
Network Reliability: The effect of local network structure on
diffusive processes

Mina Youssef1,*, Yasamin Khorramzadeh1,2,†, and Stephen Eubank1,2,3,‡

1Network Dynamics and Simulation Science Laboratory, Virginia Bioinformatics Institute, Virginia
Tech, Blacksburg, Virginia 24061, USA
2Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, USA
3Department of Population Health Sciences, Virginia Tech, Blacksburg, Virginia 24061, USA

Abstract
This paper re-introduces the network reliability polynomial – introduced by Moore and Shannon
in 1956 – for studying the effect of network structure on the spread of diseases. We exhibit a
representation of the polynomial that is well-suited for estimation by distributed simulation. We
describe a collection of graphs derived from Erdős-Rényi and scale-free-like random graphs in
which we have manipulated assortativity-by-degree and the number of triangles. We evaluate the
network reliability for all these graphs under a reliability rule that is related to the expected size of
a connected component. Through these extensive simulations, we show that for positively or
neutrally assortative graphs, swapping edges to increase the number of triangles does not increase
the network reliability. Also, positively assortative graphs are more reliable than neutral or
disassortative graphs with the same number of edges. Moreover, we show the combined effect of
both assortativity-by-degree and the presence of triangles on the critical point and the size of the
smallest subgraph that is reliable.

I. INTRODUCTION
We study the dynamics on a variety of networks for a networked S – I – R model of
epidemics, in which each vertex can be in one of the three states Susceptible, Infectious, or
Recovered [1, 2]. As is well known, this process is equivalent to bond percolation [3], and
thus exhibits a percolation phase transition and associated critical phenomena in an infinite
network. The mean field dynamics are also well understood: critical phenomena such as
scaling exponents depend only on the degree, also known as the coordination number.
Corrections to mean field dynamics [4, 5] have been established that take into account
variations in degree from one vertex to another [6, 7]. Often, following [8], the variation is
taken to follow a power law distribution. However, the most important variation is not
necessarily in degree, but in the number and overlaps of loops of a given length. Both the
degree and the distribution of loops are completely determined by the dimension for regular
grids, where much of the theory was developed, but not for generic graphs. In this paper, we
illustrate how to use the concept of network reliability to elucidate how details of network
topology influence the spread of epidemics. There are many structural aspects of contact
networks that interact in complicated ways with each other and with the dynamical
properties of disease transmission to create population-level dynamics in infectious disease
outbreaks. For concreteness, we focus on the effect of degree assortativity and the number of
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triangles. As we show below, the complicated interaction between these structural measures
generates a wide range of population-level effects.

We show how to characterize a network by the way its overall attack rate – the mean
cumulative fraction of vertices infected before this transient dynamics reaches a fixed point
– varies with disease transmissibility. Interventions alter the network structure, changing the
overall attack rate. In [9], we found that isolating infected people within a household, i.e.
limiting their contacts with other household members, can significantly reduce the
population-level attack rate for a wide range of transmissibility. In this case we can
characterize the network after intervention as uniformly more resistant to epidemic outbreak
than the original network.

The overall attack rate is a special case of the Network Reliability Polynomial[10]
formalism. This formalism was introduced to analyze specific networks. Hence, one of its
strengths for characterizing networks is that it makes no assumptions about regularities or
symmetries. We define and provide algorithms for calculating and estimating coefficients of
the reliability polynomial, provide illustrative examples on several networks, and show how
it can be used to understand complicated phenomena. The novelty in this work is not the
concept of reliability itself – the IEEE Transactions on Reliability is now in its 61st year –
nor is it in the statistical physics of reliability. It is in our suggestions that

1. coefficients of the reliability polynomial are among the best ways to characterize
graph structure and

2. network analysis in terms of reliability provides insights into global effects of local
structural details that elude other approaches.

Reliability refocuses the question of structural effects from the individual interactions
between elements to global dynamical properties, suggesting new methods of analysis. In
contrast to methods using coefficients of the characteristic polynomials of adjacency and
Laplacian matrices [11, 12] or combinations of centrality measures [13] that describe the
graph structure, the coefficients of the reliability polynomial transform all the information in
the network adjacency matrix into a form that, by design, reflects dynamical phenomena of
interest. Hence it is a unique structural measure that is immediately connected with
dynamics. Network reliability is amenable to study from many perspectives, and much is
known about the general properties of the reliability polynomial [14].

In contrast, the literature about the relation between dynamics and common graph statistics
such as assortativity-by-degree and clustering coefficient is confusing and sometimes
inconsistent. For example, consider what is known about the relationship between the spread
of S – I – R epidemics and assortativity-by-degree. Assortativity can be defined as a
correlation coefficient between the degrees of vertices at each end of an edge. Thus it ranges
from highly assortative (+1) through neutrally assortative (near 0) to highly disassortative
(−1). The spread of S – I – R epidemics in correlated and uncorrelated networks has been
addressed in [15–20]. Given a social network, Nold in [16] grouped individuals based on
their number of contacts. Thus, high epidemic prevalence appears in groups with highest
number of contacts. In contrast to Nold, Moreno and Pacheco[15] reported that positively
assortative networks have fewer large outbreaks than neutrally assortative networks.
Moreover, for finite size networks, the epidemic threshold for positively assortative
networks is larger than that for neutrally assortative networks, indicating more robustness
against the spread of epidemics. Consistent with Newman[17], epidemics persist in
positively assortative networks longer than in neutrally assortative networks when the initial
infected vertex is the one with the largest node degree. Kiss and Kao[18] showed that
epidemics spread faster in positively assortative networks than in disassortative (negatively
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assortative) networks. However, this result disagrees with D’Agostino et al.[19], in which it
is shown that disassortative networks have a shorter longest time to peak epidemic
prevalence than assortative networks. The longest timescale is the inverse of the algebraic
connectivity representing the slowest mode of diffusion in the network [21]. Disassortative
networks have larger algebraic connectivity than assortative networks. In other words,
disassortative networks have shorter longest timescale to the epidemic peak than assortative
networks. Thus, epidemics spread faster in disassortative networks than in assortative
networks. Finally, the combined impact of both assortativity-by-degree and clustering
coefficient on the spread of epidemics is studied in Badham and Stocker[20]. Through
extensive simulations on a limited set of networks, the authors found that both the total
epidemic size and the average secondary infection size are smaller for highly clustered and/
or highly positively assortative networks. However, for smaller values of these properties,
the epidemic final size is inconsistent with the increase of either the assortativity value or the
clustering coefficient.

Using the network reliability polynomial, we study the effect of both assortativity-by-degree
and number of triangles on the spread of epidemics in Erdős-Rényi and scale-free-like
random graphs. We evaluate the reliability for graphs we have generated that exhibit a wide
range of values for these two parameters. We focus on a particular criterion for reliability:
having an expected attack rate of at least 20% of the vertices. On one hand, we found that
assortative graphs are more reliable than disassortative graphs; on the other hand, network
reliability decreases for highly assortative scale-free-like graphs. In addition, network
reliability decreases as the number of triangles increases in the graph. We also study features
of the reliability polynomial such as its critical point and the minimum (respectively,
maximum) number of edges for which subgraph is guaranteed to be reliable (respectively,
unreliable). Finally, we illustrate the effect of graph size on reliability, showing that the
transition in network reliability becomes sharper as the graph size increases.

The outline of this paper is as follows: First, we reintroduce network reliability in terms of
reliability rules and reliability polynomials. Then we discuss the estimation of reliability
coefficients. We describe an in silico laboratory of networks with a range of carefully
controlled topological properties. We characterize these networks’ reliability in terms of
critical points and other features, elucidating the relationship between network reliability
and common graph statistics as a function of network size. Finally, we indicate some
intriguing open research problems.

II. NETWORK RELIABILITY
See Colbourn [14] for a comprehensive introduction to notions of reliability. Basically, a
graph’s reliability is the probability that it satisfies a predefined criterion or rule, called a
reliability rule, even when some of its edges fail. The reliability rule can be designed to
capture dynamical phenomena of interest in the graph. Reliability can be evaluated as the
weighted fraction of subgraphs of the base graph that meet the criterion, where each
subgraph’s contribution is weighted by the probability that random edge failures produce
that subgraph. Since the probability of producing a particular subgraph depends on its size,
the overall graph reliability depends on the number and the size of reliable subgraphs.

More formally, consider a graph G(V, E) with V vertices and E weighted edges. The edges
may be directed or undirected, and there may be multiple edges between two vertices. Let
the set  be the set of all subgraphs of G generated by including each edge (i, j)
independently with probability xi,j. There are 2E elements of this set. Now consider a binary
function r :  → {0, 1}, the reliability rule. If r(s) = 1, we say that subgraph s is accepted or
reliable. We define the reliability R(G, r, {x}) of a base graph G with respect to the
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reliability rule r for edge weights {x} as the probability that a randomly chosen subgraph s is
reliable. In other words, a network is reliable to the extent that it remains functional under
random removal, i.e. failure, of edges:

(1)

We will explicitly include the dependence on the graph G and the rule r in notation such as
R(G, r, x) only when we wish to distinguish the reliability of two different graphs or two
different rules.

A. Reliability rules
There are many useful reliability rules, for example:

1. two terminal: a subgraph is accepted if it contains at least one directed path from a
distinguished vertex S (the source) to another distinguished vertex T (the terminus);

2. at-least-n-terminal: a subgraph is accepted if it contains at least one connected
component of size n or greater;

3. all-terminal: a subgraph is accepted if it is connected and contains every vertex of
the base graph;

4. attack rate (AR)-α: a subgraph is accepted if the mean component size across all
vertices is greater than or equal to αV. Note that this is different from the mean
component size taken across all components. In fact, it is the sum taken across all
components of the squared component size divided by V.

For graphs with directed edges, the notion of “connected” can be generalized appropriately.
We primarily use the AR-α rule in this paper because of its epidemiological relevance. As
its name suggests, it gives the probability that the cumulative fraction of vertices infected
(sometimes called the “wet set” in a percolation setting) exceeds α, averaged over all
possible initial conditions in which a single vertex is infected. This rule, along with many
other commonly used rules, has the useful property of coherence, i.e. adding an edge to a
reliable subgraph does not make it unreliable.

B. Reliability polynomials
The reliability defined in Equation 1 depends on the probability of obtaining each particular
subgraph when edges are selected independently at random. It is this independence of
selecting edges that makes reliability such a powerful tool. For instance, the probability of
selecting any particular subgraph is simply the product of the probability of selecting each of
its edges and not selecting each edge that doesn’t appear. As we show below, when the
edges are homogeneously weighted with, say, uniform probability of selection x, this
reduces to a homogeneous polynomial in x and (1−x) of degree E. The case of a few
different weights can either be treated by considering a multivariate polynomial in the
weights, or by adding multiple edges between vertices; for many different weights, this
becomes intractable. We restrict ourselves to the homogeneously weighted case in this
paper.

To rewrite Equation 1 in polynomial form, first partition the set of subgraphs  into subsets
 in which each subgraph has exactly k ≤ E edges. Each subgraph with k edges appears with

probability p = xk(1−x)E−k. If  denotes the set of all reliable subgraphs, then Rk ≡ |  ∩ |
is the number of subgraphs with exactly k edges that are accepted by rule r. Then the total
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contribution of sub-graphs in  to R(x) is Rkxk(1 − x)E−k. Summing these contributions over
all k gives the reliability polynomial (for rule r and graph G):

(2)

Figure 1 shows the network reliability R(x) for several Erdős-Rényi GNM graphs that have
been rewired to have positive assortativity-by-degree. General properties to note are: Rk is a

non-negative integer in the range [0, ]; R(0) = 0, R(1) = 1 for non-trivial networks;
and for a coherent rule, R is monotonic non-decreasing.

We can rewrite Rk as a product of two factors, taking

(3)

as a definition of Pk. This decomposition splits Rk into what we might call an entropic or

combinatorial factor  and a structural factor Pk. The entropic factor simply makes
explicit the sharp peak in the number of possible subgraphs with k edges around a small
region centered at k = Ex, i.e. the size of the space from which equi-probable system
configurations can be drawn. The factor Pk is structural in the sense that it encodes all the
information about the specific graph G that is needed to determine its reliability.

The interpretation of Pk is clear – it is the fraction of possible subgraphs with k edges that
are accepted by the reliability criterion. This interpretation suggests a simple estimation
procedure for Pk: select a sample of subgraphs with k edges, evaluate the reliability criterion
for each, and let the estimated Pk be the fraction of the sampled subgraphs that are reliable.
Given a graph in memory, the computational complexity of selecting a subgraph is
proportional to k (not E), the number of samples selected, and the complexity of evaluating
the criterion. (The complexity of the criterion itself should not be overlooked. For most
reliability rules discussed here, it can be evaluated by partitioning the selected subgraph into
connected components.) Moreover, since each subgraph can be chosen and its reliability
evaluated independently, the algorithm can be distributed easily onto massively parallel
distributed machines.

C. Alternative expressions for R(x)
There are many possible complete sets of basis functions for polynomials on the unit
interval in general, and hence for the reliability polynomial in particular. We find two to be
particularly useful, even though they are not orthogonal bases:

1.

the set of E functions . The coefficients in this basis are the Pk
introduced above. Although, as discussed in Colbourn, evaluating these coefficients
exactly is computationally hard for many graphs and many reliability rules, the Pk
can be estimated to arbitrary precision by a simple, scalable algorithm for any
graph. This basis is thus well-suited for computational analysis of particular graphs.
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2. the set of E functions xk. The coefficients in this basis, which we denote by Nk, can
obviously be drives from the Pk by expanding the binomial (1 − x)E−k, but as we
show in a companion manuscript, [22] they also have an important physical
interpretation in terms of the number and overlaps of what we call structural
motifs. This basis is well-suited for reasoning about graph structure in general.

III. IMPORTANT FEATURES OF NETWORK RELIABILITY
A. Minimum and maximum number of edges of reliable subgraphs

In Figure 1, note that R(x) is negligible for x < 0.1 and is near unity for x > 0.25, i.e. for
subgraphs with fewer than k = 0.1E edges or more than 0.25E edges, respectively. This is a
common feature of network reliability for many different rules, related to max flow / min cut
theorems. Let kmin + 1 represent the minimum number of edges for any subgraph to be
reliable, so that Pkmin = 0 and Pkmin+1 > 0. Similarly, let kmax represent the minimum
number of edges that are necessary for every subgraph to be reliable, so that Pkmax−1< 1 and
Pkmax = 1. It is always true that kmin < kmax since the reliability rule is coherent, i.e. adding
an edge to a reliable subgraph does not make it unreliable. Thus we can write the probability
Pk as follows:

(4)

B. Average reliability
The average reliability 〈R(x)〉 gives the expected outcome for a disease with unknown
transmissibility [23, 24]. The transformation between reliability R(x), viewed as a function
of x, and its coefficients Pk, viewed as a function of k, has the following nice property: the
average value of R(x) is equal to the average value of Pk. To demonstrate this, first note that
the Euler Beta function:

(5)

has the solution

(6)

Then interchanging the sum and the integral and integrating by parts yields

(7)
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Thus, the average of the reliability coefficients represents the average probability of
selecting a reliable subgraph.

C. Critical point
Equations 1 or 2 define a partition function for the system: the weighted sum over all
configurations (subgraphs) of the reliability of the configuration, weighted by its probability.
Thus the reliability can be viewed as an order parameter for the system. In the
thermodynamic limit, i.e. for an infinite graph, we expect that the derivative of the reliability
with respect to x will diverge at a critical point xc of a phase transition, for example, the
percolation phase transition for the all-terminal reliability rule. For finite graphs, we take the
value of x for which the derivative of the reliability attains its maximum as defining the
critical point xc. The first derivative of reliability is the probability that the reliable subgraph
starts to percolate if the probability of choosing an edge increases from x to x + dx [25].
From Equations 2 and 3, we find that the first derivative of the reliability can also be written
as a homogenous polynomial in x and (1 − x), where the coefficients are finite differences of
the Pk:

(8)

IV. A LABORATORY FOR STUDYING GRAPHS
We have constructed a set of graphs of three different sizes with several different degree
distributions but similar mean degree and carefully controlled ranges of assortativity-by-
degree and number of triangles. (For convenience below, we use the general term
“assortativity” to mean specifically assortativity-by-degree.) These graphs form an in silico
laboratory for studying structural effects in graphs. This laboratory, along with software for
evaluating network reliability, will be made accessible to the public via the Cyber-
Infrastructure for Network Science (CINET) web site http://ndssl.vbi.vt.edu/cinet.

Beginning with a single randomly generated graph instance for each of two degree
distributions, we apply assortativity and triangle “raising and lowering” operators A± and T±

defined as follows:

• The A+ and A− operators increase or decrease, respectively, a graph’s assortativity-
by-degree.

• The T+ and T− operators increase or decrease, respectively, the number of triangles
in a graph while leaving its assortativity-by-degree invariant.

The first graph is an Erdős-Rényi random graph (or GNM for short) – i.e. one generated by
choosing E edges uniformly at random from among V vertices, with V = 341 and E = 992 in
this case. The reason for choosing these values of V and E will become clear below. The
degree distribution of this graph is as follows, illustrated in Figure 2a: (1, 9), (2, 7), (3, 33),
(4, 58), (5, 54), (6, 53), (7, 57), (8, 31), (918), (10, 8), (11, 7), (12, 3), (13, 2), (14, 1)).

We accepted the first generated GNM that was also connected. We claim that this bias
toward connectivity has not produced an atypical degree distribution. In the limit as E → ∞
with fixed E/V, the expected degree distribution becomes Poisson, as is well known. Note,
however, that the expected degree distribution of connected G(V, E) is slightly different
from that of all G(V, E), since it is less likely that a graph with many vertices of low degree
is connected. Consider, for example, that a connected graph cannot have any vertices with
degree 0. Selecting any vertex as part of an edge is a Bernoulli process with probability .
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Hence across all G(V, E), the probability of observing a vertex with degree d is

. Thus, roughly 37% of all G(V = 341, E = 992) will have no
vertices with degree 0. While this condition alone is not a guarantee of connectedness, it
indicates that the degree distribution for our sample graph is not atypical.

Because of the recent interest in scale free graphs, we also considered a “scale-free-like” (SF
L) graph. The degree distribution of this graph is as follows, illustrated in Figure 2b: (4,
256), (8, 64), (16, 16), (32, 4), (64, 1), with, therefore V = 341 vertices and E = 992 edges.
We consider it scale-free-like because the frequency of finding a vertex with degree d, for
those degrees that are present, scales as d−2. We have not included vertices of degree 1 or 2
in this graph because they are less interesting dynamically than those of higher degree.

Obviously, the mean degree for the two graphs is the same. This portion of the CINET graph
library includes graphs with several other topologies and degree distributions, e.g. regular
grids, of nearly the same size and mean degree.

A. Choosing a range of assortativities
We use the definition of assortativity presented in Newman [26]. We repeatedly apply A+

and A− to the instances of GNM and SFL graphs. The operators A+ and A− are described in
the Appendix. Applied to GNM, this creates graphs with assortativities in the range [−0.950,
0.979], nearly the full possible range; for SFL, in the range [−0.268, 0.248], only about one
quarter of the possible range and apparently in agreement with an estimate by Newman.

We selected for further study only those graphs with assortativities spaced at intervals of
approximately 0.05: 41 GNM graphs and 11 SFL graphs.

B. Choosing the number of triangles
For each value of assortativity, for each degree distribution, we repeatedly apply T+ and T−

as shown in the Appendix. The possible range of the number of triangles varies significantly
across assortativities and across degree distributions, and is illustrated in Figure 3. We chose
to study graphs containing approximately multiples of 50 triangles. Figure 3 shows the
locations of all 300+ graphs included in this study in the assortativity-triangles plane.
Clearly, the total number of edges, the degree distribution, and the assortativity place
complicated constraints on the total number of triangles in the graph.

Assortativity is defined as a Pearson correlation coefficient, and is thus normalized to lie in
the interval [−1, 1]. The clustering coefficient for a given vertex i – and its mean value
across all vertices – can similarly be normalized to lie in the interval [0, 1] by dividing the
number of triangles including i by the maximum possible number of triangles that could

include it, . However, the value of the clustering coefficient for a graph with a given
number of triangles depends on how those triangles are distributed across vertices of
different degrees. Since we explicitly manipulate the assortativity, this distribution changes
dramatically. For example, all else being equal, it is more likely to find a triangle including
two vertices of high degree, given that the two are both neighbors of a third. But all else is
not equal – if the graph is assortative, it is even more likely than if it is disassortative. For
these reasons, in this paper we restrict ourselves to studying the number of triangles directly
rather than any normalized version such as the clustering coefficient.
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C. Choosing the number of vertices
To study finite size scaling, we constructed graphs with 2V and 4V vertices. Since the model
used to create the original graphs is specific to the number of vertices, there is some latitude
in specifying what it means to scale the number of vertices while maintaining the “same”
structure. Specifically, we maintained the edge density (the ratio between number of edges
and number of vertices) and the node degree distribution.

V. NUMERICAL EVALUATION OF RELIABILITY
We evaluated the network reliability for the AR-α reliability rule on all the graphs described
in the previous section. Recall that AR-α gives the probability that the cumulative fraction
of vertices infected exceeds α, averaged over all possible initial conditions in which a single
vertex is infected. For relevance to the spread of epidemics, we chose α equal 0.2.

A. Erdős-Rényi graphs
1. Evaluation of kmin and kmax—Figure 4 shows the minimum and maximum number
of edges (kmin and kmax) needed to obtain reliable sub-graphs for GNM graphs. We observe
that, in general, both kmin and kmax decrease as the assortativity increases. Because kmin + 1
is the minimum number of edges needed to obtain a connected component containing 20%
of the vertices, it represents the edge density of reliable subgraphs. Consequently, the edge
density of reliable subgraphs is lower for assortative graphs than for neutral and
disassortative graphs. As mentioned in [26], high degree vertices in assortative networks
tend to form cliques, which are also called core groups in the epidemiological literature. The
edge density within the clique is higher than that of the network as a whole. Therefore, a
reliable subgraph will first appear with fewer edges within the clique. In disassortative
networks, edges tend to connect vertices with dissimilar node degrees. Thus, a reliable
subgraph from a disassortative network will first appear with more edges. In other words,
reliable subgraphs in assortative networks have lower edge density than reliable subgraphs
in disassortative networks as shown in Figure 4. We also observe that the number of
triangles has more effect on kmax than on kmin. The number of edges kmax increases slightly
as the number of triangles increases.

2. Evaluation of critical point and the maximum derivative of reliability—Figure
5 shows the critical point xc for disassortative, neutral and assortative GNM networks. The
critical point decreases as assortativity increases; however, the critical point increases as the
number of triangles increases. More edges are required to obtain reliable subgraphs from
highly clustered graphs. In addition, reliable subgraphs that appear in disassortative
networks are more dense than reliable subgraphs from assortative networks. We also report
the maximum derivative of R(x) with respect to x for GNM graphs in Figure 7. Clearly, a
small change in x, i.e. x + dx, increases the network reliability of graphs with fewer triangles
more than that of graphs with more triangles. The influence of assortativity on the maximum
derivative of R(x) is more noticeable in assortative graphs than in disassortative graphs.

3. Evaluation of average reliability—Figures 5 shows the average reliability for GNM
networks with negative and neutral or positive assortativity, respectively. We first analyze
the influence of assortativity and triangles on the reliability independently.

• Effect of triangles on reliability: Network reliability decreases as the number of
triangles increases for any assortativity. For the AR-α reliability rule, creating a
triangle in an unreliable subgraph by adding a new edge does not make the
subgraph reliable since the newly added edge does not increase number of vertices
in any connected component. However, if the newly added edge connects a vertex
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that belongs in one component with a vertex in another component, the probability
that the overall subgraph is reliable increases.

• Effect of assortativity on reliability: The more assortative the network is, the more
reliable the network is. We know that reliable subgraphs have lower edge density

for assortative graphs than for disassortative graphs i.e.  and

 . Thus, . Consequently, using Eq. 7,
〈R(x)assort〉 is larger than 〈R(x)disassort〉.

In contrast to [26], assortative graphs do not always have many cliques. Therefore, we
analyze the combined effect of the number of triangles and assortativity on the reliability
using six distinct combinations of graph properties:

1) Assortative graphs with few triangles: High degree vertices have high degree
neighbors. However, these vertices are not interconnected and hence do not form cliques.
Therefore, reliable subgraphs are weakly locally connected. It is hard for a reliable subgraph
to percolate among only high-degree vertices because the edge density is lower for the
subgraph containing high degree vertices than for the graph as a whole. Therefore, reliable
subgraphs expand across not only high degree vertices but also low degree vertices. Due to
the assortative property, the majority of vertices will have high degree. Thus, only a small
number of edges is required for a reliable subgraph to appear.

2) Assortative graphs with many triangles: The majority of edges are used to create
triangles among vertices with similar node degrees. In other words, vertices with similar
degrees form weakly interconnected cliques. Reliable subgraphs appear in cliques with high
degree vertices due to their large edge density. Because the cliques are highly locally
connected, the number of edges in a reliable subgraph is larger for assortative graphs with
large number of triangles than for assortative graphs with small number of triangles. In
addition, because cliques are only weakly interconnected, it is hard for a reliable subgraph to
expand outside the clique.

3) Neutral graphs with few triangles: With equal probability, a randomly selected edge
connects vertices with similar degrees or vertices with different degrees. High degree
vertices are weakly connected and the subgraph containing them has low edge density.
Being neutral and having few triangles in the graph, a reliable subgraph expands across
vertices with a wide range of degrees. Therefore, many edges are required to increase the
edge density of a subgraph to become reliable. Thus, a reliable subgraph requires more
edges for neutral graphs than for assortative graphs, if they both have few triangles.

4) Neutral graphs with many triangles: Many triangles exist in the graph without
composing cliques. Because the graph is neutral and because triangles do not increase the
reliability of graphs, the number of edges needed for a subgraph to be reliable and to expand
across the graph is larger for graphs with many triangles than for graphs with few triangles.

5) Disassortative graphs with few triangles: Vertices with different node degrees are
connected but do not form cliques. Thus, subgraphs with larger edge density than that of the
graph as a whole exist with many edges and vertices. Consequently, in contrast to reliable
subgraphs that appear with fewer edges in assortative graphs with few triangles, reliable
subgraphs appear with many edges from high density subgraphs.

6) Disassortative graphs with many triangles: Vertices with different node degrees are
connected together forming triangles. As discussed above, in finite graphs, triangles do not
increase the reliability of graphs.
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B. Scale-free-like graphs
Results obtained from SFL graphs are in agreement with results from GNM graphs except
for assortativity A > 0.1. For assortativity increases above 0.1, kmin and kmax increase as
shown in Figure 4, 〈R(x)〉 decreases and xc increases as shown in Figure 6, and the
derivative of reliability at critical point decreases as shown in Figure 7. Thus, the edge
density of reliable subgraphs is larger for SFL graphs with assortativity A > 0.1 than for
neutral SFL graphs. To understand this phenomenon, note that SFL graphs with near-
maximal assortativity tend to have large number of triangles, because vertices with similar
degrees create cliques. These cliques represent communities with vertices that are strongly
connected, while different communities are weakly interconnected. Thus, the number of
communities decreases [27] and approaches the number of distinct degree values as
assortativity increases for highly assortative SFL graphs. Due to the degree distribution of
SFL graphs, the majority of lowest degree vertices belong to a single community. The edge
density is lower for this community than for the graph as a whole. Conversely, the
communities of high degree vertices contain only a few vertices. Therefore, for reliable
subgraphs to appear in communities with high edge density, the reliable subgraphs have to
extend across different communities that are weakly interconnected. Consequently, a large
number of edges is required to obtain reliable subgraphs from highly assortative SFL graphs.
This result causes the critical point to increase with assortativity leading to a decrease in the
average reliability.

C. Network reliability and scaling
We study the effect of graph size by evaluating the reliability on GNM graphs with fixed
average node degrees and sizes V, 2V and 4V. Three different assortativity values are used,
while the number of triangles is held constant at 100. The results are summarized in Table I.
Let k′ be the normalized number of edges with respect to the total number of edges in the

graph, e.g.  for graphs with 4V vertices and 4E edges. We observe that the average

reliability,  and maximum derivative increase as the graph size increases, while , xc

and  decrease as the graph size increases. In addition, results show that the
derivative of the reliability with respect to x diverges for larger graph sizes. In other words,
the transition from R(x) = 0 to R(x) = 1 becomes sharper for large graphs than for small

graphs. Consequently, at the thermodynamic limit,  converges to 0 i.e.  and

 reach their convergence value . Thus, 〈R(x)〉 and xc converge to  and

, respectively. Therefore, network reliability moves toward a sharp transition for
infinite size systems, reflecting a first order phase transition from a region of unreliable
subgraphs on one side to a region with only reliable subgraphs on the other side.

VI. CONCLUSION AND FUTURE WORK
The classical concept of network reliability provides a rich theoretical basis, supported by
computational estimation procedures, to study the effect of structural properties on diffusion
dynamics. We have highlighted various features of reliability that provide useful
characterizations of graph structure, e.g. the minimum and maximum number of edges
needed to obtain reliable subgraphs, the average reliability and the critical point. We have
created and made widely available a library of graphs with carefully controlled structural
properties, i.e. assortativity-by-degree and triangles.

Simulation results for Erdős-Rényi and scale-free-like random graphs in this library reveal
that increasing the assortativity and number of triangles has opposite effects on the
probability that an epidemic outbreak will achieve an average attack rate of 20%. We found
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that the required number of edges decreases as the degree assortativity increases; however,
the required number of edges increases as the number of triangles increases. In addition,
average network reliability increases as the degree assortativity increases but decreases as
the number of triangles increases. Moreover, the critical point decreases and the derivative
of reliability at critical point diverges as the degree assortativity increases, while the
opposite is true for increasing number of triangles. In contrast to assortative GNM graphs,
network reliability decreases as assortativity increases for assortative SFL graphs.
Furthermore, we have demonstrated that the transition from unreliable subgraphs to reliable
subgraphs behaves as expected.

Obviously, there are many avenues for future work in this area, such as studying the
relationship between reliability and other common graph statistics. In a companion paper,
we show the relationship between network reliability and statistical physics and we
demonstrate the power of reliability for reasoning about graph structure using the overlaps
of structural motifs. We also introduce a new measure of centrality in [28]– similar to
betweenness but more closely tailored to specific dynamics – and use it to compare graphs.
To extend the application of network reliability to epidemiology, we will use reliability to
characterize large, realistic social networks and the effect of changes brought about by
outbreak control interventions. We will also study an extension of the reliability polynomial
to the case in which the rule allows continuous rather than binary outcomes.
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Appendix A: Implementing A+, A−, T+, and T−
We implement the A± and T± operators using edge swapping, or graph rewiring. We choose
candidate edges uniformly at random from among all the edges in the graph and, if the
candidates meet certain constraints, swap them. Figure 8 illustrates the swaps involved.

Specifically, given a graph G defined by edge set , which includes edges (i, j) and (k, l), the

operator  (resp. ) returns either the same graph new graph G or a G′ with the edge
set  −{(i, j), (k, l)} + {(i, k), (j, l)}, whichever increases (resp. decreases) the assortativity.

That is, . We check the constraints that i, j, k, l are all distinct,
that the edges (i, k) and (j, l) do not already exist, and that the graph G′ remains connected.
(This last constraint can be checked by ensuring that the pairs of vertices originally
connected by edges are in the same component of G′.). Since this edge swap does not
change the degree of the affected vertices, the direction of the change in assortativity is
easily computed by comparing the values didj + dkdl and didk + dj dl.

The triangle operators must satisfy more constraints, both because they are intended to
maintain the assortativity invariant and because triangles are less local than edges. In this
case, we randomly choose a vertex A, and randomly pick two of its neighbors, B and C, that
are not connected by an edge. As illustrated in the right panel of Figure 8, we find a
neighbor D of B that is not A or C, has the same degree as C, and has no neighbors in
common with B. I.e. the edge (B, D) is not a part of any triangle. We repeat this, replacing
vertex B with C to find E, with the additional constraint that E is not a neighbor of D. Then
we swap edges (B, D) and (C, E) for edges (B, C) and (D, E). By construction, this does not
change the assortativity, but it creates at least one more triangle than was present before,
namely (A, B, C).

The T− operator accomplishes the swap from the bottom of the right panel of Figure 8 to the
top of the right panel. We first find vertices (A, B, C) that form a triangle. Then we find an
edge (D, E), such that 1) D and E are both different from A, 2) D and E are not neighbors of
A, B, or C, 3) E has the same degree as B, 4) D has the same degree as C, 5) B and D have
no common neighbor and 6) C and E have no common neighbor. Then, as usual, we swap
edges and test for connectivity in the new graph.
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FIG. 1.
(Online color) Network reliability R(x) for assortative Erdős-Rényi GNM graphs with sizes
V, 2V and 4V. The inset shows the transition from R(x) = 0 to R(x) = 1.
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FIG. 2.
Degree distributions for the Erdős-Rényi graphs, GNM (left panel); and the scale-free like
graphs, SFL (right panel). Note the logarithimic axes for the SFL graphs.
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FIG. 3.
Accessible ranges of assortativity and number of triangles for GNM and SFL graphs.
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FIG. 4.
(Online color) kmin (bottom) and kmax (top) for disassortative, neutral and assortative GNM
(left panel) and SFL (right panel) graphs under an AR-α reliability rule with α=0.2.
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FIG. 5.
The average reliability 〈R(x)〉 (left panel) and the critical points (right panel) for
disassortative, neutral and assortative GNM graphs under an AR-α reliability rule with α =
0.2.
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FIG. 6.
The average reliability 〈R(x)〉 (left panel) and the critical points (right panel) for
disassortative, neutral and assortative SFL graphs under an AR-α reliability rule with α =
0.2.
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FIG. 7.
(Color online) Peak value of the derivative of R(x) for disassortative, neutral and assortative
GNM (left panel) and SFL (right panel) graphs under an AR-α reliability rule with α = 0.2.
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FIG. 8.
(Color online) A degree distribution-preserving edge swap. The four vertices shown are
connected by the edge stubs shown here to the rest of the graph, which is not shown. (left
panel) Assortativity-changing edge swap: In this example, di = 4, dj = 3, dk = 2, and dl = 5.
Hence didj +dkdl = 22 and didk + dj dl = 23 so the graph at the bottom has a higher
assortativity than the one at the top [29, 30]. If the graph at the top is connected, the graph at
the bottom will also be connected if there is a path from i to j. In that case, this will be an
acceptable edge swap for A+, but not for A−. (right panel) Assortativity-preserving and
triangle-changing edge swap: B and D have no neighbors in common, nor do C and E. In
this example, dB = dE = 4 and dC = dD = 2. Hence dBdD + dC dE = 40 = dBdC + dDdE so the
graph at the top has the same assortativity as the one at the bottom. If the graph at the top is
connected, the graph at the bottom will also be connected if there is a path from B to D. In
that case, the swap from top configuration to bottom configuration will be an acceptable one
for T+; the swap in the opposite direction will be acceptable for T−, since the swap cannot
disconnect the graph. This swap changes the number of triangles in the graph by at least one
– more, if B and C have any common neighbors besides A.
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TABLE I

Evaluation of average reliability 〈R(x)〉, , derivative of reliability at critical point and the critical
point xc for GNM graphs with different graph sizes V, 2V and 4V. Each graph has assortativity A = −0.85, 0
and 0.85 and number of triangles T = 100.

A = −0.85 V 2V 4V

〈R(x)〉 0.7935 0.7950 0.7972

0.1522 0.1623 0.1767

0.2550 0.2440 0.2349

0.1028 0.0817 0.0582

18.6515 25.4679 38.7695

xc 0.2066 0.2046 0.2021

A = 0 V 2V 4V

〈R(x)〉 0.8049 0.8066 0.8067

0.1391 0.1563 0.1641

0.2460 0.2319 0.2228

0.1069 0.0756 0.0587

18.7144 25.5718 35.2221

xc 0.1945 0.1925 0.1928

A = 0.85 V 2V 4V

〈R(x)〉 0.8173 0.8228 0.8311

0.1270 0.1462 0.1447

0.2429 0.2172 0.2016

0.1159 0.0710 0.0569

18.9097 27.5449 38.7695

xc 0.1804 0.1759 0.1680
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