Abstract
The development of a highly reliable physical map with landmark sites spaced an average of 100 kbp apart has been a central goal of the Human Genome Project. We have approached the physical mapping of human chromosome 11 with this goal as a primary target. We have focused on strategies that would utilize yeast artificial chromosome (YAC) technology, thus permitting long-range coverage of hundreds of kilobases of genomic DNA, yet we sought to minimize the ambiguities inherent in the use of this technology, particularly the occurrence of chimeric genomic DNA clones. This was achieved through the development of a chromosome 11-specific YAC library from a human somatic cell hybrid line that has retained chromosome 11 as its sole human component.To maximize the efficiency of YAC contig assembly and extension, we have employed an Alu-PCR-based hybridization screening system. This system eliminates many of the more costly and time-consuming steps associated with sequence tagged site content mapping such as sequencing, primer production, and hierarchical screening, resulting in greater efficiency with increased throughput and reduced cost. Using these approaches, we have achieved YAC coverage for >90% of human chromosome 11, with an average intermarker distance of <100 kbp. Cytogenetic localization has been determined for each contig by fluorescent in situ hybridization and/or sequence tagged site content. The YAC contigs that we have generated should provide a robust framework to move forward to sequence-ready templates for the sequencing efforts of the Human Genome Project as well as more focused positional cloning on chromosome 11.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anand R., Riley J. H., Butler R., Smith J. C., Markham A. F. A 3.5 genome equivalent multi access YAC library: construction, characterisation, screening and storage. Nucleic Acids Res. 1990 Apr 25;18(8):1951–1956. doi: 10.1093/nar/18.8.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arratia R., Lander E. S., Tavaré S., Waterman M. S. Genomic mapping by anchoring random clones: a mathematical analysis. Genomics. 1991 Dec;11(4):806–827. doi: 10.1016/0888-7543(91)90004-x. [DOI] [PubMed] [Google Scholar]
- Chumakov I., Rigault P., Guillou S., Ougen P., Billaut A., Guasconi G., Gervy P., LeGall I., Soularue P., Grinas L. Continuum of overlapping clones spanning the entire human chromosome 21q. Nature. 1992 Oct 1;359(6394):380–387. doi: 10.1038/359380a0. [DOI] [PubMed] [Google Scholar]
- Foote S., Vollrath D., Hilton A., Page D. C. The human Y chromosome: overlapping DNA clones spanning the euchromatic region. Science. 1992 Oct 2;258(5079):60–66. doi: 10.1126/science.1359640. [DOI] [PubMed] [Google Scholar]
- Green E. D., Green P. Sequence-tagged site (STS) content mapping of human chromosomes: theoretical considerations and early experiences. PCR Methods Appl. 1991 Nov;1(2):77–90. doi: 10.1101/gr.1.2.77. [DOI] [PubMed] [Google Scholar]
- Green E. D., Olson M. V. Systematic screening of yeast artificial-chromosome libraries by use of the polymerase chain reaction. Proc Natl Acad Sci U S A. 1990 Feb;87(3):1213–1217. doi: 10.1073/pnas.87.3.1213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Higgins M. J., Smilinich N. J., Sait S., Koenig A., Pongratz J., Gessler M., Richard C. W., 3rd, James M. R., Sanford J. P., Kim B. W. An ordered NotI fragment map of human chromosome band 11p15. Genomics. 1994 Sep 1;23(1):211–222. doi: 10.1006/geno.1994.1479. [DOI] [PubMed] [Google Scholar]
- Kere J., Nagaraja R., Mumm S., Ciccodicola A., D'Urso M., Schlessinger D. Mapping human chromosomes by walking with sequence-tagged sites from end fragments of yeast artificial chromosome inserts. Genomics. 1992 Oct;14(2):241–248. doi: 10.1016/s0888-7543(05)80212-5. [DOI] [PubMed] [Google Scholar]
- Kunz J., Scherer S. W., Klawitz I., Soder S., Du Y. Z., Speich N., Kalff-Suske M., Heng H. H., Tsui L. C., Grzeschik K. H. Regional localization of 725 human chromosome 7-specific yeast artificial chromosome clones. Genomics. 1994 Jul 15;22(2):439–448. doi: 10.1006/geno.1994.1407. [DOI] [PubMed] [Google Scholar]
- Liu J., Stanton V. P., Jr, Fujiwara T. M., Wang J. X., Rezonzew R., Crumley M. J., Morgan K., Gros P., Housman D., Schurr E. Large-scale cloning of human chromosome 2-specific yeast artificial chromosomes (YACs) using an interspersed repetitive sequences (IRS)-PCR approach. Genomics. 1995 Mar 20;26(2):178–191. doi: 10.1016/0888-7543(95)80199-v. [DOI] [PubMed] [Google Scholar]
- Munroe D. J., Haas M., Bric E., Whitton T., Aburatani H., Hunter K., Ward D., Housman D. E. IRE-bubble PCR: a rapid method for efficient and representative amplification of human genomic DNA sequences from complex sources. Genomics. 1994 Feb;19(3):506–514. doi: 10.1006/geno.1994.1100. [DOI] [PubMed] [Google Scholar]
- Qin S., Zhang J., Isaacs C. M., Nagafuchi S., Jani Sait S. N., Abel K. J., Higgins M. J., Nowak N. J., Shows T. B. A chromosome 11 YAC library. Genomics. 1993 Jun;16(3):580–585. doi: 10.1006/geno.1993.1233. [DOI] [PubMed] [Google Scholar]
- Smith M. W., Clark S. P., Hutchinson J. S., Wei Y. H., Churukian A. C., Daniels L. B., Diggle K. L., Gen M. W., Romo A. J., Lin Y. A sequence-tagged site map of human chromosome 11. Genomics. 1993 Sep;17(3):699–725. doi: 10.1006/geno.1993.1392. [DOI] [PubMed] [Google Scholar]
- Thompson T. G., DiDonato C. J., Simard L. R., Ingraham S. E., Burghes A. H., Crawford T. O., Rochette C., Mendell J. R., Wasmuth J. J. A novel cDNA detects homozygous microdeletions in greater than 50% of type I spinal muscular atrophy patients. Nat Genet. 1995 Jan;9(1):56–62. doi: 10.1038/ng0195-56. [DOI] [PubMed] [Google Scholar]