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Magnetic nanoparticle hyperthermia is an attractive emerging cancer treatment, but the acting

microscopic energy deposition mechanisms are not well understood and optimization suffers. We

describe several approximate forms for the characteristic time of N�eel rotations with varying

properties and external influences. We then present stochastic simulations that show agreement

between the approximate expressions and the micromagnetic model. The simulations show

nonlinear imaginary responses and associated relaxational hysteresis due to the field and frequency

dependencies of the magnetization. This suggests that efficient heating is possible by matching

fields to particles instead of resorting to maximizing the power of the applied magnetic fields.
VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4867987]

Magnetic nanoparticle (MNP) hyperthermia is consid-

ered a potentially useful addition to current cancer treatment

modalities1 yet consensus has not been reached as to the pre-

cise mechanism of nanoparticle heating.2 Simple models

including linear response3 and Stoner-Wohlfarth hysteresis4

have been used to predict hyperthermia performance from

various MNPs. Both models are approximations requiring

small applied fields and equilibrium, respectively, but occa-

sionally have been applied beyond their valid range to pre-

dict optimal heating parameters. This is confusing to readers

not familiar with the theory, and data are often in conflict

with the theoretical predictions.3,5

In response to this, we demonstrate a more general

approach to modeling MNP heating using nonlinear stochastic

differential equations. We examine the phenomena of field de-

pendent characteristic timescales, relaxational hysteresis

curves, and nonlinear imaginary magnetization responses with

the hope of informing decisions to optimize hyperthermia.

A N�eel rotation model for MNP hyperthermia is justified

because single-domain ferromagnetic particles experimen-

tally display the best heating properties to date.5 Biological

targeting schemes may also direct decisions for particle

sizes, shapes, or surface construction,6 but these choices are

beyond the scope of this paper. An upper bound on the

field’s power could be the limit where hyperthermia’s benefit

of specific cytotoxicity is overwhelmed by eddy-current

damage of healthy tissue. In experiment,7 patients could tol-

erate fields with a product of field amplitude and frequency

below 104 T/s, so we do not exceed this value.

The time dynamics of MNPs can be calculated using the

micromagnetic stochastic differential equation of Landau,

Lifshitz, and Gilbert (LLG). The “LLG” equation derives

from the Larmor precession of a spin in a magnetic field

appended by a phenomenological velocity-dependent damp-

ing term.8 It is written in terms of the normalized magnetic

moment direction m of each nanoparticle, and the effective

field H that can be defined as a partial derivative of the free

energy with respect to the magnetic moment. The LLG equa-

tion is then for each particle (denoted with subscript i)

dmi

dt
¼ c

1þ a2
H�mi þ ami � H�mið Þ½ �; (1)

with the electron gyromagnetic ratio c ¼ 1:76 � 1011Hz=T

and a dimensionless magnetic damping parameter a. We

include additional physics including anisotropy, dipole-

dipole interactions, and thermal fluctuations by modifying

the free energy and, thus, the effective field. Now

H ¼ Hoẑ cos xt|fflfflfflfflfflffl{zfflfflfflfflfflffl}
applied

þ 2n̂Ek

l
mi � n̂i|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

anisotropy

þ ll0

4pd3
hmi|fflfflfflfflffl{zfflfflfflfflffl}

dipole

þ hðtÞ|{z}
stochastic

; (2)

where the externally applied field has amplitude Ho and fre-

quency x¼ 2pf. We assume a single anisotropy axis n̂i in a

random direction for each particle arising from shape and

crystallinity effects; this creates two energy minima, and

requires a rotation of the particle to overcome the anisotropy

energy barrier EK¼KaVc with anisotropy constant Ka and

core volume Vc assumed the same for all particles (a size

distribution will change the dynamics, but presently, we

avoid this complication). The magnitude of the moment is

l¼MsVc with saturation magnetization Ms. A mean dipole

field is included that depends on the average magnetization

of all the other particles; its strength is determined from the

magnetic moment, the permeability of free space l0, and an

average particle spacing d ¼ cN
�3 that is computed from the

particle concentration cN.

Thermal fluctuations of the field are included with a

stochastic field with zero mean and unit standard deviation

hhðtÞi ¼ 0; hhjðtÞhkðt0Þi ¼
2kTa
lc

djkdðt� t0Þ; (3)

where the Dirac delta function implies the noise field is

white and is spatially correlated by the Kronecker delta

where the indices imply the direction, e.g., j, k � x, y, z.

Before solving numerically, it is possible to glean some

insight with analytical approximations. The timescale of a
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thermal rotation over the anisotropy barrier is referred to as

the N�eel relaxation time9

sN ¼
s0

2

ffiffiffiffiffi
p
r3

r
er with s0 ¼

l
2ckT

ð1þ a2Þ
a

; (4)

controlled by the ratio of anisotropic to thermal energy

r¼EK/kT with Boltzmann’s constant k and temperature T.

At room temperature and typical saturation magnetizations,

the magnitude of s0 is on the order of the usual quoted value

of 10�10 s.

A sample of MNPs will attempt to align to a magnetic

field. If a stronger field is imposed, the particles will align

faster.10 Only equilibrium fluctuations are considered in the

N�eel time quoted above, so it does not describe this phenom-

enon. Brown wrote a field-inclusive characteristic time from

a high barrier approximation (r � 1) to the Fokker–Planck

equation describing the thermally assisted movements

between anisotropic and magnetic field energy minima11

shi ¼
sN

1� �2

� �
er�2

cosh nþ � sinh n

 !
: (5)

The applied magnetic field is accounted for with the

unitless n¼lH/kT. We define the ratio of anisotropic to

magnetic energy as �¼ n/2r, and thus, when n¼ 0, the

expression reduces to the equilibrium N�eel time.

From the LLG equation, it is possible to approximate

the mean magnetization if the correlation functions between

variables are approximately zero. This is physically equiva-

lent to requiring high amplitude fields or low temperatures,

so that the stochastic term is negligible. We are only inter-

ested in the average magnetization in the direction parallel to

a constant applied field Mz, so, we set H ¼ ẑHz, and the LLG

equation simplifies to

dMz

dt
¼ � caHz

1þ a2ð Þ 1�M2
z

� �
; (6)

where we have used the fact that the magnetization magni-

tude is conserved (m2¼ 1). Integrating both sides assuming

the initial magnetization and time are both zero results in

Meq ¼ tanh � caHz

1þ a2ð Þ t
� 	

¼ tanh � t

sc

� 	
; (7)

where we have interpreted the constant which has dimen-

sions of frequency as an inverse of the characteristic time

sc ¼
1þ a2ð Þ
caHz

¼ 2s0

n
: (8)

This expression corroborates our intuition that the character-

istic time is shorter for higher field strengths. Setting a¼ 1

gives the minimum @asc ¼ 0 corresponding to the magnet-

ization switching in a single precession time. For a � 1 the

rotations are overdamped, resulting in phase lagging. For a
� 1, the magnetizations will precess significantly. From this

microscopic interpretation, a is the key to delivering heat.

Unfortunately, a is not well understood in terms of funda-

mental nanoparticle variables.

The analogous derivation with an oscillating magnetic

field (with H ¼ Hoẑ cos xt) leads to

Mz ¼ �tanh
n

2xs0

sin xt

� 	
¼ �tanh

sin xt

xsc
; (9)

where, now, instead of a decaying magnetization, the oscilla-

tions are parameterized by a constant that is proportional

to the field strength divided by the frequency. Accordingly,

saturation decreases with increasing frequency, reducing net

relaxation losses.

We have described several ways to approximate the

characteristic time of a nanoparticle sample. Now, to test

these times and their respective ranges of validity, we resort

to numerical simulations of the LLG equation using a second

order Heun integration scheme in the sense of It�o.12 The

white noise field is implemented as a Wiener process with

a Gaussian distribution of magnitudes. Thus statistical

moments of the sample magnetization can be developed.

Unless specified, each simulation uses i¼ 105 repeated inte-

grations (understood by using i to be the number of particles)

and 210 time-steps. Nanoparticles are spherical with 5 nm

radii, a¼ 1, Ms¼ 31 emu/g, and T¼ 300 K.

To compare relaxation times, particles are initialized in

the x̂ direction. A constant field is instantaneously introduced

in the ẑ direction. Though the average magnetization Mx

decays to zero without a field due to thermal randomizing, it

is forced to zero as the particles align with the field in a time

determined by the field amplitude. We plot approximate

average magnetizations of the form Mx ¼ expð�t=sÞ, where

the s are our various time constants. The data for various

field amplitudes and anisotropy constants are shown in

Fig. 1.

In Fig. 1(a), there is no static field, shi is identical to sN,

and both agree with the stochastic simulations. Here, sc is

ill-defined. As the field increases but does not overcome the

anisotropy energy, as in (b), the equilibrium expression sN is

no longer accurate, and shi is the best approximation. In this

regime, classic Stoner–Wohlfarth4 type hysteresis curves are

found. When the static field amplitude is increased beyond

that of the anisotropy as in (c), the high-barrier shi approxi-

mation breaks down because there are no longer two energy

minima. At this point, sc is the most valid approximation.

Interestingly, the simulated magnetization dips below zero

because the high amplitude field also causes increased

FIG. 1. Plots of simulated magnetizations (i¼ 104 particles) and calculated

exponentially decaying magnetizations with multiple time constants based

on different approximations. The combinations of n and r specify the regime

and the approximations match as they should.
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precession, a physical phenomena that cannot be modeled

with the simple exponential-decay model.

Another point is that a typical MNP concentration for

hyperthermia (cN� 1013 particles/ml) leads to an approxi-

mate distance apart of 100 nm, so that the mean dipole fields

are orders of magnitude smaller than the typical hyperther-

mia fields, and affect the dynamics minimally. Other studies

show that dipole effects are actually detrimental to heating

unless obvious particle chains are formed.13

Now simulating an oscillating applied field, we examine

how the field amplitude and frequency affect the magnetiza-

tion. Shown in Fig. 2, with no anisotropy or dipole fields, we

see that a hysteresis emerges in plots of the oscillating field

against the resulting magnetizations and that there is a peak

in area as field amplitude is increased. This can be inter-

preted by using the characteristic time as in Eq. (8). When

the oscillatory applied field is at its maximum value in its

cycle, the characteristic time is the shortest. Then, as the field

approaches zero, the alignment is slower. Hence, the magnet-

ization takes longer to return to zero than to saturate, and a

phase-lag occurs as a result of relaxation. This is distinct

from the adiabatic hysteresis that derives from the

Stoner–Wohlfarth model.4

We use A to denote the percentage of the total possible

area covered by the normalized hysteresis loop, per cycle of

the applied field. A is plotted as a function of field amplitude

and frequency in Fig. 3. A maximum A appears for certain

field and frequency combinations and has the correct qualita-

tive scaling behavior expected theoretically by Eq. (9). In

particular, if the frequency is increased, the field must also

be increased to maintain the same magnetization dynamics.

We purposefully stay within the physically tolerable regime7

of maximal magnetic field power to suggest hyperthermia

could benefit from these peaks or from the flexibility to

adjust field or frequency to maintain the peak values.

The hysteresis loop area is an enticing metric to visualize

peaks when simulating hyperthermia, but, to be practically

important, this factor must be put in common experimental

units of specific power loss per mass “SLP” of particles

(W/g). Thus

SLP ¼ lHof

qV
A; (10)

where q is the particle mass-density in g/m3.

This definition of SLP means that increasing field-

amplitudes or frequencies will increase heating. For the

peaks in A to affect SLP, they must overpower this linear

increase. We only observe this more than linear peaking

when a> 1. Because a acts as the strength of the rotational

magnetic viscosity (the constant in front of the velocity

dependent drag), it should be calculated from nanoparticle

properties, yet for now remains an experimentally deter-

mined parameter and must be treated with care.

Another metric for the dissipative losses is the imagi-

nary component of a Fourier transform of the magnetization.

From the same numerical simulations, the imaginary first

and third harmonics at several frequencies are plotted in

Fig. 4 for a range of field amplitudes. The data are normal-

ized to the maximum value of the first harmonic. In

Fig. 4(a), the same peaks are visible at the same fields and

frequencies as compared to Fig. 3. In (b), the third harmonic

response indicates significant nonlinear components in the

lagging magnetization and peaked structure as well. Clearly,

here, a physical description only including linear response

theory would be incomplete to model heating.

We have demonstrated stochastic methods that allow

generalized hyperthermia modeling throughout regimes

including equilibrium, large anisotropy, and large applied

field amplitudes. We specifically examine the regimes where

each approximation is valid to elucidate regime-appropriate

timescales. We show in particular that the equilibrium relax-

ation times will not in general describe the timescales for

particle rotations in magnetic fields, and that linear response

theory must be used with care as higher harmonics change

FIG. 2. Relaxational hysteresis curves neglecting anisotropy (r¼ 0) for

various field amplitudes at 1 kHz. a¼ 10 is used so that the peak in loop area

is visible by eye.

FIG. 3. Visualization of the field and frequency dependence of the percent

loop area A, as predicted by the magnetization dependence.
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the physics substantially, and the SLP is not reducible to a

simple power law.3

We find that a lagging mechanism that causes heat depo-

sition (due to relaxation effects) contains field amplitude and

frequency peaks that can be visualized in the imaginary com-

ponents of the Fourier transform, as well as, via the hystere-

sis loop area. Varying the field or the frequency accordingly

keeps the particles in the optimal regime, a result that can be

qualitatively seen from the analytic solution to the high-field

magnetization (Eq. (9)). Adding anisotropic contributions

will increase heating when the applied field is small enough

so that there are still two minima (see Fig. 1). In this case,

the relaxation time can be computed from the high barrier

approximation Eq. (5). The present results suggest the possi-

bility for tuning the field and frequency separately to

optimize heating while maintaining realistic power ranges

that are physiologically relevant and practically engineered.

Though we only consider N�eel rotations in this work, we

expect a similar relaxational hysteresis for particles that

physically rotate given the similar form of the Brownian dif-

ferential magnetization equation. In either case, any advan-

tages deriving from the peaks in relaxational hysteresis could

be used concurrently with the significant advances garnered

from engineering the particles themselves.
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