
Timing control by redundant inhibitory neuronal circuits

I. Tristan,a) N. F. Rulkov, R. Huerta, and M. Rabinovich
BioCircuits Institute, University of California, San Diego, La Jolla, California 92093-0402, USA

(Received 26 September 2013; accepted 10 February 2014; published online 27 February 2014)

Rhythms and timing control of sequential activity in the brain is fundamental to cognition and

behavior. Although experimental and theoretical studies support the understanding that neuronal

circuits are intrinsically capable of generating different time intervals, the dynamical origin of the

phenomenon of functionally dependent timing control is still unclear. Here, we consider a new

mechanism that is related to the multi-neuronal cooperative dynamics in inhibitory brain motifs

consisting of a few clusters. It is shown that redundancy and diversity of neurons within each

cluster enhances the sensitivity of the timing control with the level of neuronal excitation of the

whole network. The generality of the mechanism is shown to work on two different neuronal

models: a conductance-based model and a map-based model. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4866580]

Interval timing in the seconds-to-minutes range is crucial

in the creation of motor programming, learning, memory

and decision making. Recent findings argue for the key

role of inhibitory modulation in the cognitive networks

that are involved in these processes. For the first time, we

present the connection between interval timing control

and the functional role of neuronal redundancy in the

brain and, based on modeling experiments, we have con-

firmed our hypothesis that the variation of the excitation

level of redundantly interacting inhibitory neurons in

recurrent motifs results in interval timing control in a

wide dynamical range.

I. INTRODUCTION

Performance of cognitive tasks like decision making,

speech generation, and motor actions is planned over time and

evolve over time. There are dynamical mechanisms in the brain

that are responsible for timing control. Modern experiments

support the view that the brain represents time intervals in a

distributed manner and performs timing control by the coopera-

tive activity of different neural populations.1,2 In particular, it is

shown that the striatum network is a “core timer” in such a dis-

tributed timing system.3 The interaction between a large num-

ber of inhibitory neurons results in fine-tuned temporal

intervals.4 The striatum is composed of spiny neurons with in-

hibitory (GABAergic) collaterals forming a sparse random

asymmetric network and receiving excitatory (glutamatergic)

signaling from the cortex.5 In the model,2 it has been shown by

simulation of a striatal inhibitory network that its cells form fir-

ing assemblies in the form of sequential bursts having a con-

stant difference in phase and generate temporal patterns with

some characteristic timescale even if the external excitatory

input is constant. These results support a new view on the se-

quential information dynamics in the brain.6 The dynamical or-

igin of the sequential assembly switching was also discussed

before using the Winnerless Competition principle (WLC).7–9

Here, we use a striatum multineuronal inhibitory motif (see

Fig. 1) as a modeling circuit to test our hypothesis about the dy-

namical origin of timing control in the brain. We assume that

the redundancy of inhibitory neurons in a recurrent motif is

playing an important functional role. We show that the chang-

ing of the excitation level of many inhibitory neurons led to a

new cooperative effect, i.e., control of interval timing.

We start by setting a network with three clusters of a

functionally modulated number of excited spiking neurons

with one directional inhibitory connections between clusters

but no inhibitory connections within them (see Fig. 1). On

the example of the sequential switching of these three clus-

ters, we show here that the switching time is sensitively de-

pendent on the number of inhibitory connections. To

accomplish this, we carried out the computer analyses of the

motif dynamics using two types of neuronal models—the

first one consisting of conductance-based model neurons and

the second one consisting of map-based neurons.

Each neuron that participates in the cluster dynamics is

individually working in a tonic spiking regime. The activity

of a individual neuron is controlled by an excitatory input.

This motif is represented in Fig. 2 as a sequence of spiking

bursts. In such types of networks, the behavior is frequently

studied with a reduced network model where each group of

similar neurons is modeled with a single neuron. This

approach frequently helps to achieve the desired pattern of

FIG. 1. The left panel shows a network model of switching between three

externally excited inhibitory coupled groups of neurons with no synaptic

connections among the neurons within each group. The right panel shows a

similar inhibitory network model build with only three neurons.a)Electronic mail: itristan@ucsd.edu
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activity. However, it is still unknown how this reduction to

the low-dimensional model affects the controllability of the

network dynamics. Here, we answer the question of how a

large number of neurons involved in the formation of se-

quential spiking bursting activity can facilitate such control.

II. CONDUCTANCE-BASED MODEL

First, to demonstrate the dependence of the switching

time on parameters of coupling in a simple inhibitory motif,

see Fig. 1 (right panel), we used a conductance-based model.

This model is capable of reproducing the main observed

electrophysiological characteristics of a neuron from the

hypothalamus network introduced in Ref. 10. This type of

neuron has been implicated in neuroendocrine control,

energy regulation and various aspects of autonomic function

as well as in the sleep/wake cycle.

Two compartments are used in the model: one for the

soma and dendrites (VS) and another one for the axon (VA).

These dynamics are described by the following set of ODEs:

CA
dVA

dt
¼ �gLðVA � VLÞ � INa � IKd � IK½Ca�

� gASðVA � VSÞ; (1a)

CS
dVS

dt
¼ �gLðVS � VLÞ � IA � ICa � Ih

� gASðVS � VAÞ � Isyn þ Idc (1b)

with capacitance CA¼CS¼ 10 pF, VL¼�45 mV, connecting

conductance gAS¼ 65 nS and leakage conductance gL¼ 1.6

nS. The sodium current INa is modeled according to Refs. 11

and 12 as

INa ¼ gNam2hðVA � 50 mVÞ;

with

_m ¼ ð0:32�1=ðe
�1
4 � 1ÞÞð1� mÞ � ð0:28�2=ðe

�2
5 � 1ÞÞm

�1 ¼ 18þ Vt � VA;

�2 ¼ �40� Vt þ VA;

_h ¼ 0:128e
�3
18ð1� hÞ � ð4=ð1þ e

�4
5 ÞÞh;

�3 ¼ 17þ Vt � VA;

�4 ¼ 40þ Vt � VA;

where the maximum conductance for sodium is gNa¼ 260

nS and Vt, the threshold for the excitability of the neuron,

which generates an endogenous firing frequency about

3.1 Hz when leading to Vt¼�52.35073 mV.10 As the thresh-

old Vt decreases, the excitability of the neuron increases.

The delayed rectifier potassium current is

IKd
¼ gKd

nðVA þ 60 mVÞ;

with

_n ¼ 0:016ð�1=ðe
�1
5 � 1ÞÞð1� nÞ � 0:25e

�2
40n;

�1 ¼ 35þ Vt � VA;

�2 ¼ 20þ Vt � VA;

where gKd
¼ 80 nS. The potassium dependent on calcium

current is

IK½Ca� ¼ gK½Ca�nIK½Ca� ðVA þ 60 mVÞ;

with gK½Ca� ¼ 15 nS. The dynamics of the activation variable is

_nIK½Ca� ¼ 3Cð0:09; ½Ca�; 0:011Þð1� nIK½Ca� Þ � 20nIK½Ca� ;

with

Cða; b; cÞ ¼ 1=ð1þ e
a�b

c Þ:

The calcium dynamics are modeled by a first order kinetic

equation driven by the calcium current as

_½Ca� ¼ 10�3ð�0:35ICa � l2½Ca� þ 0:04l2Þ;

where l sets the degree of dissipation of the calcium concen-

tration dynamics. We set l¼ 1.6. The low threshold current is

Ih ¼ ghnIh
ðVS þ 60 mVÞ;

where gh¼ 1.2 nS and

_nIh
¼ ðCðVS;�80;10Þ � nIh

Þ=ð2000� 1999CðVS;�60;�1ÞÞ:

The calcium current is described using the Goldman-

Hodgkin-Katz formalism to account for the large difference

between the intracellular and extracellular calcium

concentrations13–16 as

ICa ¼ gCalðtÞ3ðVS=ð1� e
2VS

24:42 mVÞÞ;

where gCa¼ 8.8 nS. This current has a numerical instability at

VS¼ 0. For computer simulation purposes, we make the first

order expansion of ICa in the neighborhood of VS¼ 0 as

ICa ¼ gCaðlðtÞ3ðVS � 24:42 mVÞ=2Þ:

The time evolution of the activation variable is described by

_l ¼ 1

10
ðCð�VS; 39:1; 2Þ � lÞ:

FIG. 2. Pattern of switching activity in the three-neuron network for the

conductance-based model with Vt¼�56.00 mV and gGABAB
¼ 10 nS.
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The slow current that prevents the neuron from firing out of

control, can be described as

IA ¼ gAnIA
ðVS þ 60 mVÞ;

with

_nIA
¼ ðCð�VS; 0; 8Þ � nIA

Þ=ð350� 349CðVS;�46; 4ÞÞ;

with gA¼ 200 nS. Finally, Idc is the input current in nA. We

model the synaptic connections of the network, Isyn in Eq.

(1b), employing the simplest model for the activation of

GABAB synapses.17 There is a receptor R which activates

the ion channel, G, and results in the GABAB current which

is a nonlinear saturating function of the protein G:

Isyn ¼ gGABAB

Gp

Kd þ Gp
ðVS � EkÞ; (2)

with

_R ¼ K1½T�ð1� RÞ � K2R;

_G ¼ K3R� K4G

with potassium reversal potential Ek¼�95 mV,

K1 ¼ 0:09 mM�1 ms�1; K2 ¼ 0:0012 ms�1, p¼ 4, Kd

¼ 100l M4; K3 ¼ 0:18 ms�1; K4 ¼ 0:034 ms�1 and [T] is

the transmitter release.

It is possible to find out a range for the input current

such that it is equivalent to modify the threshold of the excit-

ability of the neuron without modifying its cyclic timing

properties (see Fig. 3).

The dynamics of the motif, in fact, do not depend on the

type of excitability whether changing the threshold of excit-

ability or changing the input current Idc. A well known

mechanism of excitability in the hypothalamus is the effect

of neuropeptide receptors like the hypocretin receptor.10,18

These receptors change the intrinsic excitability of individual

neurons. Thus, we used Vt as a parameter to describe excita-

tion in the neurons. Nevertheless, both mechanisms of excit-

ability at the network dynamics level act similarly. An

example of switching dynamics is illustrated with the trajec-

tory plotted in the phase space of the three conductance-

based neurons is shown in Fig. 4.

III. MAP-BASED MODEL

The conductance-based model is the most realistic

approach, however, the high dimensionality and complexity

of the nonlinear functions that constitute this type of model

make large-scale networks containing a realistic number of

neurons difficult to simulate and interpret. To enable the

analysis of large groups of neurons, we use simple map-

based models,19 where each neuron is described with the fol-

lowing map:

xnþ1 ¼ faðxn; xn�1; yn þ bnÞ ; (3a)

ynþ1 ¼ yn � lðxn þ 1Þ þ lrþ lrn ; (3b)

where parameters a¼ 3.65, l¼ 0.0005 define the type of

neuronal behavior as a non-bursting neuron, parameter r sets

the baseline level of neuronal activity, rn is an external vari-

able describing synaptic input rn ¼ Isyn
n , and the nonlinear

function faðxn; xn�1; uÞ in Eq. (3a) is

a=ð1� xnÞ þ u; if xn � 0

aþ u; if 0 < xn < aþ u and xn�1 � 0

�1; if xn � aþ u or xn�1 > 0;

8><
>:

where u ¼ yn þ bn. See Ref. 19 for details.

A map-based model for synaptic current was introduced

in Ref. 20 and is computed as

Isyn
n ¼ �gnðxpost

n � xrpÞ;

where

FIG. 3. Spiking rate for neurons with different excitability. The top panel

shows the dependence of the spiking rate on Vt and the bottom panel shows

its dependency on Idc.

FIG. 4. Phase portrait for sequential cyclic switching corresponding to a

three-neuron network with GABAB inhibitory connections. The control pa-

rameters are Vt¼�57.00 mV and Idc¼ 0. In this case f¼ 32.1 Hz for indi-

vidual uncoupled neurons.
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gsyn
nþ1 ¼ cgsyn

n þ
g; spikepre

0; otherwise;

(

parameter g define the strength of the synaptic coupling, c is

the timing characteristic, and the indices pre and post stand

for presynaptic and postsynaptic variables, respectively. The

parameter xrp defines the type of synapse and for inhibition

is set to the value �2.2.

The results of the simulations of switching activity

patterns in map-based model are shown in Fig. 5 and demon-

strate a close resemblance to patterns observed in a

conductance-based model (see Fig. 2). In both models, the

baseline of neurons is set to generate tonic spiking. The tonic

spiking activity is terminated due to inhibition from the pre-

synaptic neuron. As a result, in the switching regime and at

any given time, only one neuron is spiking while inhibiting

its postsynaptic neuron and it keeps spiking until its presyn-

aptic neuron recovers from inhibition imposed by the

recently inhibited postsynaptic neuron. Therefore, the timing

(period) of the switching is controlled by the time interval

during which the neuron recovers from the inhibition

imposed by presynaptic cell before its activity was termi-

nated. In other words, the timing is controlled by transient

dynamics in the silent neurons and the period of network cy-

cling activity is equal to about three recovery time intervals.

The qualitative similarity of the transient dynamics

imposed by the inhibition in the map-based model and the

conductance-based model studied as a function of synaptic

strength and excitation levels (neuron baseline) is illustrated

in Fig. 6. This similarity guarantees that map-model captures

the same dynamical mechanism of timing control in the

motif as in the conductance-based model.

The simulation of a three neuron network in the

conductance-based model and the map model shows that

while the period of switching activity can be easily con-

trolled by the strength of inhibition, it is not sensitive to the

variation of excitation level of the neurons (see Figs. 7 and

8). The effect of low sensitivity to excitation level is clearly

seen in Fig. 5 and explained by switching mechanisms in the

networks discussed above. Indeed, the period of switching in

such networks is controlled by the time interval during which

the inhibited neuron recovers when its presynaptic neuron

becomes inhibited by the third neuron.

IV. RECOVERY TIME

Simulated transient dynamics also show that the recov-

ery time in the post-inhibitory state is not sensitive to the ex-

citation level when it changes both pre and post synaptic

neurons equally. Such behavior in inhibitory coupled neu-

rons is independent of the neuronal model and is observed in

simulations that use the two-compartmental conductance-

based model, see Fig. 6 (left panel), as well as in simulations

that use the map-based model, see Fig. 6 (right panel). This

is the result of balance between the processes of inhibition

and post-inhibition recovery. On one hand, the inhibition

influence is stronger when the frequency of presynaptic

spikes increases. On the other hand, the depth of this influ-

ence decreases and recovery rate increases in the postsynap-

tic neuron as its excitation level is also increased. This

balance is typical for neurons that do not demonstrate effects

of post-inhibitory rebounds and independent of the details of

the neuronal model for the regimes of tonic spiking.

Additionally, the change of synaptic strength does not affect

the baseline condition of the neurons, but it directly affects

FIG. 5. Waveforms of switching activ-

ity in the case of three neurons com-

puted for the values of r¼ 0.1 (left

panel) and r¼ 0.2 (right panel).

FIG. 6. Waveforms illustrating post-

inhibitory recovery time as a function

of synaptic strength and excitation

level. The left panel shows simulations

done with the conductance-based

model with Vt¼�57.00 mV,

gGABAB
¼ 50 nS; Vt¼�57.00 mV,

gGABAB
¼ 10 nS and Vt¼�64.50 mV,

gGABAB
¼ 10 nS up-down, respectively.

The right panel shows similar simula-

tions done with the map-based model

with r¼ 0.2, g¼ 1.5; r¼ 0.2, g¼ 0.5

and r¼ 0.44, g¼ 0.5 up-down,

respectively.
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the depth of inhibition and, therefore, the recovery time in

the postsynaptic neuron, see Fig. 6 (top graph at each panel).

V. MULTINEURONAL CLUSTERS

The results of switching dynamics in the 3-neuron net-

work indicate that the modulation of excitation levels of neu-

rons in such a network does not provide efficient control

over the switching period. The plots of switching period ver-

sus the value of excitation parameter r are shown in Fig. 8.

Comparing these plots with the plot in Fig. 7, one can see

that the period changes significantly with the variation of

strength of the synaptic coupling g, but remains almost flat

versus the parameters of the excitation: Vt and r for the con-

ductance and the map-based models, respectively. In the

map-based model, a small gradual change of the period with

signal forms only for small values of g< 0.25, see Fig. 8,

bottom panel. Moreover, it is known that in many neural in-

hibitory networks, in particular, in Central Pattern

Generators, that the parameters of the synaptic coupling are

fixed and not involved in the modulation of pattern forma-

tions.21 The period of switching in CPGs is usually con-

trolled through the mechanisms of modulation of neuronal

excitation levels.

To understand how such systems enhance the sensitivity

to excitation we make the network model more realistic in

terms of network size. We consider the case when each neu-

ron in the original 3-neuron networks is substituted with a

large cluster of neurons with randomly dispersed parameter

settings.

To model the neurons’ diversity within each cluster, we

use Gaussian distribution for the neural excitation level con-

trolled by parameter r in the case of the map-based model

and treat the mean value of this parameter, rmean as a control

parameter capturing the excitation level of the cluster. Each

neuron in the post-synaptic cluster is inhibited by the all neu-

rons located in the presynaptic cluster. The neurons within

each cluster are not connected.

The results of the simulations of switching patterns in

the three-cluster network where each cluster consists of 100

neurons without inhibitory connections within clusters are

summarized in Fig. 9. Here, the parameters r in each group

were dispersed as Gaussian distribution with the value of

standard deviation equal to 0.2. The comparison of these

plots with the case of the three-neuron network (Fig. 8, bot-

tom panel) shows that, in the instance of a large group, the

FIG. 7. Dependency of the period of switching activity in a conductance-

based model three neuron network model on different values of the threshold

of excitability Vt and synaptic strength gGABAB
. Below gGABAB

¼ 10 nS, the

network does not display cooperative dynamics.

FIG. 8. The top panel shows the period of switching activity in a

conductance-based three-neuron network versus the different values of

threshold of excitation, Vt, computed for different values of synaptic strength

gGABAB
. The bottom panel shows the period of switching activity in a map-

based three-neuron network versus different levels of excitation, r, and syn-

aptic strength g.

FIG. 9. Period of switching activity in a network consisting on three 100-

neuron groups versus different mean values of the levels of excitation, rmean,

and group synaptic strength g.
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period of switching becomes sensitive to the average excita-

tion level. Therefore, the use of a large number of neurons in

each cluster of the network enables a dynamical mechanism
for timing control of the switching activity that is independ-

ent of the parameters of individual synapses.

VI. GRADUAL RECRUITMENT MECHANISM

To discuss this mechanism in more detail, we consider

how diversity within the clusters affects the dependence of

switching period on the mean level of excitation rmean, see

Fig. 10. The wide black curve computed for n¼ 1 is pre-

sented here for comparison and the two examples of switch-

ing waveforms observed in this case in Fig. 5 show that

although the spiking rate of activity increases significantly

with the increase of r it does not affect the period of burst

switching. In the case of clusters of 100 neurons and a very

small diversity level (rSD¼ 0.005), the plot of the period

looks very similar except for a sharp drop of the period in a

very narrow interval of rmean right before the bursting activ-

ity disappears. The increase of diversity rSD within the clus-

ters increases the depth of this drop and makes the

dependence of the switching period more gradual and, there-

fore, more suitable for control through the modulation of the

excitation level rmean.

To illustrate how diversity among the neurons forms a

slope in the period dependence on the cluster excitation

level consider the bursting activity using waveforms of

mean field computed for each cluster and the spiking activ-

ity within the clusters, see Fig. 11. One can see that the

slope is related to the gradual recruitment of neurons

within each cluster of the bursting activity as the cluster

FIG. 10. The dependencies of switching period on mean level of cluster ex-

citation rmean computed for a network of 3 neurons (n¼ 1) and three clusters

of 100 neurons with different values of diversity controlled by the value of

the standard deviation rSD of Gaussian distribution for the parameter r.

Simulations are done for the strength synaptic g¼ 1.0 normalized for num-

ber of elements in each cluster.

FIG. 11. Waveforms of mean field ac-

tivity in the clusters (left panels) and

the spiking activity of individual neu-

rons (right panels) computed for clus-

ter size n¼ 100, normalized synaptic

strength g¼ 1.0, the diversity level

rSD¼ 0.1 and three values of the exci-

tation levels: rmean¼ 0f.2 (top),

rmean¼ 0.1 (middle) and rmean¼ 0.03

(bottom).
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excitation increases. The increase of the number of active

neurons within the cluster is equivalent to the increase of

activated synaptic connections between the clusters and,

therefore, the effective strength of the synaptic inhibition.

It was shown above that the change of synaptic strength in

this motif affects the period control through the variation

of recovery time duration, see Fig. 6 and discussion in Sec.

IV. Therefore, thanks to the redundancy on the neurons in

each network node the diversity of their baselines provides

gradual recruitment of active neurons with the correspond-

ing synapses enhancing the control of timing through the

overall excitation level of the network.

We believe that such a mechanism could be observed

in many neuronal subsystems since the level of depolariza-

tion in the brain can be regulated via neuropeptide and

neuromodulator release (see Ref. 18). Some neuropeptides

like hypocretin/orexin can depolarize neurons via a specific

receptor for extended periods of time in the order of

minutes.22

In summary, the brain is known to have a very large

range of time scales during cognitive and behavioral tasks;

the pending question of how to organize this broad range of

time scales is unanswered. Thanks to the redundancy of neu-

rons within each node the excitation level of neurons can

affect the average synaptic strength of inhibition between the

nodes and enhance timing control. Here, we propose a novel

basic mechanism based on frequency-modulated inhibition

using GABAB that is capable of modifying the switching pe-

riod with a logarithmic dependence on the synaptic strength

of the inhibitory network. Here we also assessed the role that

diversity of the levels of excitability between neurons inside

a cluster plays on the dependence of the switching period.

These findings show that since it has a gradual effect, this is

a suitable mechanism for control through the modulation of

the mean excitation level.
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