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aBstraCt

introduction: Self-regulation, a key component of the addiction process, has been challenging to model precisely in smok-
ing cessation settings, largely due to the limitations of traditional methodological approaches in measuring behavior over time. 
However, increased availability of intensive longitudinal data (ILD) measured through ecological momentary assessment facili-
tates the novel use of an engineering modeling approach to better understand self-regulation.

Methods: Dynamical systems modeling is a mature engineering methodology that can represent smoking cessation as a self-
regulation process. This article shows how a dynamical systems approach effectively captures the reciprocal relationship between 
day-to-day changes in craving and smoking. Models are estimated using ILD from a smoking cessation randomized clinical trial.

results: A system of low-order differential equations is presented that models cessation as a self-regulatory process. It explains 
87.32% and 89.16% of the variance observed in craving and smoking levels, respectively, for an active treatment group and 
62.25% and 84.12% of the variance in a control group. The models quantify the initial increase and subsequent gradual decrease 
in craving occurring postquit as well as the dramatic quit-induced smoking reduction and postquit smoking resumption observed 
in both groups. Comparing the estimated parameters for the group models suggests that active treatment facilitates craving 
reduction and slows postquit smoking resumption.

Conclusions: This article illustrates that dynamical systems modeling can effectively leverage ILD in order to understand self-
regulation within smoking cessation. Such models quantify group-level dynamic responses in smoking cessation and can inform 
the development of more effective interventions in the future.

intrODUCtiOn

The chronic, relapsing nature of cigarette smoking and its 
related health and economic impacts makes smoking a signifi-
cant public health issue (Fiore et al., 2008). If more effective 
smoking cessation interventions are to be designed, it is impor-
tant to better understand the process of cessation (Shiffman, 
2006). Supporting a long-term goal of more effective, per-
sonalized interventions, emerging technologies and analytical 
methods are being employed in pursuit of more comprehensive 
descriptions of smoking behavior change.

Self-regulation theory has been of particular interest in 
describing smoking behavior, postulating that smoking is done 
to correct deviations from a “normal” level of some variable, 
such as blood nicotine or affect levels (i.e., achieve homeostasis; 

Carver & Scheier, 1998; Solomon, 1977; Solomon & Corbit, 
1974; Velicer, Redding, Richmond, Greeley, & Swift, 1992). 
Changes in smoking rates are said to be directly proportional 
to the difference between the normal level of the regulated vari-
able and its actual level at some time (Velicer et al., 1992).

Historically, precise modeling of self-regulation has been 
met with limited success. This is largely the result of diffi-
culty measuring behavior frequently over time in the preper-
sonal computing era and the traditional emphasis on statistical 
methodologies that are static in nature (Riley et  al., 2011). 
However, technological advances (e.g., handheld computers) 
mean that dynamic behaviors can be effectively and efficiently 
assessed repeatedly over time, providing intensive longitudinal 
data (ILD; Walls & Schafer, 2006). These technologies enable 
cost-effective measurement of behavior in real time in the real 
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world (i.e., outside of laboratory environments), providing 
more informative data (i.e., via data collection by ecological 
momentary assessment [EMA] protocols; Shiffman, Stone, & 
Hufford, 2008).

The advent of behavioral ILD has led to modeling efforts 
that aim to characterize dynamic phenomena within behavio-
ral, social, and public health settings (Boker, 2012; Boker & 
Nesselroade, 2002; Ionides, Bretó, & King, 2006; Rivera, 2012; 
Rivera, Pew, & Collins, 2007; Tan, Shiyko, Li, Li, & Dierker, 
2012; Trail et al., in press). The result includes novel descrip-
tions of time-varying predictors of substance use (Chandra, 
Scharf, & Shiffman, 2011; Galea, Hall, & Kaplan, 2009; 
Samanta, 2011; Shiyko, Lanza, Tan, Li, & Shiffman, 2012; 
Timms, Rivera, Collins, & Piper, 2012), pain management 
(Deshpande, Nandola, Rivera, & Younger, 2011), and disease 
transmission within populations (Bhadra et al., 2011; Ionides 
et al., 2006). Increased availability of ILD also allows use of an 
engineering analytical approach to study self-regulation within 
smoking (Rivera 2012; Timms et al., 2012). Furthermore, con-
structing models of self-regulated smoking behaviors using 
an engineering approach is motivated by the fact that similar 
models describing smoking as a regulation-free process do not 
comprehensively describe the interrelationship between smok-
ing and craving that is observed in smoking cessation clinical 
trial ILD (Timms et al., 2012).

Traditionally applied within engineering settings, dynami-
cal systems modeling (referred to as dynamic modeling) can 
be used to describe how outcomes of interest (e.g., smoking) 
respond to changes in exogenous and predictor variables (e.g., 
quit attempt and craving, respectively). System identification 
involves a set of techniques within dynamic modeling that 
deals with methods to produce empirical dynamic models from 
data (Ljung, 1999). Together, dynamic modeling and system 
identification use ordinary differential equations (ODEs) to 
parsimoniously and comprehensively describe processes of 
change. Commonly used in engineering to describe change 
within physical systems (Ogunnaike & Ray, 1994), ODEs have 
also been used to describe the dynamics in behavior (Boker, 
2012; Boker & Nesselroade, 2002). The approach considered 
in this work similarly relies on ODEs, but employs an input–
output perspective, meaning dynamic models describe how 
changes in inputs to a process lead to changes in outputs of 
that process. In behavioral health contexts, input variables cor-
respond to predictor variables that may or may not be inde-
pendent (e.g., a quit attempt and smoking, respectively) and 
output variables correspond to outcomes or dependent variable 
responses (e.g., craving; Trail et al., in press). Dynamic models 
are able to quantify not only the net effect a change in a predic-
tor variable has on an outcome variable but also how quickly 
the response occurs, whether the response is oscillatory, and 
more (Ogunnaike & Ray, 1994).

Dynamic modeling is an appealing way to model smok-
ing behavior change because it is often used by engineers to 
characterize regulatory (feedback) processes. Dynamic models 
based on ILD collected via EMA protocols can provide a more 
rigorous and parsimonious description of the self-regulatory 
dynamics of smoking behaviors in real-world environments. 
An understanding of self-regulatory dynamics is of considera-
ble interest as such estimated expressions can shed light on the 
nature of craving regulation. This, in turn, may provide insight 
into the craving process that leads to cessation relapse, as crav-
ing and craving suppression have been strongly implicated 

in cessation success (Bolt, Piper, Theobald, & Baker, 2012; 
McCarthy et al., 2008b; Piper et al., 2008; Timms et al., 2012). 
This insight may help inform development of more effective 
smoking cessation interventions in the future (Riley et  al., 
2011; Timms, Rivera, Collins, & Piper, 2013).

This article aims to illustrate the benefits of dynamic 
modeling by mathematically modeling day-to-day changes 
in the self-regulatory relationship between Current Craving 
(average daily craving level) and CPD (total number of ciga-
rettes smoked per day) during a quit attempt. These models 
are developed using group average ILD from a University of 
Wisconsin clinical trial; this facilitates characterization of the 
fundamental self-regulation process over a critical cessation 
timeframe, beginning 1 week prior to and ending approxi-
mately 1 month after the target quit date. In the Methods sec-
tion, details of the University of Wisconsin clinical trial data, 
the self-regulation model, and model estimation procedures are 
presented. Empirical dynamic models estimated for the clinical 
trial’s active and placebo treatment groups are then contrasted 
and explained. Finally, future use of this modeling approach, 
connections between self-regulation models and ongoing ques-
tions in cessation research, and implications of the findings for 
intervention development are briefly discussed.

MethODs

Clinical Trial Data

The EMA data analyzed in this article comes from a University 
of Wisconsin Center for Tobacco Research and Intervention 
randomized placebo-controlled clinical trial of the effects of 
bupropion SR and counseling on smoking cessation (McCarthy 
et  al., 2008a). Study participants were randomly assigned to 
one of four experimental conditions. This article focuses on 
one active treatment and the no treatment group. In the active 
treatment group, 100 participants received both active bupro-
pion and counseling (the “AC” group): 46.0% female; 1.0% 
Hispanic, 90.0% White, 7.0% Black, and 3.0% other; mean age, 
36.9 ± 11.5 years; mean baseline Fagerström Test for Nicotine 
Dependence [FTND] score, 5.0 ± 2.5. These participants took 
150 mg/day of bupropion twice a day, from 1 week pretarget 
quit day to 8 weeks postquit, with the appropriate 3-day ramp-
up period of only 150 mg/day. In-person counseling consisted 
of eight sessions and covered topics such as problem solving, 
support, coping, and motivation. In the no treatment condition, 
100 participants received a placebo drug, taken on the same 
schedule as the active medication, and no counseling (“PNc” 
group): 54.0% female; 0.0% Hispanic, 92.0% White, 5.0% 
Black, and 3.0% other; mean age, 39.2 ± 11.4  years; mean 
baseline score, 5.1 ± 2.1 (McCarthy et al., 2008a).

Data were collected using personal digital assistants for 2 
weeks prior to and 4 weeks following the target quit date. This 
article draws from Evening Reports (ERs), self-reports com-
pleted daily prior to going to bed (McCarthy et  al., 2008a). 
ERs included items from the Wisconsin Smoking Withdrawal 
Scale (Welsch et  al., 1999) and the Positive and Negative 
Affect Scale (Watson, Clark, & Tellegen, 1988). Current 
Craving is defined as the sum of Urge (“Urge(s) to smoke?”), 
Cigonmind (“Cigarettes on my mind?”), Thinksmk (“Thinking 
about smoking a lot?”), and Bother (“Bothered by desire to 
smoke?”), each assessed as “Since Last ER on Average” on 
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a 10-point Likert scale (1–11, No!! … Yes!!). CPD was also 
measured (“Since Last ER—Total cigarettes smoked since the 
last evening report?”).

Although single subject (idiographic) models could be 
examined (see Timms et  al. 2012, 2013 for example), group 
average data were the focus of this analysis. This was done 
primarily to characterize self-regulatory dynamics within two 
populations, which can also provide insight into treatment con-
dition effects.

Self-Regulation Model

Figure  1 is a block diagram, typically used by engineers, 
which describes the self-regulatory relationship between 
Current Craving and CPD from an input–output perspective. 
The overall self-regulation system is composed of three indi-
vidual input–output processes, depicted as blocks in Figure 1. 
These processes are related in a way that suggests cigarettes 
are smoked in an attempt to maintain a smoker’s average pre-
quit craving level, Baseline Craving Level. Because the system 
aims to sustain Current Craving at a level equal to Baseline 
Craving Level, Current Craving is said to be the primary out-
put of the overall self-regulation system, as is depicted on the 
right side of Figure 1. A quit attempt significantly perturbs the 
overall regulatory process.

Examining Figure 1 from right to left, Current Craving is 
the direct result of total daily smoking, CPD. The manner in 
which day-to-day changes in CPD lead to day-to-day changes 
in Current Craving is described by the Craving Generation 
Process (depicted as a block in Figure  1). In other words, 
CPD is the “input” to the Craving Generation Process and 
Current Craving is the “output.” CPD is the sum of the out-
puts of two processes: the Quit Attempt Process and Craving 
Self-Regulator (also depicted as blocks in Figure 1). The Quit 
Attempt Process reflects the extent to which an attempt to quit 

smoking influences CPD. The Craving Self-Regulator rep-
resents how Daily Craving Difference influences CPD. The 
value of Daily Craving Difference for each day is the differ-
ence between Baseline Craving Level, a constant value, and 
the value of Current Craving for that day. In other words, the 
Craving Self-Regulator produces changes in CPD in order 
to minimize the difference between Baseline Craving Level 
and Current Craving. This process reflects a biological or 
psychological homeostatic mechanism that promotes smok-
ing in an attempt to maintain Current Craving at a level near 
Baseline Craving Level. Comparing Figure  1 to the repre-
sentation of self-regulating behavior presented in Carver and 
Scheier (1998), the Craving Generation Process is equivalent 
to the “Effect on Environment” process and the Craving Self-
Regulator is equivalent to “Behavior.”

The system in Figure 1 indicates that Current Craving and 
CPD are interrelated because changes in Current Craving lead 
to changes in CPD, and these changes in CPD lead to further 
changes in Current Craving, and so on. It follows that on aver-
age, a change in either Current Craving or CPD will result in a 
change in the other.

Dynamic models of the Craving Generation Process, Quit 
Attempt Process, and Craving Self-Regulator (the process 
blocks in Figure  1) are ODEs that are originally in variable 
form. With ILD—specifically, data for Quit, Current Craving, 
and CPD—mathematical expressions that represent the process 
blocks in Figure 1 can be estimated using regression routines 
from system identification. The result is compact empirical 
mathematical functions with estimated parameters that describe 
the features of cessation dynamics (Ogunnaike & Ray, 1994).

Model Estimation

Dynamic models parsimoniously represent the dynamics of 
a system using ODEs. These differential equations feature 

Figure 1. Block diagram depicting the relation between Current Craving and CPD as a self-regulatory process. Current Craving 
is the variable representing the average craving level for each day in the time period examined. CPD is the variable representing the 
total number of cigarettes smoked each day in the time period examined. Baseline Craving Level is a constant value equal to the 
average prequit daily craving level. For each day, Daily Craving Difference equals the difference between Baseline Craving Level 
and the value of Current Craving for that day. Quit is the variable representing the attempt to quit smoking (Quit = 0 prior to the 
target quit day and Quit = 1 beginning on the target quit day).
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an output variable that is a function of time (e.g., y(t)) and its 
derivative (e.g., d ( ) / dy t t ). The derivative describes the output 
variable’s rate of change.

An example of an ODE that describes simple (first order) 
dynamics is:

 
τ d ( )

d
( ) ( )

y t

t
y t Ku t+ =  (1)

where u(t) is the input variable and y(t) is the output variable. K 
is the gain, which quantifies the net change in the output vari-
able per unit change in the input variable. τ is the time constant 
(in units of time), which quantifies the speed of the response. 
For first-order ODEs, like Equation 1, τ represents how long 
it takes for approximately 63% of the total output variable 
response to be reached, given a step change from 0 to 1 in the 
input variable.

To interpret Equation 1, consider the Craving Generation 
Process in Figure 1 as an example: the input is CPD and the 
output is Current Craving. Equation 1 states that the level of 
Current Craving at some given time (the y value at t = some spe-
cific time point) is related to the rate at which Current Craving 
changes over time ( d ( ) / dy t t ) as well as the level of the input 
CPD (u(t) at that time). Equation 1 is fit to Current Craving and 
CPD EMA data, resulting in estimates for K and τ. These esti-
mated parameters contain information on how Current Craving 
changes over time in response to changes in CPD.

Figure 2 is a plot of dynamics that can be represented by 
Equation 1 and is not meant to depict any specific dynamics 
related to smoking or behavior. If complex dynamics (e.g., 
oscillation) cannot be fully represented by only the parameters 
K and τ—that is, a first-order ODE insufficiently represents 
observed dynamics—then higher order ODE structures can be 
used to describe more complicated dynamics. Notably, higher 
order ODE structures can feature a system zero, τa, which 
describes response shape, and a damping coefficient, which 
describes oscillation (Ogunnaike & Ray, 1994).

Because ODEs include rates of change (the derivative term) 
and do not explicitly include time as an independent variable, 

ODEs significantly differ from more common behavioral sci-
ence modeling methods, such as linear growth curve modeling 
(Trail et al., in press). Consequently, the parameters in dynamic 
models require distinct interpretations compared to parameters 
in linear growth curve and other more traditional analytical 
methods. Table 1 summarizes the interpretations of the gain, 
time constant, and system zero parameters.

In this article, Prediction-Error Methods (PEM) were used 
to fit a continuous-time model (e.g., Equation 1)  to sampled 
data. PEM and other parameter estimation techniques from sys-
tem identification are based in well-known regression routines 
that are extensively documented in statistical literature (Ljung, 
1999), preinstalled in software packages such as MATLAB 
(Ljung, 2003), and utilized by behavioral scientists in more 
common modeling methods. Consequently, the statistical prop-
erties of the parameter estimates presented in this article align 
with the properties of parameter estimates obtained in more 
traditional modeling approaches (Ljung, 1999). A comprehen-
sive introduction to parameter estimation from system iden-
tification is found in Ljung (1999). Additional details of the 
connection between continuous-time models and sampled data, 
the parameter estimation computations, and the software tools 
used are found in the Supplementary Material; the following 
describes essential components of estimation. PEM routines in 
MATLAB, which are part of a precoded, flexible interface for 
broadly applicable parameter estimation and model evaluation 
(Ljung, 2012; MathWorks, 2013) were used for parameter esti-
mation here. MATLAB’s PEM command requires input data, 
output data, and equation structure (e.g., first-order ODE, see 
Equation 1; Ljung, 2012). By specifying the appropriate input 
and output data, ODEs of the three processes in the self-regula-
tion system—that is, the blocks in Figure 1—can be obtained: 
the mathematical function describing the Craving Generation 
Process was estimated as a single-input–single-output system 
where CPD is the input and Current Craving the output; the 
mathematical functions describing the Quit Attempt Process 
and Craving Self-Regulator processes were estimated as a 
two-input–one-output system, where Quit and Daily Craving 
Difference (= Baseline Craving Level − Current Craving) 

Figure 2. Response of an output variable, y(t), to an input variable, u(t), which changes in value at time 0. The change in the input 
variable results in changes in the output variable. The characteristics of the output variable’s response to the change in the input 
variable, such as the magnitude of the output variable change and how quickly this occurs, is defined by Equation 1, a first-order 
(simple) ODE, and the values of gain K and time constant τ.
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were the inputs and CPD the output (see Figure 1). Quit is an 
exogenous, independent input variable that corresponds to the 
transition from not attempting to quit smoking (Quit = 0) to 
attempting to quit (Quit = 1, beginning on the target quit date). 
It is treated as an exogenous variable here because participants 
were instructed to quit on a target date by study administrators 
(McCarthy et al., 2008a).

This research involved estimation of candidate sets of dif-
ferential equations using different combinations of ODE struc-
tures to describe the three dynamic processes that make up 
the self-regulation system. Each set of estimated models were 
then used in a simulation. In this context, simulations offer a 
means to evaluate how well a candidate set of model estimates 
can together describe the observed ILD, even though the three 
ODEs were estimated in two separate steps (estimation of the 
Craving Generation Process function, followed by estimation 
of the Quit Attempt Process and Craving Self-Regulator func-
tions). For example, one set of candidate ODE expressions were 
estimated that employed Equation 1 to describe the Craving 
Generation Process, Craving Self-Regulator, and Quit Attempt 
Process. For simulation, these three estimated expressions 
were related according to the structure depicted in Figure 1 in 
Simulink, MATLAB’s simulation environment. The simulation 
resulted in predicted Current Craving and CPD responses to 
a quit attempt, where the predicted response dynamics were 
determined by the estimated models. A second set of differen-
tial equations were then estimated that employed a more com-
plex ODE structure to describe the Craving Generation Process, 
and the simpler ODE structure in Equation 1 to describe the 
Craving Self-Regulator and Quit Attempt Process. The pre-
dicted responses of Current Craving and CPD to a quit attempt 
were then obtained through simulation using this second set of 
estimated models. This estimation–simulation procedure was 
repeated using different combinations of low-order (relatively 
simple) ODE structures and for both the AC and PNc datasets.

Quantification of how well the overall model—that is, the 
Current Craving and CPD predictions obtained through simu-
lation—fit the ILD was calculated according to the following 
goodness-of-fit criterion:

 goodness-of-fit (%) = −
−
−









100 1 2

2

( ) ( )

( )

y t y t

y t y



 (2)

where y(t) is measured output data, y  is the average of the 
measured output data, y t( )  is the model’s predicted output, 

and ||·||2 indicates the two-norm (the square root of the sum of 
the squared vector elements). The simulated Current Craving 
and CPD responses were also plotted, allowing visual deter-
mination of whether a candidate set of estimated ODE expres-
sions adequately represented the observed dynamics. Through 
visual comparison and calculation of the goodness-of-fit value, 
the set of estimated expressions that best described the self-
regulated smoking behavior change could be determined.

Generally, engineers develop dynamic models with the aim 
of describing how a system responds to changes in input vari-
ables over time. Engineers typically do not use this approach to 
formally confirm or reject hypotheses. Consequently, this arti-
cle’s primary intent is to characterize self-regulatory dynamics 
during cessation as captured on the group level. In this case, 
EMA data are available for two different treatment groups, 
meaning models can be developed for each group. Although 
dynamic models are not typically used in hypothesis testing, 
it is possible to compare the 99% CIs between the groups to 
draw preliminary conclusions about group differences. The 
confidence intervals—which are time varying—are primarily 
examined for such analysis because they reflect the param-
eter estimates in combination, and the overall response of a 
dynamic model is more important than any single set of param-
eter estimates.

resUlts

Table 2 contains the parameter estimates for the AC and PNc 
estimated models. These estimates correspond to the empiri-
cal models that most accurately describe the dynamics of the 
observed Current Craving–CPD interrelationship during a quit 
attempt; this accuracy is supported by the high goodness-of-fit 
values (87.32% and 62.25% of variance in Current Craving for 
the AC and PNc groups, respectively, and 89.16% and 84.12% 
of variance in CPD for the AC and PNc groups, respectively), 
which are achieved with low-order (parsimonious) expressions, 
suggesting the models are reflecting the true process dynamics 
and are not over-fitting the data.

Simulation of the Current Craving and CPD dynamics, 
as predicted by each group’s respective estimated models, 
appears to capture the observed dynamics. This is illustrated 
in Figure 3, which depicts the observed data and model pre-
dictions for the group averages, which vary over the 36-day 
time scale examined. The first two plots depict the responses 

table 1. Summary of the Interpretations of Key Parameters in Dynamic Modeling 

Parameter Interpretation Units
Example in terms of the Craving  

Generation Process

Gain, K Magnitude of change in an output 
variable per unit change of an 
input variable

Output variable units/ 
input variable units

K1, Craving generation process gain: the net 
change in current craving due to a one cigarette 
increase in CPD

Time constant, τ The speed at which an output 
variable changes in response to a 
change in an input variable

Time (e.g., days) τ1, Craving generation process time constant: 
reflects the speed at which current craving 
changes in response to a change in CPD

System zero, τa A negative value indicates inverse 
response, which refers to an 
output variable whose initial 
change is in a direction opposite 
that of the net change

None τa, Craving generation process’ system zero: a 
negative τa value indicates inverse response in 
current craving, that is, a change in CPD leads 
to an immediate increase in current craving, 
which subsequently settles to new, lower level

S163



self-regulation in smoking cessation behavior change

of CPD and Current Craving, respectively, to the quit 
attempt; the third plot depicts Quit. The confidence intervals 
of the simulated responses vary over time. For simplicity, the 
99% confidence bounds are depicted in Figure 3 and Table 2 

for Days 15 and 35. Examining the simulated model predic-
tions and the 99% CIs around the predictions indicates that 
the active treatment condition affects the dynamics of a quit 
attempt.

Figure 3. Data and simulated responses of CPD (top) and Current Craving (middle) to a quit attempt (Quit = 0 prior to the target 
quit day and Quit = 1 beginning on the target quit day): AC data = solid line; response predictions given by the estimated self-reg-
ulation models = dashed line; PNc data = dash-dot line; response predictions = dotted line. The 99% CIs for the model predictions 
are indicated for Days 15 and 35, where the target quit date is Day 7.

table 2. Goodness-of-Fit Values, Parameter Estimates ± 1 SE, and 99% Confidence Intervals (CI) for the Model 
Predictions at Days 15 and 35 for Empirical Self-Regulation Dynamic Models 

Group

AC PNc

Number of subjects in group average variables 98 98
Current craving goodness-of-fit (%) 87.32 62.25
CPD goodness-of-fit (%) 89.16 84.12
Quit attempt process: gain, Kd −15.01 ± 0.19 −10.24 ± 0.10
Craving self-regulator: gain, Kc 0.08 ± 0.03 0.30 ± 0.05
Craving self-regulator: time constant, τc 4.59 ± 2.08 1.89 ± 0.44
Craving generation process: gain, K1 0.77 ± 0.02 0.52 ± 0.33
Craving generation process: time constant, τ1 8.22 ± 0.63 26.75 ± 15.09
Craving generation process: system zero, τa −1.99 ± 0.22 −21.90 ± 3.45
Current craving model prediction, day 15, 99% CI 20.80 to 21.75 24.93 to 26.08
Current craving model prediction, day 35, 99% CI 15.63 to 16.68 20.13 to 22.13
CPD model prediction, day 15, 99% CI −0.01 to 1.01 1.84 to 2.64
CPD model prediction, day 35, 99% CI 0.78 to 1.53 3.22 to 4.02
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Quit Attempt Process

The Quit Attempt Process model required the most basic math-
ematical structure examined:

 CPD Quitd( ) ( )t K t= ×  (3)

Highlighted by the lack of derivative and time constant terms, 
Equation 3 indicates that quit-induced changes in CPD are 
immediate. Kd, the gain for the Quit Attempt Process, quantifies 
the net change in CPD resulting from the quit attempt. As Quit 
is a step from 0 to 1 on the target quit date, Equation 3 indicates 
that on the quit day, CPD decreases by 15.01 and 10.24 cigarettes 
for AC and PNc groups, respectively (see Kd values in Table 2).

Craving Self-Regulator

The ODE that adequately represents the Craving Self- 
Regulator is:

τc c

CPD
CPD DailyCravingDifference

d ( )

d
( ) ( )

t

t
t K t+ = ×

 
(4)

Kc quantifies the change in CPD resulting from changes in 
Daily Craving Difference (=Baseline Craving Level − Current 
Craving): a one point increase in Daily Craving Difference 
leads to 0.08 and 0.30 cigarette increases in CPD for the AC 
and PNc groups, respectively. Conversely, a one point decrease 
in Daily Craving Difference leads to 0.08 and 0.30 cigarette 
reductions in CPD for the AC and PNc groups, respectively. 
The time constant τc quantifies the speed at which CPD 
changes in response to changes in Daily Craving Difference. 
By definition, 63% of the response in CPD to a change in Daily 
Craving Difference is achieved in 4.59 days for the AC group 
but is achieved in only 1.89 days for the PNc group.

These models indicate that the Craving Self-Regulator is the 
process that models the small and slow resumption of smoking 
that occurs in both groups after the large initial reduction in 
CPD (see Figure 3). The AC group’s smaller Kc and τc esti-
mates indicate that changes in Daily Craving Difference have 
a smaller and slower effect on postquit CPD resumption. This 
may suggest that the treatment diminishes the regulatory (feed-
back) nature of the overall cessation process.

Craving Generation Process

The Craving Generation Process required the most complex 
ODE compared to the Quit Attempt Process and Craving Self-
Regulator. The differential equation structure that adequately 
represents the Craving Generation Process is:

τ τ1 1
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d
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t
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K1 quantifies the change in Current Craving per unit change 
in CPD. As indicated by the K1 values in Table 2, a one ciga-
rette increase in total daily smoking leads to a net 0.77 point 
increase in Current Craving for the AC group. Conversely, a 
one cigarette decrease in CPD leads to a 0.77 point decrease in 
Current Craving for this group. The time constant τ1 quantifies 
the speed at which the 0.77 point change in Current Craving 
occurs per one cigarette change in CPD. The system zero 

parameter τa is negative for both groups. The negative value 
indicates a dynamic feature in Current Craving called inverse 
response, in which Current Craving increases upon quitting 
before ultimately settling to a value below prequit levels. This 
inverse response is evident in Figure 3 as well, and it appears 
that the inverse response is more pronounced in the PNc group 
than in the AC group.

As seen in Table 2, the standard error bounds are nonover-
lapping between the groups for all parameters except for K1 
and τ1. Even with the overlapping standard error bounds for 
these two parameters, it can still be said that the active treat-
ment appears to facilitate a larger total quit-induced Current 
Craving decrease relative to the placebo group. This observa-
tion is based on Figure 3, which shows that the overall response 
and confidence intervals for Current Craving predicted by the 
estimated group models do not overlap as time goes on.

DisCUssiOn

The models presented illustrate how dynamic modeling and 
system identification methods can be used to understand self-
regulation within the smoking cessation process. In this regula-
tory system, Current Craving is the primary output and changes 
in Current Craving and CPD are fundamentally interrelated. The 
dynamic models are estimated differential equations that predict 
day-to-day changes in Current Craving and CPD and reflect the 
dynamic features observed in clinical trial data for two treat-
ment groups. Notably, the models capture inverse response in 
Current Craving (quit-induced increase before settling to below 
prequit levels), a dramatic quit-day drop in CPD, and the slow 
and small postquit resumption of smoking. These dynamic fea-
tures are represented by ODE functions that describe the Craving 
Generation Process, Craving Self-Regulator, and Quit Attempt 
Process individually and quantify the net change in Current 
Craving resulting from a one cigarette per day change in CPD 
(K1), the characteristics of smoking resumption over time on a 
group level (Kc, τc), and more. Comparing the dynamics pre-
dicted by the models (see Figure 3), it appears that the bupropion 
and counseling combination facilitates more favorable outcomes 
in the month following initial quit, on a group level.

One interesting aspect of Current Craving is the inverse 
response apparent in both treatment groups. Consequently, the 
mathematical expressions representing the Craving Generation 
Process require a system zero term. It is known (Ogunnaike & 
Ray, 1994) that dynamical systems with a zero term can rep-
resent a sum of two subprocesses in parallel. Here, it can be 
deduced that one subprocess has a negative gain and fast speed 
of response, which corresponds to the initial increase in Current 
Craving that results from the quit-induced decrease in CPD; 
the second subprocess has a positive gain and a comparatively 
slower speed of response, which corresponds to gradual reduc-
tion of Current Craving over time. This idea of competing sub-
processes in the Craving Generation Process is consistent with 
the understanding that there are opposing immediate and delayed 
gratification motives during cessation (Bickel et al., 2007).

Potential Directions for Dynamic Modeling

The ability of dynamic modeling to describe observed cessa-
tion dynamics, and the fact that the techniques to estimate ODE 
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models and existing software packages to do so are intention-
ally flexible, suggests that this method may offer a platform 
to investigate additional aspects of the cessation process. For 
example, Chandra et al. (2011) used progressive lagged analy-
ses to examine within-day temporal relationships. They identi-
fied reciprocal relationships in which high craving levels in a 
2-hr time period led to high smoking rates in subsequent 2-hr 
blocks, and high smoking rates in a 2-hr block led to lower 
craving levels in later blocks. The models presented here were 
able to describe dynamics of the cessation in the important first 
month of a quit attempt and therefore did not require within-day 
data. However, the distinct and separate questions addressed 
Chandra et al. (2011) could be examined with dynamic models. 
More specifically, with ILD consisting of more intensive meas-
urements and simple adjustments to the described dynamic 
modeling procedure, models of within-day self-regulation 
can be estimated. As the self-regulation system presented can 
parsimoniously represent the Current Craving–CPD interre-
lationship, dynamic models of within-day changes in craving 
levels and smoking rates may provide a unified model of both 
reciprocal relationships identified in Chandra et  al. (2011). 
Dynamic models could also be used to describe multimonth 
or multiyear cessation dynamics, even though the assumption 
of constant parameter values in Table 2 would likely not hold 
over significantly longer timeframes. Straightforward system 
identification techniques exist that could estimate models in 
which a given set of estimates are assumed to be time invariant 
only over a bounded time interval (Novara, Lopes dos Santos, 
Azevedo Perdicoulis, Ramos, & Rivera, 2011). Such models 
could account for the hypothesis that a long-term smoking ces-
sation process involves separate, discrete steps (DiClemente 
et al., 1991).

The current research could also be extended to address 
issues of environmental impact. The ILD used here was col-
lected via EMA protocols and so the resulting models provide 
a more comprehensive description of the CPD and Craving 
dynamics in that the models estimated are produced using data 
collected in real-world (nonlaboratory) settings while subject 
to pressures of real-life experiences (McCarthy et al., 2008a; 
Shiffman et al., 2008). However, the role of the environment 
and/or smoking cues on this self-regulatory process could be 
more explicitly investigated with this engineering approach. To 
do so, the ODEs shown would be modified in a straightfor-
ward manner and used in combination with additional EMA 
data. The models would be augmented to explicitly account 
for the effect of contextual factors (e.g., hypothesized smoking 
cues), which would be included as exogenous variables, like 
the Quit variable in Figure 1. Models that explicitly account 
for a relevant contextual variable would be expected to explain 
more variability in the data; notably, these models would have 
higher goodness-of-fit values compared to those of models that 
do not explicitly consider the contextual variable. The result-
ing expressions would also characterize a contextual variable’s 
effect on smoking self-regulation through parameter estimates 
(e.g., gains and time constants). Altogether, this methodology 
may offer a framework to better leverage ILD collected via 
EMA, facilitating identification of influential environmental 
factors and smoking cues.

In addition to illustrating the value of the engineering 
approach employed, the accuracy of the group average models 
suggests the three-component self-regulation system depicted 
in Figure  1 may be an appropriate starting point for future 

modeling efforts. For instance, dynamic models of self-regula-
tion in individual abstainers may be of interest. Using identical 
estimation methods and equation structures as those presented 
here, Timms et  al. (2012, 2013) give examples of such idio-
graphic dynamic models for two subjects from the UW-CTRI 
clinical trial. These idiographic models are the same equation 
structures as Equations 3–5, but the parameter values esti-
mated from the single subject ILD reflect the dynamic nature 
of each individual’s Craving Generation Process, Craving 
Self-Regulator, and Quit Attempt Process. For example, the 
estimated value of the Craving Self-Regulator’s gain (Kc) is 
near-zero for an individual that effectively had no postquit 
CPD resumption. Conversely, the gain estimate is significantly 
larger for an individual that had full postquit smoking resump-
tion (Timms et al., 2012, 2013).

Although this article focuses on the Current Craving–CPD 
relationship specifically, future work could draw from the 
dynamic modeling approach to examine additional factors of 
interest that may act as sources of interindividual variability, 
such as self-efficacy, physiological conditions, and socioeco-
nomic status. Identification of reliable idiographic dynamic 
models poses challenges as model reliability ultimately 
depends on the quality of data used in parameter estimation, 
and collection of single subject data may not include explicit 
measurement of all sources of variability. However, the mod-
eling challenge associated with noisy single subject data could 
be mitigated through novel clinical trial designs that draw 
from optimal experimental design in system identification 
(Deshpande, Rivera, & Younger, 2012; Ljung, 1999; Rivera, 
Lee, Mittelmann, & Braun, 2009). Such a clinical trial would 
seek to manipulate an exogenous variable over time (e.g., 
counseling frequency) resulting in ILD (e.g., Current Craving). 
These study design strategies can support collection of ILD 
with greater signal-to-noise ratios and less correlation between 
variables (Ljung, 1999). The data collected from such a clinical 
trial may be more informative in that it captures a more rigor-
ous picture of the dynamic nature in a system, as opposed to a 
system’s dynamic response to one type of input change in one 
variable (Deshpande et al., 2012; Ljung, 1999).

Implications for Interventions

Dynamic models of self-regulated smoking cessation behav-
ior change may also help inform intervention development. 
Generally, the Current Craving–CPD interrelationship evident 
here suggests that an intervention that targets either Current 
Craving or CPD will affect both quantities. Furthermore, the 
models suggest the Quit Attempt Process is responsible for the 
initial decrease in CPD immediately following a quit attempt, 
while the Craving Self-Regulator is responsible for postquit 
resumption. Although these processes both affect CPD, they 
do so independently of one another and therefore offer two dis-
tinct targets for interventions. Future clinical trials may want to 
identify intervention strategies that explicitly target these sepa-
rate cessation processes (Timms et al., 2013).

Use of the models presented in simulation studies could also 
help advance treatment development. In this article, simula-
tion is used to evaluate how well estimated ODEs describe the 
Current Craving and CPD ILD. Engineers routinely use simula-
tions to investigate how a system could be augmented to obtain 
more favorable outputs. In behavioral science settings, candi-
date mechanisms of effective interventions could be explored 
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through simulation using dynamic self-regulation models. 
Timms et al. (2013) developed a model of smoking cessation 
behavior change for a hypothetical patient. These mathemati-
cal expressions describe the system in Figure 1 and employ the 
same equation structures found in Equations 3–5. However, the 
parameters for these ODEs were chosen to represent a hypo-
thetical difficult patient who is predisposed to cessation fail-
ure—that is, the parameters reflect increases in Current Craving 
corresponding to an initial decrease in CPD, followed by a set-
tling of Current Craving back to prequit levels as the patient 
fully resumes smoking. These ODEs reflect a “worst-case sce-
nario” for cessation. Through simulation, two new mathemati-
cal functions are found that affect Current Craving and Daily 
Craving Difference in a manner that promotes successful cessa-
tion in the hypothetical patient (Timms et al., 2013).

Finally, a significant advantage of dynamic self-regulation 
models is their potential connection to time-varying, personal-
ized, adaptive smoking cessation interventions. Dynamic models 
can be used in conjunction with control engineering principles 
to design intervention algorithms that define how treatment 
components should be adjusted (e.g., increased counseling fre-
quency) based on tailoring variable measurements (e.g., current 
withdrawal symptoms). Such an approach is appealing given 
control engineering’s emphasis on systematic optimization, 
meaning algorithms could be designed to specify intervention 
dosage adjustments that support fast quit success within practical 
constraints (e.g., medication dose toxicity and resource manage-
ment issues). Moreover, the algorithmic nature of the dynamical 
systems approach supports rapid treatment adaptation, as would 
be required by effective ecological momentary interventions that 
optimally leverage mobile technologies and control engineering 
principles (Deshpande et al., 2011; Dong et al., 2013; Nandola & 
Rivera, 2013; Rivera et al., 2007). In summary, this article intro-
duces an engineering approach to analysis of ILD that describes 
self-regulation in the smoking cessation process more compre-
hensively than existing analytic approaches.
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