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Purpose: In cardiac ablation therapy, accurate anatomic guidance is necessary to create effective
tissue lesions for elimination of left atrial fibrillation. While fluoroscopy, ultrasound, and elec-
troanatomic maps are important guidance tools, they lack information regarding detailed patient
anatomy which can be obtained from high resolution imaging techniques. For this reason, there has
been significant effort in incorporating detailed, patient-specific models generated from preoperative
imaging datasets into the procedure. Both clinical and animal studies have investigated registration
and targeting accuracy when using preoperative models; however, the effect of various error sources
on registration accuracy has not been quantitatively evaluated.
Methods: Data from phantom, canine, and patient studies are used to model and evaluate registration
accuracy. In the phantom studies, data are collected using a magnetically tracked catheter on a static
phantom model. Monte Carlo simulation studies were run to evaluate both baseline errors as well as
the effect of different sources of error that would be present in a dynamic in vivo setting. Error is
simulated by varying the variance parameters on the landmark fiducial, physical target, and surface
point locations in the phantom simulation studies. In vivo validation studies were undertaken in six
canines in which metal clips were placed in the left atrium to serve as ground truth points. A small
clinical evaluation was completed in three patients. Landmark-based and combined landmark and
surface-based registration algorithms were evaluated in all studies. In the phantom and canine studies,
both target registration error and point-to-surface error are used to assess accuracy. In the patient
studies, no ground truth is available and registration accuracy is quantified using point-to-surface
error only.
Results: The phantom simulation studies demonstrated that combined landmark and surface-based
registration improved landmark-only registration provided the noise in the surface points is not exces-
sively high. Increased variability on the landmark fiducials resulted in increased registration errors;
however, refinement of the initial landmark registration by the surface-based algorithm can compen-
sate for small initial misalignments. The surface-based registration algorithm is quite robust to noise
on the surface points and continues to improve landmark registration even at high levels of noise on
the surface points. Both the canine and patient studies also demonstrate that combined landmark and
surface registration has lower errors than landmark registration alone.
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Conclusions: In this work, we describe a model for evaluating the impact of noise variability
on the input parameters of a registration algorithm in the context of cardiac ablation therapy.
The model can be used to predict both registration error as well as assess which inputs have the
largest effect on registration accuracy. © 2014 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4861712]
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1. INTRODUCTION

Catheter ablation therapy is a minimally invasive procedure
for treating atrial fibrillation, a condition in which the atria
of the heart beat rapidly and irregularly. In this procedure, a
catheter is guided into the left atrium and radiofrequency en-
ergy is delivered into the endocardial wall to interrupt aberrant
electrical pathways. While the exact etiology of the disease is
unknown, it is believed that the ectopic foci often originate
in the pulmonary veins.1 For this reason, a typical treatment
strategy is to ablate circumferential patterns around each pair
of pulmonary veins in order to achieve electrical isolation
within the left atrium.2 Accurate anatomic guidance is nec-
essary to create effective tissue lesions in order to eliminate
fibrillation.

Guidance of the catheter relies on real-time imaging
technologies such as fluoroscopy and intracardiac ultrasound
as well as generation of a three-dimensional electroanatomic
map of the left atrium and pulmonary veins. This map is
constructed by sampling points on the left atrial endocardial
surface with a tracked catheter and reconstructing a surface to
produce a rough estimate of 3D patient anatomy. While fluo-
roscopy, ultrasound, and electroanatomic maps are important
guidance tools, they lack sufficient information regarding
detailed patient anatomy which can be obtained from high
resolution imaging techniques such as computed tomography
(CT) and magnetic resonance imaging. For this reason,
there has been significant effort in incorporating detailed,
patient-specific models into the ablation procedure.3–9

Incorporating a preoperative patient model into a cardiac
ablation procedure requires several steps. Prior to the proce-
dure, a patient-specific model is constructed by segmenting
the left atrium and pulmonary veins from a high-resolution
imaging scan and tessellating the binary segmentation to cre-
ate a surface model. During the procedure, the tip of the
catheter is magnetically tracked in three-dimensional space.
The transformation between real-world patient space and pre-
operative image space is computed using a combination of
paired landmark and surface-based alignment techniques. The
computed transformation is applied to the tracked catheter to
provide real-time guidance in reference to the patient-specific
model.

Both clinical10–16 and animal3, 4, 7, 17, 18 studies have investi-
gated registration and targeting accuracy when using preoper-
ative models; however, the effect of various error sources on
registration accuracy has not been quantitatively evaluated. In
this work, we propose a model for evaluating the impact of
noise variability on the input parameters of a standard reg-
istration approach in the context of cardiac ablation therapy.
The model can be used to predict registration error as well as

assess which inputs have the largest effect on registration ac-
curacy. First, we characterize the inherent errors in computing
a registration transformation between real-world patient space
and image-space using a magnetically tracked catheter and a
static left atrial patient model. Next, we evaluate how different
sources of error in a dynamic in vivo setting affect the regis-
tration accuracy by varying the noise on the input parameters
in a series of Monte Carlo simulations. The results from the
Monte Carlo simulations are then compared with those found
in in vivo canine and patient studies. The main contribution of
this work is the quantitative assessment of the effect of var-
ious error sources on registration accuracy in the context of
cardiac ablation therapy.

2. METHODS

2.A. Registration algorithm and error metrics

In this section, we define the types of points collected for
use in the registration algorithm along with details of the al-
gorithm itself. We also define each of the error metrics used
throughout the paper to evaluate the registration results. The
goal of the registration algorithm is to compute a transfor-
mation between the real-world patient space and preopera-
tive image-space. Inputs to the algorithm are a preoperative,
patient-specific surface model, a collection of anatomic land-
mark fiducial pairs, and a set of surface points. In this work,
all preoperative models are generated from high-resolution
CT scans. First, the left atrium and pulmonary veins are seg-
mented from a CT dataset using a previously validated, semi-
automatic segmentation algorithm.19 Next, a surface model is
generated from the segmented binary volume using a modi-
fied marching cubes method with an adaptive polygonal re-
duction step.20 Anatomic landmark fiducials are defined in
image-space by clicking with a mouse on the surface model.
The location of these image landmark fiducial locations are
defined as P ILF. Anatomic landmark fiducials are defined in
physical space by positioning the tracked catheter at the cor-
responding anatomical location and sampling a point. The lo-
cation of these physical landmark fiducial locations are de-
fined as PPLF. Physical surface points, defined as PS , are also
collected with the tracked catheter by sequentially positioning
the catheter on the left atrial endocardial surface and sampling
a point.

The registration algorithm consists of two steps. In the first
step, a point-based, rigid registration,21 TLF, is found to min-
imize the distance between the anatomical landmark fiducial
in image-space and physical space as follows:

C(TLF) =
N∑

i=1

|TLF(PPLFi
) − P ILFi

|2, (1)
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where C(TLF) is the cost associated with the landmark-
based registration transformation TLF and N is the num-
ber of landmark fiducial pairs. In the second step, the ini-
tial landmark registration is refined using a point-to-surface
distance minimization between the transformed surface
points, P̂S = TLF(PS), and the preoperative surface model.
A downhill simplex optimization is used to minimize

C(TS) =
N∑

i=1

d(TS( P̂ si
)), (2)

where C(TS) is the cost associated with the surface-based
registration transformation TS, d() is the distance from a trans-
formed surface point to the preoperative surface model, and
N is the total number of surface points. d() is the distance
transform from the model surface boundary, with value zero
at the boundary and increasing positively in both directions
away from the boundary. Registration results are evaluated
using fiducial registration error (FRE),21 target registration er-
ror (TRE),21 and point-to-surface (PTS) distances defined as
follows.

Fiducial registration error:

FRE2 = 1

N

N∑

i=1

|TLF(PPLFi
) − P ILFi

|2, (3)

where N is the number of anatomical landmark fiducial pairs.
FRE quantifies the residual error between fiducial point pairs
following landmark registration.

Target registration error following landmark registration:

TRE2
LF = 1

N

N∑

i=1

|TLF(PPTi
) − P ITi

|2, (4)

where N is the number of targets, PPT are the physical tar-
get locations, and P IT are the image target locations. TRELF

quantifies the error between transformed physical target loca-
tions and image target locations using landmark registration
only. Targets are known locations, separate from the landmark
fiducial points, used to measure registration accuracy.

Target registration error following landmark and surface
registration:

TRE2
LF+S = 1

N

N∑

i=1

|TS( ˆPPTi
) − P ITi

|2, (5)

where ˆPPT = TLF(PPT) are the physical targets transformed
by the landmark registration and N is the number of tar-
gets. TRELF+S quantifies the error between the transformed
physical target locations and the image target locations using
landmark registration refined by surface-based registration.

Point-to-surface registration error following landmark
registration:

PTSLF = 1

N

N∑

i=1

d(TLF(PTSi
)), (6)

where N is the number of test surface points, PTS, which is a
separate set of surface points that are not used to compute the
transformation TS in Eq. (2).

Point-to-surface registration error following landmark and
surface registration:

PTSLF+S = 1

N

N∑

i=1

d(TS( ˆPTSi
)). (7)

where ˆPTS = TLF(PTS) is a set of N test surface points trans-
formed by the landmark registration.

2.B. Phantom studies

A physical phantom was constructed from a patient dataset
using the following steps. First, the left atrium and pulmonary
veins were segmented from the CT scan of a patient dataset.
Next, image target points, P IT, were marked in six locations
across the left atrium and these locations were recorded. A
surface model was generated and subsequently printed using
a Z Corporation Spectrum Z510 rapid prototyping printer. A
volume rendering of the computer model and the correspond-
ing physical model are shown in Fig. 1. The physical tar-
get locations, PPT, have a direct one-to-one correspondence
with the known image target locations, P IT, and are used for
registration validation.

Data were collected on the physical phantom with a 7 F
(2.3 mm tip), magnetically tracked catheter interfaced to a
Biosense CARTO XP system (Diamond Bar, CA) using a re-
search API for direct access to catheter locations. These loca-
tions were read into our inhouse prototype research system22

which we used for all registration and visualization tasks.
Point locations were collected at the six target locations, four
anatomical fiducial locations, and across the surface of the
left atrium and pulmonary veins. The four anatomical loca-
tions are: the carina between the left atrial appendage and left
superior pulmonary vein, the inferior point of the left inferior
pulmonary vein ostium, the inferior point of the right inferior
pulmonary vein ostium, and the superior point of the right
superior pulmonary vein. Data were collected as follows:

1. The catheter tip was positioned on each of the six
marked physical targets, PPT, and one sample of the

(a)

(b)

FIG. 1. (a) Surface model with target locations. (b) Printed physical model.
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catheter location was recorded. This was repeated 20
times.

2. The catheter tip was positioned on each of the four
physical landmark fiducials, PPLF, and one sample of
the catheter location was recorded. This was repeated
20 times.

3. The catheter tip was positioned across the left atrium,
left atrial appendage, and pulmonary veins and a total
of 400 surface points, PS , were sampled and recorded.

4. On the image-derived surface model, the mouse was
positioned at each of the four image landmark fiducial,
P ILF, and the location was recorded. This was repeated
20 times.

Monte Carlo simulations were run to quantify registration
error in both the static phantom set-up as well as simulated
in vivo procedures. For the static phantom, the x, y, and z lo-
cations for each of the PPT, PPLF, and P ILF are modeled as
Gaussian distributions,

f (p; μ, σ ) = 1

σ
√

2π
e−(p−μ)2/2σ 2

(8)

with μ and σ estimated from data collected on the phantom
and image-derived surface model. The mean of the physical
targets, μPTij

, and standard deviation of the physical targets,
σPTij

, for i = 1...6 and j = 1, 2, 3 where i is each of the physical
targets and j is each of the x, y, and z dimensions, are estimated
as the mean and variance of the 20 sampled locations recorded
in Step 1. The mean of the physical landmark fiducials, μPLFij

,
and the standard deviation of the physical landmark fiducials,
σPLFij

, for i = 1...4 and j = 1, 2, 3 where i is each of the
physical landmark fiducials and j is each of the x, y, and z
dimensions, are estimated as the mean and variance of the 20
sampled locations recorded in Step 2. The mean of the image
landmark fiducials, μILFij

, and standard deviation of the image
landmark fiducials, σILFij

, for i = 1...4 and j = 1, 2, 3 where i
is each of the image landmark fiducials and j is each of the x,
y, and z dimensions, are estimated from the locations recorded
in Step 4.

Surface points are modeled as PS + η where PS are points
collected in Step 3 and each of the x, y, and z components
of η is modeled as zero mean, ση Gaussian random noise.
Image target locations, P IT, are known, deterministic loca-
tions recorded during construction of the phantom. For all
simulated inputs, a standard Box-Muller method23 is used to
generated random deviates with a Gaussian distribution.

A block diagram of the Monte Carlo simulation is shown
in Fig. 2 with each step detailed below.

1. Generate random samples of the locations for each of
the PPLF from f (p; μPLFij

, σPLFij
).

2. Generate random samples of the locations for each of
the P ILF from f (p; μILFij

, σILFij
).

3. Compute TLF as described in Sec. 2.A.
4. Randomly sample 100 of the 400 surface points, PS ,

for use in the surface-based registration algorithm and
model as PS + η.

5. Compute TS as described in Sec. 2.A.
6. Generate random samples of the locations for each of

the PPT from f (p; μPTij
, σPTij

).
7. Randomly sample 50 of the 300 surface points which

were not used in Step 4 for use as surface test points,
PTS, and model as PTS + η.

8. Compute each of the error metrics, FRE, TRELF,
TRELF+S, PTSLF, and PTSLF+S as described in
Sec. 2.A.

The proposed model is used to evaluate registration errors in
the static phantom set-up as well as characterize the regis-
tration algorithm under different levels of variability in the
input parameters. Errors from the static phantom set-up pro-
vide minimum expected errors given the inherent variabilities
in the inputs such as magnetic tracking error and localization
of image fiducial points, physical fiducial points, and physical
target points.

In an in vivo procedure, registration algorithm inputs from
physical space will have increased variability due to cardiac
and respiratory motion, as well as increased difficulty in lo-
calizing the physical fiducial and target points. Commercial
mapping systems can compensate for much of the cardiac
motion by gating sampled catheter points to match the car-
diac phase of the preoperative imaging scan, however, respi-
ratory motion potentially contributes a large amount of vari-
ability. The ability of a physician to position the catheter at
specific anatomic or target locations under fluoroscopic and
ultrasound guidance will depend on a wide variety of fac-
tors including physician experience, geometry of the patient’s
anatomy, and quality of the real-time images. In this work, we
consider five Monte Carlo simulations to quantify how vari-
ability in sampling physical landmark fiducials, physical tar-
gets, and surface points affects the registration algorithm. In
each simulation, all values of μ are set using estimates from
the phantom set-up and values of σ are varied as described.

Simulation 1: All values of σ were set using the estimates
from the phantom set-up. This simulation
provides baseline error estimates for the

Compute
Registration

Image Landmark
Fiducials ( )ILF, ILF,

Physical Landmark
Fiducials ( )PLF PLF,

Image
Targets

Physical
Targets

( )PT PT,

Surface
Points

( )

FRE
TRE
Point-to-Surface

Compute
Error Metrics

FIG. 2. Block diagram for Monte Carlo simulation studies.
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registration algorithm in a static, physical
setting.

Simulation 2: σPLF is varied from 2.0 to 10.0 mm to model
different levels of variability in sampling
physical landmark fiducial locations with a
catheter in vivo. All other values of σ are
set using estimates from the static phantom
set-up. This simulation demonstrates how
errors in localization of the physical land-
mark fiducials affect registration accuracy.

Simulation 3: σPT is varied from 1.0 to 5.0 mm to model
different levels of variability in sampling
physical target locations with a catheter in
vivo. σPLF is set to a constant value of
6.0 mm and all other values of σ are set
using estimates from the static phantom set-
up. In an in vivo study, even the target points
which are used to evaluate the accuracy of
the registration algorithm, will have some
inherent error in identifying their location.
This simulation demonstrates how the com-
puted registration errors will be affected by
measurement error in the target locations.

Simulation 4: ση is varied from 3.0 to 15.0 mm to gen-
erate PS + η for modeling different levels
of variability in sampling surface points. In
this simulation, noise is not added to the test
points, PTS. σPLF is set to a constant value
of 6.0 mm and all other values of σ are set
using estimates from the static phantom set-
up. This simulation demonstrates how noise
in the surface points affects registration
accuracy.

Simulation 5: ση is varied from 2.0 to 10.0 mm to gener-
ate PS + η and PTS + η to model different
levels of variability in sampling surface
points used in the registration algorithm as
well as the test points. σPLF is set to a con-
stant value of 6.0 mm and all other values
of σ are set using estimates from the static
phantom set-up. This is a more realistic
simulation of measured registration accu-
racy in an in vivo setting since points used
in both the registration algorithm as well
as the test surface points will have inherent
error associated with the procedure.

For each simulation study, 1000 iterations were run and
means (std) were computed for each of the previously
described registration error metrics.

2.C. Canine studies

Six canine studies were conducted according to a proto-
col approved by the Mayo Foundation Institutional Animal
Care and Use Committee. After establishing deep anesthesia,
positive-pressure ventilation was started, and vascular access
was obtained percutaneosly. Surface ECG and blood pres-
sure were continuously monitored throughout the procedure.

(a) (b)

FIG. 3. (a) A photograph of the catheter used to deliver the metal clip and
(b) a close-up of the tip of the catheter with the clip open.

After obtaining access to the left atrium through transseptal
catheterization, cardiac catheters were used to place metal
clips in the left atrium and pulmonary veins of the canine un-
der fluoroscopic and ultrasound guidance. The metal clips are
visible under CT, ultrasound, and fluoroscopy, and serve as
physical target locations in the experiments. A photograph of
the catheter is shown in Fig. 3(a) with a close-up of the clip
at the end of the catheter in Fig. 3(b). In each dog, an attempt
was made to place a total of five clips. Since the endocardial
surface of the left atrium is smooth, a subset of the clips either
did not attach, or detached between the initial and follow-up
procedure. In cases where clips did not initially attach, an at-
tempt was made to insert an additional clip, however, no more
than one or two additional clips were attempted per dog since
each clip will appear in the CT data and multiple extraneous
clips could potentially confound proper identification of the
attached clips.

Next, a contrast-enhanced, 64-slice multidetector CT scan
was collected with the clips in place. Helical CT scanning
was performed 10–20 s after intravenos injection of 40 ml of
contrast media at a rate of 4 ml/s. The CT scan was cardiac-
gated and collected at end expiration. The dataset constructed
at 80% of the R-R interval was utilized for analysis. In these
experiments, the target location was the insertion point of the
clip into the endocardial surface; however, as seen in Fig. 4,

FIG. 4. Segmented clips shown in CT scan.
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the clips create star shaped artifacts in the CT scan making
it difficult to precisely localize this point. For this reason, we
instead segmented each clip near its insertion point into the
endocardium, attempting to exclude the star-shaped artifacts,
as shown in Fig. 4. A distance transform is then computed
from the segmented clip and used to compute TRE. In addi-
tion, the left atrium and pulmonary veins were segmented to
generate a triangulated surface model.

During a follow-up procedure, our prototype research
system was used to collect the following data:

1. The physical target locations, PPT, are determined by
navigating the catheter to point where the metal clip
inserts into the endocardium using ultrasound and bi-
plane fluoroscopy for guidance. This was done for
each clip and the entire procedure was repeated three
times in order to obtain three samples for each clip
location.

2. Anatomic landmark pairs were collected in image
space and physical space. The catheter was guided
to anatomical locations in the left atrium under ultra-
sound and fluoroscopic guidance and the point loca-
tion, PPLF, was sampled. The corresponding landmark
was located on the preoperative surface model and the
point location in image space P ILF was recorded.

3. Points along the endocardial surface, PS , were sam-
pled with the catheter under ultrasound and fluoro-
scopic guidance.

Across the six studies, a total of 20 clips were placed with a
range of 1–5 clips per canine (mean 3.3 ± 1.6). A range of 4–8
landmark pairs were collected (mean 6.0 ± 1.7), and 46–113
surface points were sampled (mean 81.8 ± 23.4). The land-
mark fiducial point pairs were used to compute TLF and the
surface points were used to compute TS. Error metrics FRE,
TRELF, TRELF+S, PTSLF, and PTSLF+S were computed as de-
scribed in Sec. 2.A. A leave-one-out technique was used for
computation of the PTSLF+S errors. Error metrics involving
target locations, PPT, were computed three times, once for
each time the catheter was navigated to the clip location.

2.D. Clinical evaluation

A small clinical evaluation was conducted with our proto-
type research system in which the registration algorithm was
evaluated in three patients. Preoperative CT scans were col-
lected on each patient and a left atrial model was constructed.
During the procedure, data were collected using our proto-
type research system. Landmark fiducial pairs, endocardial
surface points, and point locations during ablation burns were
collected and recorded. Points collected during the ablation
burns were not used for calculation of the registration, but
were instead used as independent surface test points. Across
the three patients, the number of landmark pairs ranged from
5 to 7 (mean 6.0 ± 1.0), the number of surface points ranged
from 216 to 236 (mean 227.7 ± 10.4), and the number of ab-
lation points ranged from 223 to 276 (mean 245.3 ± 27.5).
Error metrics FRE, PTSLF, and PTSLF+S were computed as
described in Sec. 2.A.

3. RESULTS

3.A. Phantom studies

The following variance values were found for data
collected during the phantom experiments: the median
(min,max) σPTij

across all i, j was found to be 0.56 (0.24,
1.00) mm, the median (min, max) σPLFij

across all i, j was
found to be 0.74 (0.40, 1.76) mm, and the median (min, max)
σILFij

across all i, j was found to be 1.03 (0.41, 2.19) mm. The
variability in sampled catheter points was higher when sam-
pling physical landmark fiducial locations than physical tar-
get locations. This is expected as the targets are marked loca-
tions on the phantom, while the landmark fiducials are defined
by anatomic location only. Locating image landmark fiducials
had an even higher variability. The user-selected landmark lo-
cation can vary depending on the rotation of the model, which
is likely to be slightly different each time the user selects the
point, potentially leading to this higher variability.

Results from Simulation 1, which quantifies errors in the
static phantom set-up, are given in the top row of Table I.
The baseline variations for localization of the physical targets,
physical landmark fiducials, and image landmark fiducials in
the inputs to the registration algorithm lead to errors of 2.6
mm for FRE and 2.9 and 2.6 mm for TRELF and TRELF+S, re-
spectively. Static point-to-surface errors are 1.5 mm for PTSLF

and 1.3 mm for PTSLF+S. The surface-based registration only
marginally improves the landmark-based registration as mea-
sured by the mean TRE or PTS in the static case since there
is already good registration alignment with landmark registra-
tion alone. For both registration types, PTS error is lower than
the TRE. This is because PTS measures the distance from a
sampled point to the nearest point on the preoperative surface
model, where TRE measures distance between two specific
target points.

In Simulation 2, σPLF is varied from 2.0 to 10.0 mm and
results of this simulation are given in the subsequent rows
of Table I. As expected, increasing values of σPLF, lead to
larger values of FRE and TRELF. Note, however, that FRE
and TRE have been shown to be uncorrelated,24 and therefore
FRE cannot be used to predict TRELF. Of particular interest,
is the relationship between TRELF and TRELF+S. As σPLF

increases, TRELF increases, but TRELF+S holds relatively
stable until σPLF reaches 6.0 mm. Thus, at these lower levels
of variance, the surface-based registration can compensate for
errors in localization of the physical landmark fiducials. The

TABLE I. Mean (std) error metrics for Simulation 1, the static phantom set-
up (top row). Results from Simulation 2 where σPLF is varied from 2.0 to
10.0 are given in subsequent rows. All values are given in mm.

σPLF FRE TRELF TRELF+S PTSLF PTSLF+S

Static 2.6 (0.6) 2.9 (0.5) 2.6 (0.3) 1.5 (0.2) 1.3 (0.1)
2.0 3.4 (1.0) 3.7 (0.9) 2.7 (0.4) 1.9 (0.4) 1.3 (0.2)
4.0 5.3 (1.6) 5.7 (3.6) 3.3 (3.0) 2.7 (1.1) 1.4 (0.7)
6.0 7.4 (2.1) 9.7 (7.6) 5.5 (7.2) 4.0 (2.0) 2.0 (1.7)
8.0 9.6 (2.8) 13.5 (9.3) 7.8 (9.5) 5.2 (2.5) 2.6 (2.1)
10.0 11.7 (3.6) 16.9 (10.4) 10.1 (10.9) 6.2 (2.7) 3.1 (2.5)
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FIG. 5. TRELF+S versus number of surface points (at increments of five) for static case (lowest line) and incremental values of σPLF in Simulation 2.

surface-based registration continues to improve the initial
fiducial landmark registration for all values of σPLF, however,
as values rise above 6.0 mm, the surface-based registration is
not always able to correct the initial misalignment as demon-
strated by a larger overall mean and standard deviations of
the errors. A similar pattern is observed with the PTS errors.
In order to demonstrate the effect of the surface registration
on the initial landmark registration, a plot of TRELF+S versus
number of surface points (at increments of five) is shown
for each value of σPLF in Fig. 5. At each increment of five
surface points, the initial landmark registration is refined by
the surface registration. For lower values of σPLF, TRELF+S

initially increases before decreasing. This occurs since the
initial landmark-based registration is reasonably accurate
and the surface based registration can cause a misalignment
when only a few points are utilized. In general, the plots
demonstrate that when approximately 20 points or more are
sampled, the surface based registration consistently improves
the landmark based registration. In addition, the surface
based registration provides a larger decrease in registration
error for higher values of variability in landmark localization.

TABLE II. Results from Simulation 3 where σPT is varied and σPLF is set to
6.0 mm. All values are given in mm.

σPT TRELF TRELF+S

Static 9.5 (7.3) 5.3 (6.8)
1.0 9.9 (7.6) 5.7 (6.9)
2.0 10.3 (7.3) 6.6 (6.5)
3.0 10.9 (6.7) 7.7 (5.7)
4.0 11.8 (6.6) 9.1 (6.0)
5.0 13.3 (6.8) 10.8 (6.0)

Results of Simulation 3 are given in Table II. As σPT in-
creases, both TRELF and TRELF+S increase, demonstrating
the effect of target localization on measured registration ac-
curacy. That is, even if the variability on the inputs to the
registration algorithm are held constant, the measured error
will vary based on localization of the validation targets. This
demonstrates realistic measurable errors in an in vivo catheter-
based experiment since there will be inherent error in localiza-
tion of the targets used for validation. This simulation demon-
strates that if the variability of localizing the target is too high,
the registration results can be obscured in the noise of target
localization.

Results of Simulation 4 are shown in Table III. As ση is
increased in P s + η, both TRELF+S and PTSLF+S increase.
For lower values of ση, the surface algorithm can compensate
for the noise on the surface points and continues to improve
the landmark fiducial registration. As the noise on the surface
points increases, the surface algorithm provides minimal, if
any, improvement to the initial registration result. These re-
sults characterize the behavior of the surface-based registra-
tion in response to increasing amounts of noise on the points

TABLE III. Results from Simulation 4 where ση is varied in P s + η and
σPLF is set to 6.0 mm. All values are given in mm.

ση TRELF TRELF+S PTSLF PTSLF+S

Static 9.0 (6.6) 4.9 (6.1) 3.8 (1.8) 1.9 (1.4)
3.0 10.1 (7.9) 6.3 (7.2) 4.0 (2.1) 2.3 (1.7)
6.0 9.7 (7.5) 7.1 (6.7) 4.0 (2.0) 2.7 (1.6)
9.0 9.3 (7.3) 7.8 (6.4) 3.9 (1.9) 3.1 (1.6)
12.0 9.6 (7.5) 8.9 (6.6) 3.9 (2.0) 3.6 (1.7)
15.0 9.6 (7.4) 9.8 (6.5) 4.0 (2.0) 4.0 (1.7)
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TABLE IV. Results from Simulation 5 where ση is varied in PS + η and
PTS + η and σPLF is set to 6.0 mm. All values are given in mm.

ση PTSLF PTSLF+S

Static 3.9 (2.0) 1.9 (1.5)
2.0 4.1 (1.8) 2.5 (1.3)
4.0 4.8 (1.7) 3.7 (1.2)
6.0 5.7 (1.5) 5.0 (1.1)
8.0 6.8 (1.4) 6.3 (1.1)
10.0 7.8 (1.3) 7.5 (1.1)

used in the registration. This simulation does not, however,
give realistic values of PTS errors that would be measured
in an in vivo experiment, since the test surface points would
also be subject to the same levels on noise as the registration
surface points. This is addressed in Simulation 5 with the re-
sults shown in Table IV. In this simulation, measured errors
for PTSLF and PTSLF+S are higher since noise is also added
to the test surface points. Again, as ση increases, the surface
registration is less able to improve the initial fiducial landmark
registration results.

3.B. Canine studies

An image of the result from one canine study is given in
Fig. 6. In this image, the location of the target clip as deter-
mined by the CT images is shown as a cube. The spheres rep-
resent locations of the three sampled catheter locations fol-
lowing landmark and surface-based registration. These im-
ages provide a visual assessment of both the in vivo variability
in sampling a target clip location with a catheter as well as the
accuracy of the registration algorithm. Errors for all six canine
studies are given in Table V. For each study, measurements
of TRE are made three times, once for each time the target
clip location was navigated to and sampled with the catheter.
These results demonstrate that the surface-based registration
improves registration accuracy as measured by both TRE and
PTS which is consistent with the results from the Monte Carlo
simulation studies. The FREs for all but one of the six studies
range from 7.6 to 11.1 mm which most closely match results
when σPLF ranges from 6.0 to 10.0 mm in Simulation 2. The
mean TRELF+S of 5.8 mm most closely aligns with results
from Simulation 3 where σPLF is set to 6.0 mm and σPT is set
to 1.0 mm and results from Simulation 4 where σPLF is set
to 6.0 mm and ση is 3.0 mm. The overall mean PTSLF and
PTSLF+S errors are 4.1 and 3.2 mm which most closely align
with results from Simulation 5 where σPLF is set to 6.0 mm
and ση is 2.0–4.0 mm.

3.C. Patient evaluation

A snapshot from the user interface of our prototype sys-
tem is shown for one of the registered patient cases in Fig. 7.
Quantitative results from the patient evaluation study are as
follows: FRE = 8.6 ± 1.3 mm, PTSLF = 5.0 ± 2.5 mm, and
PTSLF+S = 3.5 ± 0.8 mm. Overall, these errors are similar to
those found in the canine studies. In Simulation 2, a FRE of
this magnitude is predicted with when σPLF is between 6.0 and

FIG. 6. Canine study registration results from posterior view. Left atrial sur-
face model is semitransparent in white, locations of target clips are displayed
as cubes (and indicated with arrows), and the registered, sampled points are
displayed as spheres. The cardiologist navigated to each target clip three
separate times.

8.0 mm. PTS errors of this magnitude are predicted when σPLF

= 6.0 mm and ση is set to 4.0 mm for PS + η and PTS + η

in Simulation 5.

4. DISCUSSION

In this work, we evaluated the effect that various error
sources have on registration accuracy in the application of
image-guided cardiac ablation therapy. We considered the
variability of inputs to the registration algorithm including
localization of physical landmark fiducials, physical target
fiducials, and noise on the surface points. In an in vivo ex-
periment, there will be error in localizing targets and the ef-
fect of this variability was demonstrated. A simulation was
also performed to evaluate the effect of noise on sampled
surface points in both the registration algorithm as well as
the point-to-surface error metric. Simulation results were then
compared with results from in vivo canine and patient studies.

Registration accuracy of preoperative models into a
cardiac ablation procedure is currently of great interest in the
clinical community as evidenced by a large number of stud-
ies on this topic. Evaluation of registration accuracy has been
investigated using a variety of techniques including animal,
clinical, simulation, and phantom studies; however, the ef-
fect of various error sources on registration accuracy has not
been quantitatively evaluated. In prior clinical studies,10–16 a
standard error metric for registration accuracy is point-to-
surface distance between either the mapping or ablation
points and the surface model. This error provides an over-
all measure of fit, however, point-to-surface distances can
be small even when there are large errors in the registra-
tion alignment. Another technique for quantifying registration
error is to compute target registration error using anatomic
points which are independently identified with intracardiac
ultrasound.14 Another approach compared the location of pul-
monary vein points mapped with the tracked catheter to that
of the preoperative model.11 These studies provide valuable

Medical Physics, Vol. 41, No. 2, February 2014



021909-9 Rettmann et al.: Quantitative modeling of accuracy in registering preoperative models 021909-9

TABLE V. Errors for canine studies. All results are given in mm.

Canine FRE TRELF TRELF+S PTSLF PTSLF+S

1 12.9 14.7 (2.9) 7.0 (3.2) 6.9 5.6
2 9.4 9.7 (1.6) 3.9 (1.9) 3.2 1.8
3 10.8 7.1 (0.5) 4.7 (0.7) 4.1 2.3
4 11.1 6.7 (2.3) 4.9 (2.2) 2.6 2.8
5 8.8 9.7 (1.4) 8.3 (0.7) 5.2 3.7
6 7.6 6.6 (1.4) 5.7 (1.5) 2.7 2.7
Mean 10.1 (1.9) 9.1 (3.3) 5.8 (2.2) 4.1 (1.7) 3.2 (1.4)

information regarding registration accuracy in a clinical set-
ting, however, they do not provide a complete quantitative
assessment that can be evaluated against a true gold standard.

Prior simulation studies evaluating registration accuracy
have considered surface-based only25 as well as a combined
landmark and surface-based approach where the landmarks
were located in the right atrium.17 While providing insight
into the behavior of registration algorithms, these studies do
not emulate the current clinical approach of combined land-
mark and surface-based registration using left atrial land-
mark locations. In a prior phantom study,6 a model of the
left atrium, pulmonary veins, and aorta was constructed and a
surface-based approach (without landmark pairs) was evalu-
ated. This study demonstrated that the surface-based approach
using points from the left atrium alone or the left atrium and
pulmonary veins often resulted in a local minimum and that
the aorta points were necessary to avoid this problem. In the
present study, we initialize the registration algorithm with a
landmark pair alignment to provide a reasonably close initial-
ization and thereby avoid local minimum solutions that are
far from the correct registration result. A prior in vivo porcine

study4 which assessed point-to-surface registration accuracy,
found a final mean distance of approximately 3.5 mm which
is consistent with our canine mean point-to-surface errors of
3.2 mm. Another in vivo canine study17 which assessed regis-
tration accuracy for different registration strategies in the left
atrium, found a mean TRE of approximately 7 mm when us-
ing landmarks combined with left atrial surface points which
is similar in magnitude to the mean TRE of 5.8 mm in our ca-
nine study. In the study of Ref. 17, however, the targets were
located on the epicardial surface so their reported distances
also include the thickness of the left atrial wall.

The current study is unique in that it systematically
assesses the effects of variability in the different inputs to the
registration algorithm. There were several important conclu-
sions drawn from this work. First, using a series of simulation
studies with our phantom data, we demonstrated that surface-
based registration improves landmark-based registration
provided the variability in the surface-based points is not
excessively high. The improvement of landmark-based reg-
istration by surface-based registration was also demonstrated
in our canine and patient studies as well as other published
studies.11, 12 Second, we demonstrated that increased variabil-
ity on the landmark fiducials resulted in increased registration
errors; however, refinement of the initial landmark regis-
tration by the surface-based algorithm can compensate for
small initial misalignments. In a prior study,17 the authors
empirically observed the important effect that errors in
localization of landmark fiducials can have on registration
accuracy. In the current study, the Monte Carlo simulation
studies directly quantify the effects of landmark selection
variability on registration accuracy. Finally, we demonstrated
that the surface-based registration algorithm is quite robust to

FIG. 7. Snapshot of user interface during one of the patient studies. Spheres are the registered ablation points encircling the pulmonary veins, displayed on the
preoperative surface model from a posterior view.
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noise on the surface points and continues to improve landmark
registration even at high levels of noise on the surface points.

There were several limitations to the current study. First,
several sources of error were modeled by each variability pa-
rameter. For example, the parameter representing variation in
physical landmark selection, σPLF, represents errors in mag-
netic tracking, cardiac and respiratory motion, and the ability
to navigate to a specific anatomic location with the catheter.
The parameter representing variation in physical target selec-
tion, σPT, represents errors in magnetic tracking, cardiac and
respiratory motion, and the ability to navigate to a specific vis-
ible target location with the catheter. The parameter represent-
ing variation on the surface points, ση, represents magnetic
tracking errors, cardiac and respiratory motion, and the abil-
ity to position the catheter on the endocardial surface. Finally,
the parameter representing variation on the image landmark
selection, σILF, represents the ability of a user to repeatedly
identify the same anatomical landmark as well as the vari-
ability of clicking on the same point using a 3D rendering.
A more extensive simulation could directly model each error
source and use these to determine the variability in each input
parameter. Characterizing the interrelationship of these vari-
ous error sources and how they impact inputs into the regis-
tration algorithm is a challenging problem, but could provide
important additional insight into registration accuracy. A sec-
ond limitation is that only one magnetic tracking system was
considered in this study. Other tracking systems could, how-
ever, be similarly evaluated and compared using the proposed
techniques. A third limitation is that only a single, rigid-based
surface registration algorithm was evaluated. Other registra-
tions, including nonrigid18, 26 algorithms where the preoper-
ative surface is morphed to the intraoperative data, or other
rigid-based approaches25 could also be studied.

A limitation in the in vivo canine study involved the abil-
ity to precisely localize the insertion point of the metal clip
into the endocardial surface in both the CT scan and with
the catheter in physical space. The clip created star shaped
artifacts in the CT scan which we attempted to exclude dur-
ing the segmentation procedure; however, this will still be a
source of error. Since the final TRE is computed using a dis-
tance transform to the segmented clip as opposed to a sin-
gle localized point, this could potentially bias our results to
overall lower values than the true TRE at the insertion point.
In addition, precisely locating the insertion point of the clip
with the catheter in the in vivo studies is challenging as evi-
denced by the variability in location of the sampled points in
Fig. 6. We attempted to average out this error by navigating
the catheter to these locations three separate times; however,
this also contributes to the final error as modeled by σPT in the
simulation studies.

In cardiac ablation therapy, accurate guidance is neces-
sary for appropriate placement of lesion lines. Typically,
circumferential lines around the pulmonary veins are com-
bined with other anatomically guided, linear lesion lines in
order to remove triggers of atrial fibrillation or modify the
arrhythmogenic substrate.2 In addition, lesions are typically
placed approximately 5 mm apart in order to avoid gaps
in the ablation line.27 Ablation locations are visualized in

commercial electroanatomic mapping systems as red spheres
on the preoperative model which are used as both an anatomic
guide as well as an indication of the spacing between lesions.
Thus, errors in the registration process could result in either
improperly placed ablation lines or gaps between lesions,
eventually leading to reconduction across the ablation line28

and subsequent recurrence of atrial fibrillation.29 This un-
derscores the importance of the quantitative modeling and
evaluation of registration accuracy for this procedure. In
future work, we will use the developed model to not only
evaluate other tracking systems and registration algorithms
but also to determine the optimal set of landmark locations
and surface points necessary to obtain the most efficient and
accurate registration results. While clinical studies often use
anatomical landmarks near the junctions of the pulmonary
veins,12, 13 there is still a need to define the optimal set
of landmarks for this application.30, 31 These analyses are
important intermediary steps toward our overall goal of im-
proving intraprocedural guidance and targeting for improved
outcomes in ablative treatment of cardiac arrhythmias.

ACKNOWLEDGMENTS

This research was supported by National Institutes of
Health (NIH) Grant No. RO1EB002834 from the National
Institute of Biomedical Imaging and Bioengineering. R. A.
Robb, D. L. Packer, and Mayo Clinic have a financial interest
in technology used in this research and have received roy-
alties greater than the federal threshold for significant finan-
cial interest in the preceding 12 months from licensing this
technology.

a)Author to whom correspondence should be addressed. Electronic mail:
rettmann.maryam@mayo.edu

1M. Haïssaguerre, P. Jaïs, D. Shah, A. Takahashi, M. Hocini, G. Quiniou,
S. Garrigue, A. L. Mouroux, P. Le Métayer, and J. Clémenty, “Spontaneous
initiation of atrial fibrillation by ectopic beats originating in the pulmonary
veins,” N. Engl. J. Med. 339, 659–666 (1998).

2 Calkins et al., “HRS/EHRA/ECAS expert concensus statement on catheter
and surgical ablation of atrial fibrillation: Recommendations for person-
nel, policy, procedures and follow-up,” Heart Rhythm 4(6), 816–861
(2007).

3T. Dickfeld, H. Calkins, M. Zviman, R. Kato, G. Meininger, L. Lickfett,
R. Berger, H. Halperin, and S. Solomon, “Anatomic stereotactic catheter
ablation on three-dimensional magnetic resonance images in real time,”
Circulation 108, 2407–2413 (2003).

4V. Reddy, Z. Malchano, G. Holmvang, E. Schmidt, A. d’Avila, C. Hough-
taling, R. Chan, and J. Ruskin, “Integration of cardiac magnetic resonance
imaging with three-dimensional electroanatomic mapping to guide left ven-
tricular catheter manipulation,” J. Am. College Cardiol. 44(11), 2202–2213
(2004).

5Y. Sun, F. Azar, C. Xu, G. Hayam, A. Preiss, N. Rahn, and F. Sauer, “Reg-
istration of high-resolution 3D atrial images with elecroanatomical cardiac
mapping: Evaluation of registration methodology,” Proc. SPIE 5744, 299–
307 (2005).

6Z. Malchano, P. Neuzil, R. C. Cury, G. Holmvang, J. Weichet, E. Schmidt,
J. Ruskin, and V. Reddy, “Integration of cardiac CT/MR imaging with
three-dimensional electroanatomical mapping to guide catheter manipu-
lation in the left atrium,” J. Cardiovasc. Electrophysiol. 17, 1221–1229
(2006).

7J. Sra, D. Krum, J. Hare, D. Okerlund, H. Thompson, M. Vass,
J. Schweitzer, E. Olson, W. Foley, and M. Akhtar, “Feasibility and vali-
dation of registration of three-dimensional left atrial models derived from

Medical Physics, Vol. 41, No. 2, February 2014

http://dx.doi.org/10.1056/NEJM199809033391003
http://dx.doi.org/10.1016/j.hrthm.2007.04.005
http://dx.doi.org/10.1161/01.CIR.0000093191.05433.B0
http://dx.doi.org/10.1016/j.jacc.2004.08.063
http://dx.doi.org/10.1117/12.595459
http://dx.doi.org/10.1111/j.1540-8167.2006.00616.x


021909-11 Rettmann et al.: Quantitative modeling of accuracy in registering preoperative models 021909-11

computed tomography with a noncontact cardiac mapping system,” Heart
Rhythm 2, 55–63 (2005).

8J. Sra, “Cardiac image integration implications for atrial fibrillation abla-
tion,” J. Interv. Card Electrophysiol. 22, 145–154 (2008).

9M. Rettmann, D. Holmes III, C. Dalegrave, C. Stanton, S. Johnson,
D. Packer, and R. Robb, “A combined surface and volume based ap-
proach for registration of patient specific models into left atrial cardiac
ablation procedures,” in Proceedings of the IEEE International Symposium
on Biomedical Imaging: From Nano to Macro (IEEE Press, Piscataway, NJ,
2009), pp. 1087–1090.

10L. Tops, J. Bax, K. Zeppenfeld, M. Jongbloed, H. Lamb, E. van der
Wall, and M. Schalij, “Fusion of multislice computed tomography imaging
with three-dimensional electroanatomic mapping to guide radiofrequency
catheter ablation procedures,” Heart Rhythm 2, 1076–1081 (2005).

11J. Dong, T. Dickfeld, D. Dalal, A. Cheema, C. Vasamreddy, C. Henrickson,
J. Marine, J. Halperin, R. Berger, J. Lima, D. Bluemke, and H. Calkins,
“Initial experience in the use of integrated electroanatomic mapping with
three-dimensional MR/CT images to guide catheter ablation of atrial fibril-
lation,” J. Cardiovasc. Electrophysiol. 17, 459–466 (2006).

12P. Kistler, K. Rajappan, M. Jahngir, M. Earley, S. Harris, D. Abrams,
D. Gupta, R. Liew, S. Ellis, S. Sporton, and R. Schilling, “The impact of CT
integration into an electroanatomic mapping system on clinical outcomes
of catheter ablation of atrial fibrillation,” J. Cardiovasc. Electrophys. 17,
1093–1101 (2006).

13M. Martinek, H.-J. Nesser, J. Aichinger, G. Boehm, and H. Purerfellner,
“Accuracy of integration of multislice computed tomography imaging into
three-dimensional electroanatomic mapping for real-time guided radiofre-
quency ablation of left atrial fibrillation – influence of heart rhythm and
radiofrequency lesions,” J. Interv. Card Electrophysiol. 17, 85–92 (2006).

14T. Fahmy, H. Mlcochova, O. Wazni, D. Patel, R. Cihak, M. Kanj, S. Be-
heiry, J. Burkhardt, T. Dresing, S. Hao, P. Tchou, J. Kautzner, R. Schweik-
ert, M. Arruda, W. Saliba, and A. Natale, “Intracardiac echo-guided image
integration: Optimizing strategies for registration,” J. Cardiovasc. Electro-
physiol. 18, 276–282 (2007).

15L. Richmond, K. Rajappan, E. Voth, V. Rangavajhala, M. Earley,
G. Thomas, S. Harris, S. Sporton, and R. Schilling, “Validation of com-
puted tomography image integration into the EnSite NavX mapping system
to perform catheter ablation of atrial fibrillation,” J. Cardiovasc. Electro-
physiol. 19, 821–827 (2008).

16M. Finlay, R. Hunter, V. Baker, L. Richmond, F. Goromonzi, G. Thomas,
K. Rajappan, E. Duncan, M. Tayebjee, M. Dhinoja, S. Sporton, M. Ear-
ley, and R. Schilling, “A randomised comparison of Cartomerge vs. Navx
fusion in the catheter ablation of atrial fibrillation: The CAVERN trial,”
J. Interv. Card Electrophysiol. 33(33), 161–169 (2012).

17J. Dong, H. Calkins, S. Solomon, S. Lai, D. Dalal, A. Lardo, E. Brem,
A. Preiss, R. Berger, H. Halperin, and T. Dickfeld, “Integrated elec-
troanatomic mapping with three-dimensional computed tomographic im-
ages for real-time guided ablations,” Circulation 113, 186–194 (2006).

18J. West, A. Patel, C. Kramer, A. Helms, E. Olson, V. Rangavajhala, and
J. Ferguson, “Dynamic registration of preablation imaging with a catheter
geometry to guide albation in a swine model,” J. Cardiovasc. Electrophys-
iol. 21(1), 81–87 (2010).

19M. Rettmann, D. Holmes III, J. Camp, D. Packer, and R. Robb, “Valida-
tion of semi-automatic segmentation of the left atrium,” Proc. SPIE 6916,
691625 (2008).

20B. Cameron, A. Manduca, and R. Robb, “Patient-specific anatomic models.
geometric surface generation from three-dimensional medical images using
a specified polygonal budget,” Stud. Health Technol. Inform. 29, 447–460
(1996).

21J. Fitzpatrick, D. Hill, and C. Maurer, Jr., Image Registration in Medical
Image Processing (SPIE Press, Bellingham, WA, 2000), Chap. 8, pp. 447–
513.

22M. Rettmann, D. Holmes III, B. Cameron, and R. Robb, “An event-driven
distributed processing architecture for image-guided cardiac ablation ther-
apy,” Comput. Methods Programs Biomed. 95(2), 95–104 (2009).

23W. Press, W. Vetterling, S. Teukolsky, and B. Flannery, Numerical Recipes
in C: The Art of Scientific Computing (Cambridge University Press,
Cambridge, UK, 1992).

24A. Danilchenko and J. Fitzpatrick, “General approach to first-order error
prediction in rigid point registration,” IEEE Trans. Med. Imaging 30(3),
679–693 (2011).

25A. Cristoforetti, M. Mase, L. Faes, M. Centonze, M. Del Greco, R. An-
tolini, G. Nollo, and F. Ravelli, “A stochastic approach for automatic regis-
tration and fusion of left atrial electroanatomic maps with 3D CT anatomi-
cal images,” Phys. Med. Biol. 52, 6323–6337 (2007).

26H. Zhong and D. Schwartzman, “An improved algorithm for intraopera-
tive registration of computed tomographic left atrial images,” Europace 13,
383–388 (2011).

27P. Jaïs, M. Hocini, M. O’Neill, G. Klein, S. Knecht, M. Sheiiro, L. Arentes,
S. Kodali, J. Clémenty, and M. Haïssauguerre, “How to perform linear le-
sions,” Heart Rhythm 4(6), 803–809 (2007).

28F. Ouyang, M. Antz, S. Ernst, H. Hachiya, H. Mavrakis, F. Deger, A. Schau-
mann, J. Chun, P. Falk, D. Hennig, X. Liu, D. Bänsch, and K.-H. Kuck,
“Recovered pulmonary vein conduction as a dominant factor for recurrent
atrial tachyarrhythmias after complete circular isolation of the pulmonary
veins: Lessons from double lasso technique,” Circulation 111(2), 127–135
(2005).

29R. Cappato, S. Negroni, D. Pecora, S. Bentivegna, P. Lupo, A. Carolei,
C. Esposito, F. Furlanello, and L. Ambroggi, “Prospective assessment of
late conduction recurrence across radiofrequency lesions producing elec-
trical disconnection at the pulmonary vein ostium in patients with atrial
fibrillation,” Circulation 108, 1599–1604 (2003).

30J. Ferguson, “Optimizing catheter navigation for AF ablations: Do not just
follow the map!,” J. Cardiovasc. Electrophysiol. 18(3), 283–285 (2007).

31L.-F. Hsu, “Image integration for catheter ablation: Searching for the per-
fect match,” Heart Rhythm 5(4), 536–537 (2008).

Medical Physics, Vol. 41, No. 2, February 2014

http://dx.doi.org/10.1016/j.hrthm.2004.10.035
http://dx.doi.org/10.1016/j.hrthm.2004.10.035
http://dx.doi.org/10.1007/s10840-007-9199-5
http://dx.doi.org/10.1016/j.hrthm.2005.07.019
http://dx.doi.org/10.1111/j.1540-8167.2006.00425.x
http://dx.doi.org/10.1111/j.1540-8167.2006.00594.x
http://dx.doi.org/10.1007/s10840-006-9067-8
http://dx.doi.org/10.1111/j.1540-8167.2007.00727.x
http://dx.doi.org/10.1111/j.1540-8167.2007.00727.x
http://dx.doi.org/10.1111/j.1540-8167.2008.01127.x
http://dx.doi.org/10.1111/j.1540-8167.2008.01127.x
http://dx.doi.org/10.1007/s10840-011-9632-7
http://dx.doi.org/10.1161/CIRCULATIONAHA.105.565200
http://dx.doi.org/10.1111/j.1540-8167.2009.01572.x
http://dx.doi.org/10.1111/j.1540-8167.2009.01572.x
http://dx.doi.org/10.1117/12.773097
http://dx.doi.org/10.1016/j.cmpb.2009.01.009
http://dx.doi.org/10.1109/TMI.2010.2091513
http://dx.doi.org/10.1088/0031-9155/52/20/015
http://dx.doi.org/10.1093/europace/euq417
http://dx.doi.org/10.1016/j.hrthm.2007.01.021
http://dx.doi.org/10.1161/01.CIR.0000151289.73085.36
http://dx.doi.org/10.1161/01.CIR.0000091081.19465.F1
http://dx.doi.org/10.1111/j.1540-8167.2006.00749.x
http://dx.doi.org/10.1016/j.hrthm.2008.01.021

