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We study models of two sequential enzyme-catalyzed reactions as a basic functional building block
for coupled biochemical networks. We investigate the influence of enzyme distributions and long-
range molecular interactions on reaction kinetics, which have been exploited in biological systems
to maximize metabolic efficiency and signaling effects. Specifically, we examine how the maximal
rate of product generation in a series of sequential reactions is dependent on the enzyme distribu-
tion and the electrostatic composition of its participant enzymes and substrates. We find that close
proximity between enzymes does not guarantee optimal reaction rates, as the benefit of decreasing
enzyme separation is countered by the volume excluded by adjacent enzymes. We further quantify
the extent to which the electrostatic potential increases the efficiency of transferring substrate be-
tween enzymes, which supports the existence of electrostatic channeling in nature. Here, a major
finding is that the role of attractive electrostatic interactions in confining intermediate substrates in
the vicinity of the enzymes can contribute more to net reactive throughput than the directional prop-
erties of the electrostatic fields. These findings shed light on the interplay of long-range interactions
and enzyme distributions in coupled enzyme-catalyzed reactions, and their influence on signaling in
biological systems. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4867286]

I. INTRODUCTION

Biochemical reactions in cells are well-orchestrated by
sequential coupling and tight regulation, and as a result, they
form complex reaction networks, as is observed in signal
transduction,1 gene expression regulation,2, 3 and sequential
metabolic enzymatic reactions.4 Approaches for characteriz-
ing, analyzing, and modeling the networks5–10 have included,
for example, the modeling of biochemical reactions based
on coupled chemical kinetic equations,9 the construction of
topology models of metabolic networks,6 the identification of
functional motifs,10 and modularization7 in biochemical reac-
tion networks. All of these system-level or network-level ap-
proaches have provided useful insights and conceptual frame-
works for better understanding the reaction networks, but a
molecular-level understanding of how biochemical reactions
influence each other is still lacking, even in the relatively sim-
ple two-enzyme coupled reaction cases, which represent min-
imal functional units of reaction networks.

In two-enzyme coupled reactions, the transfer of interme-
diate substrates between enzymes is one key factor in deter-
mining the strength of coupling. In many cases, the interme-
diates are transported via diffusion in solution and thus it is
natural to implement diffusion-reaction equations as a basis
of the system’s physical description. However, the modeling
of realistic biological systems still requires many other con-
siderations such as the molecular crowding effect11 and the
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influence of neighboring reactive molecules,12 in addition to
the primary considerations of chemical reactions themselves
such as identifying reaction sites and determining their reac-
tivities. Because of all these important considerations, it is
very challenging to create models that take into account all
the molecular details in a system. However, consideration of
some molecular factors may be crucial in characterizing the
biological function of the coupled chemical reactions as well
as in determining their reaction efficiencies.

To understand how molecular factors affect two-enzyme
coupled reactions in detail, we focus on the simplest cases
of coupled biochemical reactions where the product of the
first enzymatic reaction is transferred to the second enzyme to
serve as the substrate for the second enzyme-catalyzed reac-
tion. In this case, the reaction events occur sequentially, and so
we can consider that the signal or information flows in a one-
directional way. Thus, sequential enzyme-catalyzed reactions
can be modeled as a transducer in functional motifs of the
network-level approach.10 Furthermore, the functional utility
of this module may be evaluated as the transfer efficiency of
intermediate substrate between two enzymes, and again this
transfer efficiency may be dependent on several molecular
factors including the separation between the two enzymes,
the molecular geometry of the involved enzymes, the exis-
tence of a “crowded” cellular environment, the electrostatic
interactions between enzymes and substrates, as well as other
considerations. Therefore, a central concern is to determine
how the transfer efficiency depends on these molecular pa-
rameters. In fact, this transfer efficiency has been previously
discussed in the context of substrate channeling,13–15 and
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particularly it was suggested that electrostatic interactions
play an important role in sequential enzymatic reactions by
creating electrostatic channels between the two enzymes that
serve to guide the product of the first reaction toward the ac-
tive site of the second enzyme.16–18

Electrostatic channeling is a mechanism of substrate
transport which was first proposed as a possible explanation
for unusually fast reaction kinetics involving coupled two-
enzyme reactions that do not contain any intermolecular tun-
nels capable of shielding the substrate from diffusing into
the bulk solution.13–15, 17 As in a typical instance of substrate
channeling, the role of an electrostatic channel is also to re-
strict the diffusive motion of the substrate to paths between
the two enzymes.18 However, in contrast to substrate channel-
ing by molecular tunnels, this type of “channel” is established
only by electrostatic potential, not by geometric confinement
of the substrate, and thus, there is always a nonzero proba-
bility for the substrate to escape to the bulk solution, result-
ing in a reduced transfer efficiency. With this in mind, it is
critical that the charge distribution responsible for the electro-
static potential favors transport of the substrate to the second
enzyme’s active site. For example, the bifunctional enzyme
Dihydrofolate Reductase-Thymidylate Synthase (DHFR-TS)
from the protozoan Leishmanina major reveals that an elec-
trostatic potential favorable for substrate transport is formed
between two active sites (or two enzymes in our context)
from the x-ray crystal structure.16 A computer simulation18

as well as experimental kinetic19, 20 studies also support the
existence of electrostatic channeling in L. major DHFR-TS.
Later, other instances of electrostatic channeling were ob-
served in sulfate-activating complex,21 Toxoplasma gondii
DHFR-TS,22 and a fusion protein of malate dehydrogenase
and citrate synthase.23

The goal of this work is to systematically study two-
enzyme sequential reactions with a few molecular parameters
as a minimal model for biochemical reaction networks and
also to provide a basic understanding of the role of electro-
static interactions in sequential enzyme-catalyzed reactions
with an emphasis on the formation of electrostatic channel-
ing. For this purpose, we employ simple sphere models that
are similar to the ones in our previous research,12 which re-
tain key molecular parameters such as separation distance be-
tween the two enzymes and electric charges. We numerically
solve the coupled differential equations describing the model
systems and based on the numerical solutions, we investigate
the basic principles behind sequential enzyme-catalyzed re-
actions. Note that the set of coupled equations in our micro-
scopic model is different from a similar set of coupled or-
dinary differential equations in the macroscopic models that
are traditionally implemented in models of enzyme kinetics;
the former has spatial dependence based on diffusion while
the latter does not have spatial dependence but only time-
dependence.

This paper is organized as follows: In Sec. II, we describe
our sequential enzyme reaction model and explain its mathe-
matical and physical background. Next, we discuss the effect
of electrostatic interaction in general terms by implementing
a single enzyme reaction model. In Sec. III, we initially study
the sequential enzyme reactions in non-electrostatic cases by

FIG. 1. Schematic of two sequential enzyme-catalyzed reactions in our
model.

numerically solving the coupled diffusion-reaction equations.
From these solutions, we investigate the coupling effect by
examining the reaction rates as a function of separation be-
tween enzymes. Next, we consider the effect of electrostatic
interactions on the concentrations as well as the reaction rates
(note that in this system, the enzymes and the intermediate
are electrically charged). Finally, we study the cases where
a strong electrostatic potential exists in between two coupled
enzymes and discuss how the inclusion of the electrostatic
potential accelerates the reaction kinetics and causes electro-
static channelling. In Sec. IV, we summarize our findings and
discuss some of the implications of our work.

II. MODEL AND THEORY

A. Sequential enzyme reaction model

To study sequential enzymatic reactions with electro-
static interactions, we introduce a simple reaction model
based on the spherical representation of molecules shown in
Figure 1. For simplicity, we assume the active site of each en-
zyme is uniformly distributed over the sphere surface and the
electric charge is located at the center of sphere. We further
simplify the model by assuming that the system has reached
steady-state and the reactions are diffusion-limited; reactions
in this model occur immediately once two reactants encounter
each other. Moreover, we assume the enzymes have a finite
size, while other chemical species such as substrate are treated
as point particles (but with finite diffusion constants) so that
the reaction encounter distances are the radii of the enzymes.
Since this system represents sequential enzymatic reactions,
the product of the first reaction at Enzyme 1 (E1) is used as the
substrate for the second reaction at Enzyme (E2). We name
this common reactant that participates in both reactions as the
intermediate, thus giving the following reaction scheme:

Reaction 1 : Substrate (S) + Enzyme 1 (E1)

→ Intermediate (I) + Enzyme 1 (E1) ,

Reaction 2 : Intermediate (I) + Enzyme 2 (E2)

→ Product (P) + Enzyme 2 (E2) .

Since one main concern is how the separation between the
two enzymes influences the reactions, we consider various
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TABLE I. Boundary conditions in our sequential enzyme reaction model.
ci and ki (i = S, I, P) are the concentration and the reaction/production rate,
respectively.

Boundary condition (BC) At E1 At E2 At outer boundary

Substrate (S) Absorbing BC Reflecting BC cS = 1
Intermediate (I) kI = kS Absorbing BC cI = 0
Product (P) Reflecting BC kP = kI cP = 0

cases with different separation distances between E1 and E2.
Specifically, we fix the positions of the enzymes in our co-
ordinate system, and in that given separation, we allow other
chemical species to freely diffuse under the influence of elec-
trostatic potentials, with the same diffusion constant. Reac-
tion events are taken into account by the absorbing boundary
conditions such that the concentrations of substrate at E1 and
intermediate at E2 are zero (see Table I).24 Additionally, as a
result of a reaction, we assume that all substrates at E1 are
chemically transformed into the intermediates via enzyme-
catalyzed reactions so that the reaction rate of substrate at E1
is equal to the production rate for intermediate, which is used
for the boundary condition of the intermediate at E1 (see Ta-
ble I). We use an analogous boundary condition for the prod-
uct in reaction 2, when the intermediate reacts with E2 to form
product. In the actual numerical calculation, there is slight nu-
merical disagreement between the given flux from the bound-
ary condition (input) and the calculated flux from the solution
(output). To correct this, we apply a modest scaling factor for
the estimated flux in the boundary condition to ensure that the
calculated intermediate (or product) flux is exactly the same
with the substrate (or intermediate) flux. The scaling factor
(less than 1.25 in most cases) is necessary for computing cor-
rect magnitudes of concentrations as well as production rates,
as is demonstrated in Sec. II B.

In addition to defining the chemical reactions using
boundary conditions, other boundary conditions are also
introduced to make the model mathematically well-posed.
Since the substrate does not react with E2, we use a reflect-
ing boundary condition for the substrate at E2, which means
that E2 only impacts the substrate reaction rate indirectly via
its excluded volume. Similarly, the same reflecting boundary
condition is applied to the product at E1 because the prod-
uct and E1 do not react. Furthermore, since our model is in
steady-state, we assume the substrate is continuously supplied
from the bulk solution, and so at large distances, the con-
centration of the substrate is constant and equal to its bulk
concentration.24 On the contrary, at large distances, we as-
sume that the concentrations of the intermediate and the prod-
uct are zero, supposing that other scavenger molecules con-
sume these chemical species or that they are escaping from
the system. All the boundary conditions mentioned above are
summarized in Table I.

For electrostatic interaction, we employ a simple
Coulombic model for which the steady-state solutions24 and
the time-transient solutions (Green’s functions)25–27 are avail-
able. In the model, the concentration of one reactant (A)
around the other stationary reactant (B) is simply governed

by the following diffusion equation:

∂c

∂t
= ∇D

(
∇c + c

kBT
∇U

)
, (1)

where c, D, kB, T, and U are the concentration of A, the rela-
tive diffusion constant, the Boltzmann constant, the absolute
temperature, and the external potential, respectively. In this
case, U is given by the Coulombic interaction between A and
B, and as in Eq. (2), it can be simply expressed with the Bjer-
rum length (or Onsager length), λB = e2/4πε0εkBT, where e,
ε0, and ε are the elementary charge, the vacuum permittivity,
and the relative permittivity of the solution, respectively,

U (r)

kBT
= q1q2

kBT 4πε0εr
= q1q2λB

r
. (2)

Here, q1 and q2 are the electric charges of A and B in units
of the elementary charge, respectively, and r is the distance
between A and B.

We extend this model to study sequential enzyme reac-
tions by modifying the electrostatic interaction and coupling
the equations with the boundary conditions given in Table I.
In the model, the diffusion equations are formulated in the
following way:

0 = ∇D

(
∇ci + ci

kBT
∇Ui

)
, (3)

with

Ui (r)

kBT
= qE1qiλB

rE1−i

+ qE2qiλB

rE2−i

, (4)

where ci, qi, rE1 − i, rE2 − i, qE1, and qE2 are the concentration
and the charge of i, the distances of i from E1 and E2, and the
charges of E1 and E2, respectively. Here, the index i could
be S (substrate), I (intermediate), or P (product). In principle,
by solving these three coupled equations, we obtain the spa-
tial distributions of concentration and from them, we calculate
other physical quantities such as reaction rate ki, as is shown
below,

ki =
∫

D

(
∇ci + ci

kBT
∇Ui

)
· d �SE, (5)

which is the surface integral of the flux of i over the enzyme
surface of E. We use this quantity to set up the boundary con-
ditions for the intermediate and the product in Table I, but
actually we use a stronger condition where the integrands, or
the fluxes, satisfy the same relations with the integrated ones,
or the rates (e.g., kI = kS), since the chemical reactions can
be position-dependent over the reactive surface. For example,
we use the following boundary condition for the intermediate
at E1:

D

(
∇cS + cS

kBT
∇US

)
= −D

(
∇cI + cI

kBT
∇UI

)
. (6)

Note that the incoming and the outgoing fluxes have oppo-
site signs and are spatially-dependent over the E1 surface. It
is worth noting that for diffusion-limited reactions, the reac-
tion rate is determined by the transport (flux) of reactant to
the reaction site as in Eq. (5). However, when the subsequent
reaction at the enzyme surface occurs at a significantly slower
rate compared to the diffusion process, as is characteristic of
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reaction-limited cases, the observed acceleration of reaction-
diffusion kinetics could have contributions both from an in-
creased intrinsic rate constant at the surface or higher transfer
efficiency (e.g., electrostatic channeling).28

Ideally, it would be desirable to analytically solve the
coupled diffusion-reaction equations to get the exact solu-
tions. However, it is very challenging because of the absence
of a good coordinate system for representing the boundary
conditions given in Table I. We already discussed some de-
tails of this difficulty in our previous work.12 To avoid this
issue and to extend our study to non-spherical systems, we
use a numerical method to solve the equations.

The numerical method we employ essentially consists
of two parts: (1) generating molecular meshes and (2) based
on these meshes, solving the equations numerically. Specif-
ically, we represent our model systems using the meshes in
Cartesian coordinates, and in the discrete space constructed
by the meshes, we numerically solve the differential equa-
tions using the numerical technique called the finite element
method (FEM). The basic idea of the FEM is to reformu-
late partial differential equations in a weak form, and then
use variational methods to obtain stable solutions.29 In detail,
for creating molecular meshes, we use the GAMER toolkit.30

We use higher resolution finite element tetrahedra to numer-
ically estimate the strong concentration gradients arising at
the enzymes, where substrate is generated or depleted, while
far from the reactive centers lower resolution meshes are
employed. For the FEM, we extend the python-based pro-
gram Smolfin31 to apply to our model systems. Smolfin is
the software designed for solving Smoluchowski-type equa-
tions based on the FEniCS solver (http://fenicsproject.org).32

Finally, by solving the coupled equations numerically, we ob-
tain the concentrations of substrate, intermediate, and prod-
uct, and from these concentrations, we calculate the reaction
rates using Eq. (5).

Additionally in our model, we use the normalized con-
centration, which is the concentration divided by the bulk con-
centration of substrate. Thus, a concentration of 1 means that
it has the same concentration as the bulk substrate concentra-
tion. For the diffusion constant, we use D = 780 μm2s−1 of
Ca2+ in solution.31 For other parameters, λB is 7 Å (for wa-
ter at room temperature) and the radius of enzymes is 10 Å
unless otherwise mentioned. The radius of the sphere used to
define the outer boundary condition is 500 Å.

B. Accuracy test of our numerical method
with a single enzymatic reaction

Before we apply the numerical method to our sequen-
tial enzyme reaction system, we first test this method using
the simple Coulombic model of a single enzymatic reaction
to evaluate the accuracy of our numerical calculation. Com-
pared to the sequential reaction model, the reaction scheme
is basically the same, but we ignore the E2-dependent part.
In the single enzyme case, the diffusion-reaction equations
can be solved analytically and the exact solutions are given in
Appendix A. Fig. 2 shows the solutions (concentrations) ob-
tained from our numerical calculation in the electrically neu-
tral case (Fig. 2(a)) and in the charged cases with an enzyme

FIG. 2. (a) Normalized concentration profiles of substrate and product in a
single enzyme reaction model as a function of the distance from the enzyme
in a non-electrostatic case. The left and right insets are the concentrations of
substrate and product, respectively, represented in the color maps (pure red
= 1, pure blue = 0). (b) Normalized concentration profiles of substrates with
qsubstrate, when qE = +1 and qproduct = 0. The inset is the profiles of products
corresponding to the same colored substrates. (c) Normalized concentration
profiles of products with qproduct, when qE = +1 and qsubstrate = 0.

charge of +1 (Figs. 2(b) and 2(c)). To compare the numerical
results with the exact solutions, we calculate the normalized
concentration profiles of the substrate and the product. The
comparison (solid vs. dotted lines) shows close agreement
both in the non-electrostatic and in the electrostatic cases. The
deviations from the exact solutions, especially in the interme-
diate region (d = 20–40 Å), are probably caused by the large
variation of solutions in the volumetric meshes with relatively
low spatial resolution.

Besides examining the concentrations, we also evalu-
ate the accuracy of the reaction rates for the three cases in
Fig. 2(b). The numerical error is less than 5%, as is shown in
Table II.

TABLE II. Reaction rates for the single enzymatic reaction in the three
cases of Fig. 2(b). The enzyme has +1 charge.

Case

Numerical
calculation
(109M−1 s−1)

Analytical
calculation
(109M−1 s−1)

Relative error
(%)

qsubstrate = +1 4.39 4.19 4.8
qsubstrate = +0 6.15 6.02 2.1
qsubstrate = –1 8.28 8.32 0.6

http://fenicsproject.org
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C. Electrostatic effects in a single enzymatic reaction
model

In addition to evaluating the accuracy, the previously de-
scribed single enzymatic reaction model can reveal how the
electrostatic interaction influences the reaction in terms of
the reaction rate of the substrate and the concentration pro-
files. For the attractive case with a substrate charge of −1,
the reaction rate increases compared to the neutral case (see
Table II), and the concentration of substrate is higher than
is calculated for the neutral case (see Fig. 2(b)). Clearly, the
attraction between the substrate and the enzyme bring them
closer and as a result the substrate concentration increases
near the enzyme, and this also leads to an increase of incom-
ing flux of substrate toward the enzyme. In contrast to this, the
electrostatic repulsion experienced with a substrate charge of
+1 exhibits the opposite effect, and thus, the concentration in
Fig. 2(b) is shifted away from the enzyme and the reaction
rate in Table II decreases compared to the other cases. Not
only does the electrostatic interaction between the substrate
and the enzyme affect the substrate itself, but it also affects
the product, despite the product not being charged. This is be-
cause the generating rate for product at the enzyme is directly
proportional to the reaction rate of substrate. Consequently,
for the attractive case, the concentration of product increases,
as shown in the inset of Fig. 2(b). But for the repulsive case, it
shows the opposite trend. Irrespective of this influence, when
the product itself is electrically charged after the reaction, the
electrostatic interaction between the enzyme and the prod-
uct also influences the concentration profile of the product
near the enzyme, as is shown in Fig. 2(c). Consistent with
Fig. 2(b), the attraction with the product charge of –1 in-
creases the local concentration of product around the enzyme,
and the repulsion with the product of charge +1 decreases the
product concentration around the enzyme.

III. RESULTS AND DISCUSSION

A. Sequential enzyme reaction in non-electrostatic
cases

First, we numerically solve the coupled diffusion-
reaction equations for the sequential enzyme reactions in non-
electrostatic cases, to understand the pure coupling effect it-
self before adding the electrostatic features to our model.
Since the coupling effect is dependent on the separation dis-
tance (d), we consider each of the cases with various separa-
tion distances. Fig. 3(a) shows one example with d = 40 Å,
in which the numerical solutions for the substrate, the inter-
mediate, and the product are represented in the color maps. In
the sequential enzyme reactions, the spherical symmetry of
the substrate concentration observed in a single enzyme case
is broken due to the presence of the second enzyme. In fact,
Fig. 3(b) demonstrates that the normalized concentration pro-
file is asymmetric around E1 (as revealed by comparing the
concentrations at x = –40 Å and x = 0 Å). In this case, the
degree of asymmetry is relatively small, but as the size of E2
increases or if E2 is reactive with the substrate, the neighbour-
ing effect by E2 on the substrate becomes significant12 and the
substrate profile would be more asymmetric. For the concen-

FIG. 3. (a) Normalized concentrations of substrate (left), intermediate (mid-
dle), and product (right) in the color maps (pure red = 1, pure blue = 0), when
the separation distance is 40 Å. The white lines are the contours of concentra-
tions in an interval of 0.1 (0.1, 0.2, . . . ) (b) Normalized concentration profiles
of substrate (red), intermediate (blue), and product (green) along the line con-
necting E1 at –20 Å and E2 at 20 Å (c) Reaction rates of the substrate at E1
and the intermediate at E2 are shown as a function of separation.

trations of the intermediate and the product, they also have
asymmetry around E1 and E2. Note that because of leakage
of the intermediate to the bulk during the transport of inter-
mediate from E1 to E2, the amount of product generated at
E2 is less than the amount of intermediate generated at E1,
and thus the concentration of product is also lower than the
concentration of intermediate.

To study the dependence of the reactions on the separa-
tion between two enzymes, we calculate the reaction rates of
substrate at E1 and of the intermediate at E2 as a function
of the separation distance between E1 and E2. As revealed in
Fig. 3(c), the reaction rate for the substrate at E1 is fairly sta-
ble except at the very short separation distances (d < ∼25 Å).
As mentioned previously, when E2 is non-reactive and its size
is relatively small compared to E1, the neighbouring effect is
insignificant so that the rate is very close to the rate as pre-
dicted in the absence of E2. However, the reaction rate for the
intermediate at E2 decreases significantly with the separation.
This is because as the separation increases, the intermediate
has more chances to escape to the bulk solution without re-
acting with E2. This decrease is consistent with observations
made in similar systems.33, 34

Interestingly, as shown in Fig. 3(c), we observe a small
peak (d = ∼22 Å) in the calculated reaction rate of inter-
mediate. This is a result of the coupling between the two
reactions. As we discussed in previous work,12 the reaction
rate is lower in the presence of other particles in the proxim-
ity of a reactant. Thus, to increase the reaction rate of sub-
strate, it is advantageous to separate the two enzymes as far
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FIG. 4. Reaction rate of the intermediate at E2 with σ 2 = 3, 5, 10, 20, and
50 Å. σ 1 ( = 10 Å) and σ 2 are the radii of E1 and E2, respectively.

apart as possible. However, this increasing of separation is a
disadvantage for the second reaction because it increases the
loss of intermediate during transport between the two en-
zymes, and consequently, the reaction rate of intermediate at
the second enzyme decreases. Therefore, since these two op-
posite effects are competing with each other, there could exist
an optimal distance, at which the reaction rate for the second
reaction is maximized. But when E2 is small and non-reactive,
the neighboring effect by E2 does not significantly affect the
reaction at E1 and the challenge of transporting intermediate
with increasing separation becomes more important. In this
case, the maximum reaction rate always appears at the closest
separation distances (or the contact distances).

To clearly see this coupling effect, we further consider
other cases, specifically where E2 is larger than E1 so that the
first reaction is significantly influenced by E2. Fig. 4 shows
that as the size of E2 is increased, the optimal distance for the
maximum reaction rate is shifted from the short contact dis-
tance to larger separation distances. This suggests that when
E2 is much larger than E1, the contact distance is not neces-
sarily the optimal distance for maximizing the reaction rate.

B. Sequential enzyme reaction in electrostatic cases

Next, we study the effect of electrostatic interaction on
sequential enzyme reactions. Since our primary interest is in
the transport of intermediate between the two enzymes, we
restrict ourselves to the cases where the substrate and the
product are electrically neutral but the intermediate is elec-
trically charged. To systematically investigate this subject, we
consider all possible charge combinations of E1, E2, and the
intermediate (I) with charges of +1 and –1. For the sake of
convenience, we introduce a simple notation (qE1, qE2, qI) to
describe the charge on each state variable. The first, second
and third component in the above parenthesis represent the
electric charges of E1, E2, and the intermediate. Since the
Coulomb potential has symmetry with respect to exchanging
charges between particles and inverting all the charges to the
opposite cases, we exclude these duplicate cases in our study;
for example, (+1, +1, –1) and (–1, –1, +1) are equivalent,
and (+1, +1, +1) and (–1, –1, –1) are also equivalent. Thus,
with a fixed charge of +1 on E1, we examine the four cases
of (+1, +1, +1), (+1, +1, –1), (+1, –1, +1), and (+1, –1,
–1). Additionally, we include one neutral case of (+1, –1, 0)
as a reference, which is identical to the non-electrostatic case

FIG. 5. (a) Normalized concentration profile of intermediate along the line
connecting E1 at –20 Å and E2 at 20 Å. (b) Contours of the intermediate
concentrations of 0.5 (near E1) and 0.03 (near E2). (c) Reaction rates of the
intermediate at E2 with the fixed qE1 and various qE2 and qI expressed as a
function of separation distance. (d) Schematic of diffusion processes from E1
and E2 in the system of (qE1, –1, +1).

in Sec. III A. As demonstrated in Sec. III A, for each case, we
solve the coupled equations for a given separation. All these
results are summarized in Fig. 5.

Since the electrostatic interaction can influence both the
concentration and the reaction rate as demonstrated for the
single enzyme case in Sec. II C, we first investigate how the
electrostatic interaction modifies the intermediate concentra-
tion compared to the non-electrostatic case in Sec. III A. In
order to accomplish this, we calculate the normalized con-
centration profiles at d = 40 Å, as was previously performed
in Fig. 3(b). As expected, Fig. 5(a) shows the local concen-
tration of intermediate around E1 increases or decreases de-
pending on the nature of the electrostatic interaction. For the
cases of (+1, ±1, –1) (red and green), where the interaction
between E1 and the intermediate is attractive, the concen-
tration increases compared to the neutral case (black), while
the concentration decreases for the repulsive cases of (+1,
±1, +1) (blue and orange). Although we expect a similar ef-
fect near E2, it is hard to distinguish the lines in Fig. 5(a)
because of the low concentrations. Instead, we calculate the
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contours of concentration of 0.03 for each case in Fig. 5(b).
The contour lines are closer to E2 for the attractive cases of
(+1, +1, –1) (red) and (+1, –1, +1) (blue), while the contour
lines for the repulsive cases of (+1, +1, +1) (orange) and
(+1, –1, –1) (green) are further away from E2, compared to
the neutral case of (+1, –1, 0) (black). Similarly, we also cal-
culate the contours of 0.5, which appear near E1 (the source).
Because of attractive electrostatic interaction in the cases of
(+1, ±1, –1) (red and green), the concentration is relatively
high near E1 and thus, the contour lines appear at larger dis-
tances from E1 compared to the neutral case. However, the
same contour lines for the repulsive cases of (+1, ±1, +1)
(orange and blue) appear at smaller distances from E1.

In fact, the contours (0.03) around E2 in Fig. 5(b) are
directly related to the predicted reaction rates of intermediate.
The observation of higher concentration around E2 implies
that the incoming flux of intermediate toward E2 is greater,
which means the reaction rate is higher. As shown in Fig. 5(b),
we can expect that (+1, +1, –1) (red) has the highest rate
and (+1, +1, +1) (orange) has the smallest rate. Indeed, the
reaction rates as a function of separation distance in Fig. 5(c)
clearly reveal that this trend (see the dotted line in Fig. 5(c)).

Fig. 5(c) shows a general trend that attractive interactions
increase the reaction rate but repulsive interactions decrease
the reaction rate. This result is also consistent with the single
enzyme case in Sec. II C. Thus, the case of (+1, +1, –1) (red),
where both enzymes are attractive with the intermediate, has
the largest rate, and the case of (+1, +1, +1) (orange), where
both enzymes are repulsive, has the lowest reaction rate. In
Fig. 5(c), it is also interesting to compare the case of (+1, –1,
+1) (blue) with the case of (+1, –1, –1) (green), where the
interaction with one enzyme is attractive but the interaction
with the other enzyme is repulsive. In this case, a central ques-
tion is which side between E1 and E2 contributes the most in
determining the reaction rate at E2. Fig. 5(c) shows that the
electrostatic interaction at the E2 side is more influential than
the interaction at the E1 side. For example, in the case of (+1,
–1, +1) (blue), the influence from the attraction between E2
and the intermediate is dominant over the influence from the
repulsion between E1 and the intermediate, so that the reac-
tion rate is larger than that observed in the neutral case. An-
other interesting observation from Fig. 5(c) is that near the
contact distance (d < ∼22 Å), the reaction rates in the cases
of (+1, –1, +1) (blue) and (+1, –1, –1) (green) are approxi-
mately the same as the reaction rates calculated for the neutral
case (black). This can be simply explained by the case of two
oppositely charged enzymes in close proximity, where the at-
traction and the repulsion cancel each other, which results in
electrostatic interactions not playing a large role.

If we only consider the electrostatic potential generated
by E1 and E2, one might predict that the reaction rate in the
case of (+1, –1, +1) (blue) would be higher than the reac-
tion rate in the case of (+1, +1, –1) (red) because of the
directional potential gradient from E1 to E2. However, this
prediction is not true when we consider both the electro-
static potential and the probability density (or concentration)
of the intermediate together. For this discussion, we consider
the model with (qE1, –1, +1), as is shown in Fig. 5(d). With
the electrostatic potential, we can imagine the diffusion pro-

cess of the intermediate from E1 to E2. Since the potential is
position-dependent, we consider two extreme cases of the dif-
fusion process. The first case is where the intermediate is gen-
erated at the closest point to E2 on the E1 surface and it dif-
fuses along the path connecting the centers of E1 and E2 (see
the blue dashed line in Fig. 5(d)). This is the case where the
intermediate feels the potential gradient maximally; particu-
larly, for the cases with qE1 > 0, the potential is monotonically
decreasing with the greatest slope along the direction from E1
to E2. Since this is essentially a one-dimensional problem, we
can solve the corresponding diffusion-reaction equation, and
the solution is given in Appendix B. In a steady state with a
given production rate at E1, the solution indicates that the re-
action rate does not depend on the electrostatic potential, or
qE1. This is because in this one-dimensional case, the produc-
tion rate at E1 should be the same with the reaction rate at E2
to maintain the steady state, irrespective of the electrostatic
potential. Physically, this can be interpreted as the result of
the cancelation between two opposing effects of electrostatic
potential. For example, in the flux from E1 to E2 for qE1 > 0,
the kinetic gain directly from the potential gradient (∇Ui in
Eq. (5)) is exactly balanced by the loss in the probability den-
sity of the intermediate due to the repulsion (the decrease of
the concentration ci in Eq. (5)), while for qE1 < 0, the kinetic
loss is compensated by the gain in the probability density due
to attraction. Therefore in this case, there is no advantage to
considering the directional electrostatic potential (qE1 > 0).
The second case is where the intermediate is generated at the
farthest point from E2 on the E1 surface and it subsequently
diffuses to E2 (see the red dotted line in Fig. 5(d)). In this
second case, the balance we discussed in the first case can-
not hold and it is advantageous to have more negative qE1 to
accelerate the kinetics than to have a more positive qE1. This
is because for qE1 > 0, the electrostatic repulsion pushes the
intermediate away from E2 and also decreases the probability
density (kinetic loss, and loss in probability density), while
for qE1 < 0 the attraction brings the intermediate closer to E2
and increases the probability density (kinetic gain, and gain
in probability density). Overall, (qE1 < 0, –1, +1) (or equiv-
alently (qE1 > 0, +1, –1)) can have larger reaction rates than
(qE1 > 0, –1, +1) (or equivalently (qE1 < 0, +1, –1)).

From the discussion above, we conclude that it is diffi-
cult to accelerate the reaction kinetics using the directionality
only from the electrostatic potential gradient, but it is more
effective to use attractive electrostatic potential for increasing
the probability density (or concentration), by preventing the
intermediate from diffusing away to the bulk solution. Actu-
ally, within the confined space made by attractive electrostatic
potential, the directionality in diffusion naturally comes from
the concentration gradient between the enzymes (source and
sink). Thus, it seems that individual attractive electrostatic po-
tentials between each enzyme and the intermediate for con-
fining the intermediate is more important than the directional
electrostatic potential between the two enzymes. Because of
this, we observe that the case where all the enzymes are op-
positely charged to the intermediate is the most favourable
for accelerating sequential reaction kinetics (red in Fig. 5(c)),
while the opposite case with the same charges is the most
unfavourable (orange).
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C. Electrostatic channeling in sequential enzyme
reactions

1. Effect of the electrostatic potential formed
in between two enzymes

In Sec. III B, we systematically studied the influence of
the electrostatic interaction between the charged enzymes and
the charged intermediate and we discussed electrostatic con-
ditions that can maximize the reaction rate. Here, we discuss
how we can further accelerate the kinetics by further restrict-
ing the diffusive motion to the path between the two enzymes.
In order to do this, we place a small non-reactive charged par-
ticle (an electrostatic mediator) with a radius of 3 Å in be-
tween the two enzymes, to create additional attractive electro-
static potential. In this case, although the added particle is not
directly involved in any of the enzyme-catalyzed reactions, it
can affect the sequential enzyme reactions by increasing the
transfer efficiency of intermediate between two enzymes. As
we discussed in our previous work,12 this mediator is so small
that the excluded volume effect is negligible. Therefore, we
can conclude that the role of the electrostatic mediator is only
to provide electrostatic potential between two enzymes. In the
diffusion-reaction equation, the non-reactivity of the mediator
gives a reflecting boundary condition.

Since we are interested in maximizing the reaction rate,
we use the system of (+1, +1, –1) from Sec. III B. This
system has the largest reaction rate and we put the media-
tor in the middle between the two enzymes. We examine the
three cases where the mediator can have a charge of +1, 0, or
–1. For each case, we solve the coupled equations and obtain
the concentration of intermediate as the solution of the equa-
tions. At d = 40 Å, the electrostatic potential generated by the
two enzymes and the mediator is shown in the left panel of
Fig. 6(a) and the concentration of intermediate is also dis-
played in the right panel of Fig. 6(a). When the media-
tor is positively charged (top in Fig. 6(a)), the potential
is higher than in the neutral case (middle). This increases
the concentration of the negatively charged intermediate lo-
cated in between E1 and E2 and consequently, the reac-
tion rate increases. However, when the intermediate is nega-
tively charged (bottom), the trend is opposite to the positively
charged case (top). Note that for all the cases, the electrostatic
potential is symmetric. As a result, there is no directional-
ity between E1 and E2, as has been previously observed in
Brownian dynamics simulations of bifunctional DHFR-TS.18

However, as we mentioned before, the diffusive motion of the
intermediate has a natural directionality due to the concentra-
tion gradient developed between the source (E1) and the sink
(E2). By combining the electrostatic effect and the concen-
tration gradient together, the flux toward E2 is the largest in
the positive potential case (top). In fact, the stream lines per-
pendicular to the contours in the right panel of Fig. 7(a) (red
dashed lines) clearly support this mechanism because more
lines lead to E2 compared to the other cases that are examined.

To better understand how this electrostatic mediator ef-
fect is dependent on the separation between the two enzymes,
we calculate the reaction rate as a function of the separation
distance. The result is presented in Fig. 6(b). As the separa-
tion distance increases, the mediator effect decreases because

FIG. 6. (a) Electrostatic potential created by E1, E2, and the mediator (left
panel) and the normalized concentration of intermediate (right panel) in the
color maps. In the left panel, units are kBT/e, and pure blue and pure red
represents 3.1 kBT/e and –1.7 kBT/e, respectively. In the right panel, pure
red represents the maximum value in each case, and pure blue corresponds
to zero. The red-dashed arrow lines indicate the flow lines perpendicular to
the contours. (b) Reaction rate of the intermediate at E2 with and without a
charged or uncharged mediator.

the electrostatic potential gets weaker between the enzymes.
At each separation distance, the case of a mediator with
+1 charge has the largest reaction rate while the case with
–1 charge has the lowest reaction rate. As expected, we see
that the reaction rate in the uncharged mediator (green) is very
similar to the one in the case without the mediator (dotted
line). Based on the results from this study, we find that the
reaction rate can vary significantly for a system depending on
the nature of the electrostatic potential formed in between the
two enzymes.

2. Formation of an electrostatic channel

From Sec. III C 1, we know that an electrostatic poten-
tial that restricts the diffusive motion of the intermediate to
the inter-enzyme space can significantly increase the reaction
rate. Now the question is how much the reaction kinetics can
be enhanced by strengthening the attractive electrostatic po-
tential, and also if we can observe any supporting evidence
for the existence of electrostatic channelling. To investigate
this question, we extend the method above to include addi-
tional positively charged mediators between the two enzymes
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FIG. 7. (a) Reaction rate of the intermediate at E2 in the system of (+1, +1,
–1) with positively charged mediators (M), as a function of the separation
between E1 and E2. For each curve, the smallest distance in the plot corre-
sponds to the distance where E1, E2, and mediators are touching each other.
(b) At d = 100 Å, the reaction rate of the intermediate at E2, as a function of
the number of mediators. (c) Color maps of the concentration of intermediate
with different numbers of mediators, up to eleven. Pure red indicates high
concentration region (≥1.5).

in the system of (+1, +1, –1) with equal spacing of the in-
serted mediators in the inter-enzyme space. Again, we solve
the coupled differential equations with the given numbers of
mediators and determine the reaction rates as a function of
separation between the two enzymes. Fig. 7(a) shows that the
reaction rate remarkably increases with additional mediators
when compared to the case without any electrostatic mediator.
For example, at d = 90 Å, the reaction rate in the case with
eleven mediators (orange) is five times larger than the one in
the case without any mediator (black). Also, this strong elec-
trostatic potential maintains high reaction rate even at large
distances. For example, along the dotted line in Fig. 7(a), the
case of eleven mediators (orange) still can have a similar mag-
nitude of the maximum reaction rate in the absence of media-
tor (black), even at distances greater than 100 Å.

Next, in order to investigate the relationship between
the number of mediators and the reaction rate, we plot the
reaction rate as a function of the number of mediators at
d = 100 Å. Note that this separation distance may be com-
parable to the separation distances reported in examples of
substrate channeling in real metabolic pathways; for exam-
ple, ∼25 Å in tryptophan synthase (molecular tunnel),35

∼40 Å in bifunctional DHFR-TS (electrostatic channeling),16

and ∼100 Å in carbamoyl phosphate synthetase (molecular

tunnel).36 Fig. 7(b) shows that the reaction rate increases in
a nonlinear manner, and with the number of mediators it ap-
proaches the production rate for the intermediate at E1 (∼6
× 109M−1s−1, see Fig. 2(b)). In fact, when there is a strong
electrostatic field with twelve mediators, the reaction rate at
E2 reaches approximately 80% of the production rate, which
reveals very high transfer efficiency of the intermediate be-
tween E1 and E2.

In addition to the change in the reaction rate, we also
study the influence of electrostatic potential on the concentra-
tion of intermediate. For this study, we represent the concen-
tration of the intermediate using the color maps in Fig. 7(c).
In these maps, we use pure red color to represent high con-
centration regions (concentration ≥ 1.5) to more clearly vi-
sualize the concentration change. As revealed by these maps,
as the number of mediators increases, the high concentration
is extended from E1 to E2 and the concentration direction-
ality from E1 and E2 is developed. For example, when the
number of mediators is low, we see isolated red regions, but
when the number of mediator is larger than six, we see one
dominant red region. Note that once the large red region is
formed, the high concentration region is maintained without
expanding but is still localized. Therefore, the strong electro-
static potential generated by the mediators induces a high con-
centration region between the two enzymes, which essentially
creates a channel which is functionally similar to the substrate
channels formed by molecular tunnels. This study strongly
suggests that when a strong attractive electrostatic potential
exists between the enzymes, there can be a high probability
of having electrostatic channeling in sequential reactions.

IV. CONCLUSIONS

In this work, we have studied two aspects of sequen-
tial enzyme reactions using simple diffusion-limited reaction
models, coupling and electrostatic effects. For the coupling
effect, it may be a common belief that the overall reaction rate
for sequential enzyme reactions is maximized when the two
reaction sites are at the closest distance. However, we showed
that this is not always true. In the cases where the second en-
zyme is large enough, we observed that the maximal reaction
rate is displaced from the point of minimal separation. There-
fore, although the reaction events take place sequentially from
the first enzyme to the second enzyme, the second enzyme
conversely affects the reaction at the first enzyme, which in-
dicates that the two reactions are mutually influenced by the
interaction between the two enzymes.

For the electrostatic effect, we systematically studied
how electrostatic interactions influence the transportation of
the intermediate between two enzymes with a focus on un-
derstanding the role of electrostatic interactions accelerating
the reaction kinetics. In this study, we found that when the
interaction between each enzyme and the intermediate is at-
tractive, the reaction rate is maximized. We also considered
other cases in which non-reactive particles participate in the
sequential reactions by changing electrostatic potential in be-
tween the two enzymes. In these cases, we showed that when
the generated potential from the mediators is strongly at-
tractive for the intermediate, the reaction rate is remarkably
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increased, as is the concentration of the intermediate between
the enzymes. This is similar to what would be expected in sit-
uations where the substrate is channelled via molecular tun-
nels. This result strongly supports the existence of electro-
static channeling as proposed in the previous studies.16–18 A
key finding here is that the effect of electrostatic attraction
in keeping the intermediate “in play” may be more important
than the directional properties of the electrostatic field.

An important question raised from this study is which
systems in nature can possibly have such electrostatic chan-
neling besides the known systems such as DHFR-TS. Our
study suggests that as long as strong attractive electric po-
tential is formed in between the two sequential enzymes, the
possibility of an electrostatic channel exists. One possible
way to establish such a strong potential is that two consec-
utive enzymes form a complex, and the intermediate diffuses
along an electrostatic channel formed on the molecular sur-
face with charged residues, as in the bifunctional DHFR-TS
enzyme.16, 17 Additionally, this electrostatic channeling may
have some potential applications; for example, it may be used
to design enzyme complexes in modulating the reaction rates,
or to design drugs capable of breaking or weakening the trans-
fer efficiency of electrostatic channels.

In this study, we investigated the steady-state reaction ki-
netics at fixed separation distances between two enzymes, but
in real biological systems, the enzymes can also diffuse under
the influence of interactions with other biomolecules. Con-
sidering this effect, the separation distances could vary as a
function of time. Further examination of how reaction kinet-
ics is modulated for mobile enzymes could be performed in
future studies, which we expect will give considerable insight
into the kinetics of complex reaction networks in cells.
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APPENDIX A: STEADY-STATE SOLUTION OF THE
DIFFUSION-REACTION EQUATION IN A SINGLE
ENZYME REACTION MODEL

In a steady-state single enzymatic reaction (S + E → P
+ E), the diffusion-reaction process is governed by the fol-
lowing differential equation with a Coulomb potential U,

0 = ∇D

(
∇ci + ci

kBT
∇Ui

)
(A1)

with

Ui (r)

kBT
= qEqiλB

rE−i

, (A2)

where ci, qi, rE−i, qE, and λB are the concentration and the
electric charge of i, the distance of i from the enzyme (E),

the charge of the enzyme and the Bjerrum length (or Onsager
length), respectively. Here, the index i indicates the substrate
(S) or the product (P).

In this model, since we use the spherical representation
of molecules, it is natural to employ the spherical coordinates.
Using these coordinates, Eq. (A1) can be rewritten in the fol-
lowing way:

0 = 1

r2

d

dr
r2D

(
dci

dr
− ci

qEqiλB

rE−i
2

)
. (A3)

After some further manipulation, this equation is simply re-
duced to the following second-order ordinary differential
equation:

0 = r2c′′ + (2r − Qi) c′, (A4)

where

Qi = qEqiλB.

For the substrate (S), the boundary conditions are given by
cS(R1) = 0 (reaction) and cS(R2) = 1 (bulk concentration).
Here, R1 and R2 are the radii for the inner and outer boundary
conditions. For the product (P), the boundary conditions are
kP(R1) = kS(R1) (production rate = reaction rate) and cP(R2)
= 0 (escape from the system).

By solving the coupled equations with the given bound-
ary conditions, we can obtain the solutions for the substrate
and the product. From the solutions, the normalized concen-
tration of substrate is given by

cS (r) = exp(QS/R2) (exp (QS/R1 − QS/r) − 1)

exp (QS/R1) − exp (QS/R2)
, (A5)

and the reaction rate kS is

kS = 4πD

(
QSexp(QS/R2)

exp (QS/R1) − exp (QS/R2)

)
. (A6)

Note that as R2 approaches infinity, we can get the familiar
expressions.24 Furthermore, as QS goes to zero, cS(r) and kS

approach the Smoluchowski concentration, cS(r) = 1 − R1/r,
and the Smoluchowski rate, kS = 4πR1D, respectively.

For the product, the normalized concentration cP(r) is
given by

cP (r) = kS

4πDQP

(1 − exp (QP /R2 − QP /r)) . (A7)

In the non-electrostatic limit with R2 = ∞, cP(r) is simply
reduced to R1/r and in this case cS(r) + cP(r) = 1, independent
of r.

We use these analytical solutions to compare with our
numerical solutions.

APPENDIX B: STEADY-STATE SOLUTION
OF THE DIFFUSION-REACTION EQUATION
FOR THE INTERMEDIATE IN A ONE-DIMENSIONAL
SEQUENTIAL ENZYME REACTION MODEL

Let us assume that one enzyme (E1) with a radius of σ 1

and a electric charge of qE1 is located at –d/2, and the other
enzyme (E2) with σ 2 and qE2 = −1 is at d/2 in a coordinate
system, and the intermediate (I) with qI = +1 is generated at
the E1 surface and diffuses to the E2 surface with a diffusion
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FIG. 8. Schematic of simplified one-dimensional diffusion of the intermedi-
ate between E1 and E2 under the electrostatic potential generated by both E1
and E2.

constant D, along the shortest pathway between E1 and E2.
Since this is essentially a one-dimensional problem, we can
introduce an equivalent one-dimensional coordinate system,
where E1 is at the origin and E2 is at d, as shown in Fig. 8.

In a steady-state with a given production rate for the in-
termediate at E1 (kS), the diffusion-reaction equation is

0 = d

dx
D

(
dcI

dx
+ cI

kBT

dUI

dx

)
, (B1)

where

UI

kBT
= qE1 · (1) · λB

x
+ (−1) · (1) · λB

d − x
.

The boundary conditions are given by(
dcI

dx
+ cI

kBT
dUI

dx

)∣∣∣
x=σ1

= −kS and cI (d − σ2) = 0. Note

that in the first boundary condition, the negative sign denotes
an outgoing flux.

In fact, because of the boundary condition at σ 1 and the
steady-state condition in Eq. (B1), the flux is always −kS, ir-
respective of UI. Thus, the reaction rate at E2, or the negative
flux at x = d − σ 2, is kS. Physically, this makes sense because
in order to maintain a steady-state in the one-dimensional
case, the flux should be preserved, so that the production rate
at E1 must be the same with the reaction rate at E2, indepen-
dent of UI.

However, UI influences the concentration of intermedi-
ate between the two enzymes. To show this without loss of
generality, we can consider a case with qE2 = 0, where the
analytical solution is available,

cI (x) = kS exp(−qE1λB/x) ×
(

−qE1λBEi

(
qE1λB

d − σ2

)

+ qE1λBEi

(
qE1λB

x

)
+ (d − σ2) exp

(
qE1λB

d − σ2

)

− xexp

(
qE1λB

x

))
, (B2)

where Ei is the exponential integral.
The solutions for λB = 7Ȧ, σ1 = σ2 = 10 Ȧ, d = 50 Ȧ,

and kS = 1 with various qE1 are given in Fig. 9. Again,
the flux is always constant (−kS) which is independent of
qE1 and x. Thus, the potential gradient between E1 and
E2 is not important for the kinetics, but the potential be-
tween E1 and I influences the concentration of interme-
diate, as is shown in Fig. 9. Even though the concentra-
tion is different in each case, the reaction rate is always
the same because of the cancellation between two oppos-
ing effects. For example, for repulsive cases (qE1 > 0), the
loss of concentration due to the repulsion (blue in Fig. 9)

FIG. 9. Concentration profiles of intermediate along the x axis in the one-
dimensional system of (qE1, 0, +1).

is compensated by the kinetic gain from the same repul-
sion ( dUI

dx
< 0 in the flux), while for the attractive cases (qE1

< 0), the kinetic loss from the attraction ( dUI

dx
> 0 in the

flux) is compensated by the gain in the concentration (red in
Fig. 9). This balance physically explains why the flux is al-
ways constant.
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