal_mid_R (1154)
Supp_motor_area_R (558)
Precentral_R (294)
Frontal_inf_oper_R (136)
Frontal_sup_medial_R (128)
Frontal_inf_tri_R (14)
Postcentral_R (5)

(continued )

1238 Genes and Brain Structure at Birth • Knickmeyer et al.



Discussion

This study demonstrates that common genetic polymorphisms
in putative psychiatric risk genes predict individual differ-
ences in brain structure shortly after birth. Some effects are
highly similar to those reported in adults. As genetic variation
interacts with experiential and environmental factors

dynamically, varying across developmental stages, this rep-
resents a surprising and important finding. These variants
and the associated neuroimaging phenotypes likely represent
stable markers of risk and highlight the critical role of the
perinatal period in the etiology of mental illness. Other find-
ings are unique to this developmental period and may

Table 5 Continued

Variant and model Cluster no. Cluster size Maximum t-value Maximum P-value Cluster P-value Anatomical regions

7 2400 ∞ <0.0001 <0.0001 Frontal_mid_L (876)
Frontal_sup_L (738)
Supp_motor_area_L (542)
Frontal_sup_medial_L (194)
Precentral_L (50)

8 499 8.62 <0.0001 <0.0001 Supramarginal_R (317)
Parietal_inf_R (77)
Postcentral_R (61)
Angular_R (36)
Rolandic_oper_R (8)

9 385 8.03 <0.0001 <0.0001 Paracentral_lobule_R (235)
Precentral_R (83)
Postcentral_R (60)
Precuneus_R (7)

10 287 6.34 <0.0001 <0.0001 Postcentral_L (188)
Supramarginal_L (51)
Parietal_inf_L (46)
Precentral_L (2)

11 229 8.75 <0.0001 <0.0001 Precentral_L (148)
Postcentral_L (81)

12 198 ∞ <0.0001 <0.0001 Postcentral_L (133)
Precentral L (41)
Paracentral_lobule_L (21)
Precuneus_L (3)

13 153 6.97 <0.0001 <0.0001 Supramarginal_R (99)
Postcentral_R (54)

14 139 ∞ <0.0001 <0.0001 Postcentral_L (120)
Parietal_inf_L (15)
Precentral_L (4)

15 120 ∞ <0.0001 <0.0001 Frontal_sup_L (74)
Precentral_L (46)

16 104 6.44 <0.0001 <0.0001 Precentral_R (53)
Postcentral_R (51)

ESR1 (rs2234693) None
BDNF (rs6265)

GG(Val/Val) > Other 1 262 7.73 <0.0001 <0.0001 Occipital_inf_R (156)
Occipital_mid_R (102)
Calcarine_R (4)

2 172 ∞ <0.0001 <0.0001 Parahippocampal_L (66)
Fusiform_L (62)
Hippocampus_L (37)
Temporal_inf_L (7)

GG(Val/Val) < Other 3 682 8.91 <0.0001 <0.0001 Postcentral_R (450)
Parietal_inf_R (183)
Supramarginal_R (26)
Parietal_sup_R (21)
Angular_R (2)

4 298 7.60 <0.0001 <0.0001 Precentral_R (243)
Frontal_mid_R (46)
Postcentral_R (9)

5 200 6.91 <0.0001 <0.0001 Parietal_sup_L (126)
Parietal_inf_L (40)
Angular_L (20)
Occipital_mid_L (14)

6 169 6.83 <0.0001 <0.0001 Frontal_inf_oper_R (141)
Frontal_inf_tri_R (14)
Frontal_mid_R (14)

7 147 5.61 <0.0001 <0.0001 Postcentral_L (147)
8 146 6.45 <0.0001 <0.0001 Parietal_inf_L (89)

Parietal_sup_L (34)
Postcentral_L (23)

9 113 6.02 <0.0001 <0.0001 Frontal_inf_tri_R (62)
Frontal_inf_oper_R (49)
Frontal_mid_R (2)

GAD1 (rs2270335) None

Note: numbers in parentheses represent the number of voxels in that particular region.
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represent transient biomarkers of risk. Finally, by comparing
our results with the existing literature, we can identify
relationships that have been reported in adolescents/adults,
which were not present in neonates. We hypothesize that
these variants influence brain development and psychiatric
risk in later childhood or adolescence and as such may be
particularly promising targets for intervention.

As regards DISC1, Ser/Ser homozygotes (rs821616) exhib-
ited reduced volumes in the frontal lobes, particularly in the
medial superior frontal gyrus and supplementary motor areas,
as well as in the lateral temporal cortex including the superior
and middle temporal gyri. Reduced volumes and cortical
thickness in the superior medial frontal gyrus (Takahashi
et al. 2009; Brauns et al. 2011) have been reported in young
adults, and reduced cortical thickness in supplementary
motor and lateral temporal cortices has been reported in ado-
lescents (Raznahan, Lee, et al. 2011) in Ser/Ser homozygotes.
It is notable that multiple meta-analyses have shown GM
reductions in the medial frontal cortex and superior temporal
gyri in schizophrenia (Fornito et al. 2009; Ellison-Wright and
Bullmore 2010; Bora et al. 2011). Abnormalities in the medial
frontal cortex may be related to negative symptoms, while
that in superior temporal gyri may be related to positive
symptoms (Bora et al. 2011). Meta-analyses also suggest that
middle temporal gyri are reduced in bipolar disorder (Yu
et al. 2010; Selvaraj et al. 2012) with possible consequences
for the experience of emotion (Selvaraj et al. 2012). We also
observed local reductions in the occipital lobes in this group,

which have not been previously reported. We did not observe
increased volumes in the cingulate cortex of Ser/Ser homozy-
gotes, which have been reported in middle-aged adults
(Hashimoto et al. 2006). We did not observe any effects of
rs6675281 despite reports in adolescents and adults that Phe
carriers demonstrate multiple areas of reduced volume and/or
cortical thickness (Szeszko et al. 2008; Brauns et al. 2011;
Raznahan, Lee, et al. 2011). Intriguingly, studies in adoles-
cents suggest very little overlap in cortical regions whose
maturation is associated with rs821616 and rs6675281 (Razna-
han, Lee, et al. 2011). As DISC1 interacts with numerous pro-
teins implicated in neurodevelopment (Porteous et al. 2011),
the divergent impact of these polymorphisms in terms of
their regional and temporal effects may reflect regional and
temporal differences in key signaling pathways. There is evi-
dence that rs821616 exerts its effects through altered binding
to centrosomal-associated nuclear distribution element-like 1
(NDEL1) and its homolog, NDE1 (Burdick et al. 2008), while
rs6675281 disrupts nuclear targeting and regulation of activat-
ing transcription factor 4 (ATF4)-mediated transcription (Ma-
lavasi et al. 2012).

For COMT, our findings of reduced volumes in the tem-
poral lobes, including right hippocampus, are highly similar
to previous reports in adolescents and adults (Ohnishi et al.
2006; Taylor et al. 2007; Cerasa et al. 2008; Mechelli et al.
2009; Shaw et al. 2009). Our finding of increased parietal
volumes in Val/Val homozygotes is also consistent with a pre-
vious report (Dumontheil et al. 2011). As noted previously,
alterations in the temporal lobes are frequently observed in
schizophrenia. Parietal alterations have also been reported,
albeit less consistently (Fornito et al. 2009). In addition,

Figure 1. The effect of DISC1 (rs821616) genotype on brain structure. Upper
images show the locations of significant GM decreases (blue) in Ser/Ser
homozygotes when compared with Cys carriers projected onto surface-rendered
views of the left and right hemispheres; lateral view (top) and medial view (middle).
Bottom images are selected 2-dimensional (2-D) slices (axial and sagittal) with
significant clusters displayed on the T2 atlas of the neonate brain. Color bar gives the
t-value at each voxel. Blue/green indicates Ser/Ser <Cys carrier.

Figure 2. The effect of COMT (rs4680) genotype on brain structure. Upper images
show the locations of GM increases (red) and decreases (blue) in Val/Val
homozygotes when compared with Met carriers projected onto surface-rendered
views of the left and right hemispheres; lateral view (top) and medial view (middle).
Bottom images are selected 2D slices (1 coronal and 2 sagittal) with significant
clusters displayed on the atlas of the neonate brain. Color bar gives the t-value at
each voxel. Red/yellow indicates Val/Val > other. Blue/green indicates Val/Val < other.
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functional neuroimaging studies suggest that key cognitive
impairments in schizophrenia, including working memory
deficits, might reflect fronto-parietal and frontal-temporal dis-
connections (Peled et al. 2001; Karlsgodt et al. 2008; Henseler
et al. 2010). Our results suggest that variation in COMT effects
neural systems implicated in the pathophysiology of schizo-
phrenia before birth. We did not observe effects on dorsolat-
eral prefrontal cortex, which is implicated in functional MRI
studies of COMT and which has been implicated in several

structural studies (Cerasa et al. 2008; Shaw et al. 2009). In
addition, TBM revealed significant effects in the occipital
cortex that have not been reported in older samples. Age-
specific effects may reflect developmental changes in the dis-
tribution of catecholamines and their receptors in the brain
and/or emerge as a result of genotype modulating the tempo
of cortical maturation. In regard to the former, postmortem
studies suggest that dopamine concentration and dopamine
receptor 2 levels are higher in neonates than in older individ-
uals (Weickert et al. 2007). In regard to the latter, COMT gen-
otype is associated with cortical thickness changes in
prefrontal, temporal, and superior parietal regions across ado-
lescence (Raznahan, Greenstein, et al. 2011).

Four studies have examined whether SNPs in NRG1 are
associated with brain tissue volumes. Winterer et al. (2008)
found no effect of rs35753505 on brain tissue volumes using
VBM, although they reported a relationship with subcortical
medial frontal WM microstructure as indexed by DTI. Mata
et al. (2009) reported an association of rs6994992 with ventri-
cle volume in adult schizophrenics, but did not observe
effects on frontal or parietal volumes in schizophrenics or a
small sample of controls (n = 16). Addington et al. (2007) re-
ported that a microsatellite in NRG1 was associated with total
GM volume in children with childhood-onset schizophrenia,
but not in controls. Tosato et al. (2012) reported an associ-
ation between rs4623364 and volume of the left superior tem-
poral gyrus, but not the right superior temporal gyrus, in
chronic schizophrenia (other regions were not examined and
no controls were included). In contrast, we observed several
clusters where TT homozygotes (rs35753505) had reduced

Figure 4. The effect of APOE genotype on brain structure. Upper images show the
locations of GM increases (red) and decreases (blue) in ɛ3ɛ4 heterozygotes when
compared with ɛ3ɛ3 homozygotes projected onto surface-rendered views of the left
and right hemispheres; lateral view (top) and medial view (middle). Bottom images
are selected 2D slices (coronal and sagittal) with significant clusters displayed on the
atlas of the neonate brain. Color bar gives the t-value at each voxel. Red/yellow
indicates ɛ3ɛ4 > ɛ3ɛ3. Blue/green indicates ɛ3ɛ4 < ɛ3ɛ3.

Figure 3. The effect of NRG1 (rs35753505 and rs6994992) genotype on brain
structure. (a) rs35753505. Upper images show the locations of GM decreases (blue)
in TT homozygotes when compared with C carriers projected onto surface-rendered
views of the left lateral and right medial hemispheres, and a selected 2D axial slice
with significant clusters displayed on the atlas of the neonate brain. Color bar gives
the t-value at each voxel. Blue/green indicates TT < Other. (b) rs6994992. Upper
images show the locations of GM increases (red) and decreases (blue) in TT
homozygotes when compared with C carriers projected onto surface-rendered views
of the left and right hemispheres; lateral view (top) and medial view (middle). Bottom
images are selected 2D slices (axial and coronal) with significant clusters displayed
on the atlas of the neonate brain. Color bar gives the t-value at each voxel. Red/
yellow indicates TT > other. Blue/green indicates TT < Other.
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volumes. We also observed extensive effects of rs6994992.
Additional comparative studies in adolescents and adults are
needed to clarify whether these are developmentally limited
effects or stable ones. However, these variants may be of par-
ticular relevance to the perinatal period. rs35753505 has re-
cently been associated with NRG1 mRNA levels in human
umbilical venous endothelial cells, and the C allele has been
implicated as a protective factor against cerebral palsy and

developmental delay in children born preterm (Hoffmann
et al. 2011). rs6994992 may impact on type IV NRG1
expression, a transcript which is abundantly expressed in fetal
brain (Tan et al. 2007).

For APOE, our findings of reduced volumes in the temporal
cortex of ɛ4 carriers are highly similar to those reported in the
elderly (Plassman et al. 1997; Lemaitre et al. 2005; Hua et al.
2008; Biffi et al. 2010). Reduced cortical thickness in the
medial temporal cortex has also been reported in adults
(Burggren et al. 2008), children, and adolescents (Shaw et al.
2007) carrying the ɛ4 variant, with the most consistent results
reported for the thickness of entorhinal cortex (here included
in the parahippocampal region). Our results indicate that the
ɛ4 variant’s contribution to brain phenotypes associated with
Alzheimer’s risk is likely present before birth and represents a
stable risk factor. The mechanisms underlying the particular
sensitivity of medial temporal cortex to the ɛ4 variant are not
fully understood. Presynaptic derangements in APOE-deficient
mice are a function of the distance between nerve terminals
and their cell bodies and of neuronal class (Chapman and Mi-
chaelson 1998), and experiments in transgenic mice have de-
monstrated that the ɛ4 variant inhibits synaptogenesis
following environmental enrichment in hippocampus and en-
torhinal cortex, but not in motor or auditory cortex (Levi et al.
2005). It should be noted that, despite its relation to cognitive
decline in the elderly (Schiepers et al. 2012), APOE genotype
does not affect intelligence quotient or school attainment test
scores in late childhood (Taylor et al. 2011), and some studies
have documented early cognitive benefits of the ɛ4 allele
(Wright et al. 2003). While the relationship between regional
cortical volume and cognitive performance at early ages
remains to be clarified, it is possible that the increased
volumes we observed in ɛ3ɛ4 infants represent compensatory
changes or beneficial effects that result in balancing selection.

Regarding ESR1, a study of rs9340799 in postmenopausal
women reported increased volume in AA homozygotes in the
middle temporal cortex, occipital cortex, and cerebellum
(Boccardi et al. 2008), which do not appear to overlap with
the regions in which we observed increased volumes,
although the A allele of rs9340799 was associated with in-
creased ICV. The same study reported no regions of decreased
volume in AA homozygotes, whereas we observed extensive
regions of decreased volume in AA homozygotes, suggesting
that this polymorphism exerts distinct effects dependent on
age and/or hormonal status. rs2234693 has been reported to
predict amygdala volume in elderly women, but not in elderly
men (den Heijer et al. 2004). We observed no effects of this
variant in neonates. We did not stratify our analyses by sex as
the fetal ovary is generally considered inactive until late in de-
velopment and, both male and female fetuses are exposed to
high levels of estrogen produced by the placenta (Grumbach
et al. 2003). Sex-specific effects are certainly of research inter-
est, but would best be tested in a larger sample.

Regarding BDNF, adult studies of rs6265 have shown
reduced volumes in Met carriers in diverse cortical regions
(Ho et al. 2006; Takahashi et al. 2008; Montag et al. 2009),
though results are inconsistent across studies with the excep-
tion of the hippocampus (Pezawas et al. 2004; Bueller et al.
2006; Frodl et al. 2007; Montag et al. 2009). We observed 2
clusters of reduced volume in Met carriers, one in the right
occipital cortex and another in the temporal cortex, which did
overlap with the hippocampus. Hippocampal dysfunction is

Figure 6. The effect of BDNF genotype on brain structure. Upper images show the
locations of GM increases (red) and decreases (blue) in Val/Val homozygotes when
compared with Met carriers projected onto surface-rendered views of the left and
right hemispheres, lateral view. Bottom images are selected 2D sagittal slices with
significant clusters displayed on the atlas of the neonate brain. Color bar gives the
t-value at each voxel. Red/yellow indicates Val/Val > other. Blue/green indicates Val/
Val < other.

Figure 5. The effect of ESR1 (rs9340799) genotype on brain structure. Upper
images show the locations of GM increases (red) and decreases (blue) in AA
homozygotes when compared with G carriers projected onto surface-rendered views
of the left and right hemispheres; lateral view (top) and medial view (middle). Bottom
image is a selected 2D axial slice with significant clusters displayed on the atlas of
the neonate brain. Color bar gives the t-value at each voxel. Red/yellow indicates AA
homozygotes > G carriers. Blue/green indicates AA homozygotes < G carriers.
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thought to play a key role in a broad range of psychiatric con-
ditions including depression, schizophrenia, and Alzheimer’s
(Small et al. 2011). We also observed multiple clusters of
decreased volume in Val/Val homozygotes. The lack of con-
sistency between studies could arise from age differences in
the effect of BDNF genotype on brain structure. Participating
children are returning for the follow-up neuroimaging scans
and detailed developmental assessments at 1, 2, 4, and 6
years of age, which will ultimately allow us to test for age by
genotype interactions and to determine the functional impact
of variants on positive and problematic behaviors.

The G allele of GAD1 (rs2270335) has been associated with
frontal GM volume loss in childhood-onset schizophrenia (Ad-
dington et al. 2005). We did not see any association of this
variant with neonatal brain structure.

In conclusion, we have shown that variation in putative
psychiatric risk genes affects neural systems implicated in the
pathophysiology of psychiatric disorders prior to birth. As
this is the first study to test this possibility, replication in inde-
pendent samples and in other ethnic groups is critical. Larger
studies would also provide more power for the detection of
additive effects and gene–gene and gene–environment inter-
actions. In addition, a better understanding of the mechan-
isms through which these variants impact cortical
development in a localized and temporally specific manner
would provide important context for the current results and
could be achieved through innovative animal models. We also
note that the targeted imaging genetics strategy used in this
study, which focuses on a discrete set of common functional
variants, is limited in that the variants we investigated likely
represent a very small fraction of all variants involved in the
development of human brain. Testing additional candidate
variants would clearly be of interest, but it could also be ex-
tremely fruitful to directly relate genetic variants to early brain
development on a genome-wide scale without being con-
strained by current biological knowledge. Neuroimaging of
infants with rare and highly penetrant genetic variants associ-
ated with psychiatric disorders would also be of interest,
given recent studies demonstrating that such variants make a
larger contribution to psychiatric risk than previously recog-
nized (Hosak et al. 2012). Nevertheless, the targeted imaging
genetics strategy continues to be a powerful method for eluci-
dating how genetic variants impact brain structure, function,
and vulnerability to disease (Meyer-Lindenberg and Weinber-
ger 2006; Tan et al. 2008; Bigos and Weinberger 2010). Our
findings contribute to our understanding of how risk genes
alter neurodevelopmental trajectories and provide new
biological evidence for how early on in life the roots of ado-
lescent/adult emergent disorders might lie.
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