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Abstract

Steady-state Visual Evoked Potential (SSVEP) outperforms the other types of ERPs for Brain-computer Interface (BCI), and
thus it is widely employed. In order to apply SSVEP-based BCI to real life situations, it is important to improve the accuracy
and transfer rate of the system. Aimed at this target, many SSVEP extraction methods have been proposed. All these
methods are based directly on the properties of SSVEP, such as power and phase. In this study, we first filtered out the
target frequencies from the original EEG to get a new signal and then computed the similarity between the original EEG and
the new signal. Based on this similarity, SSVEP in the original EEG can be identified. This method is referred to as SOB
(Similarity of Background). The SOB method is used to detect SSVEP in 1s-length and 3s-length EEG segments respectively.
The accuracy of detection is compared with its peers computed by the widely-used Power Spectrum (PS) method and the
Canonical Coefficient (CC) method. The comparison results illustrate that the SOB method can lead to a higher accuracy
than the PS method and CC method when detecting a short period SSVEP signal.
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Introduction

A Brain-computer Interface (BCI) is an alternative communi-

cation channel used to connect the brain to external electronic

devices. This technique is important in assisting, augmenting or

repairing human cognitive or sensory-motor functions [1,2].

Recently, non-invasive BCI employing Steady-state Visual Evoked

Potential (SSVEP), as a measurement, has gained increasing

attention due to SSVEP’s strong immunity to nuisance noises,

such as eye and body movement [3,4,5,6,7]. In some typical

SSVEP-based BCI communication paradigms, visual stimuli may

flicker at different frequencies on the monitor in front of a subject

[5,7,8,9]. The subject can select a particular stimulus by visually

staring at it. Multiple frequencies can be used simultaneously to

characterize a complicated system. Many studies have shown that

SSVEP-based BCI has advantages in implementation

[1,2,3,10,11], such as high accuracy, noise immunity, short

detection time and a relatively high Information-transfer Rate

(ITR). The development of SSVEP-based BCI opens up the

prospect of allowing disabled patients to effectively improve

control over external devices such as monitors, prostheses and

wheelchairs [2,6,12,13,14,15].

The performance of the BCI can be characterized using ITR,

which is determined by three factors: accuracy, speed and the

target amount [5,16]. To increase the ITR of SSVEP-based BCI

for practical scenarios, many SSVEP extraction methods have

been proposed. The most widely used method is the so-called

Power Spectrum Method (PS) [3,5,6]. In the PS method, Fast

Fourier Transform (FFT) is employed to estimate the power

spectrum of the EEG from which the power of a particular

frequency component can be computed. The power of a certain

frequency in spontaneous EEG is used as a threshold for the

corresponding SSVEP detection in evoked EEG. The power of a

specific frequency in evoked EEG surpassing the threshold,

indicates SSVEP. The detection normally lasts a few seconds in

PS-based analysis. Online Autoregressive (AR) Model parameters

estimation was also used for SSVEP extraction [17,18]. The

precision of this AR based method requires the signals to be

stationary over a time period of 4–5 s. As such, this AR method is

not suitable in a real-time system. Independent Component

Analysis (ICA) has also been used to isolate SSVEP from evoked

EEG [19]. Based on wavelet analysis, we proposed a method

called the Steady Coefficient (SC) Method in 2008 [20]. In this

method, the stability of a specific frequency is used as an indicator

of SSVEP. If the steady coefficient within a period holds at the

same level as that in spontaneous EEG, then there is no indication

of SSVEP in evoked EEG. Otherwise, SSVEP is included in

evoked EEG.

Few works employ ICA or other Time-frequency Analysis

Methods for SSVEP extraction, because the temporal resolution of

these methods is not high enough for a real-time system. In 2007,

the computation of a correlation coefficient between a series of

stimulus harmonics and the EEG was conducted [21], with this

method being referred to as the Canonical Coefficient (CC)

Method. Because of its high temporal resolution, the CC method

has been used in a number of real-time cases in the past. However,

there is a limitation to the CC method. Because the correlation

coefficient is very sensitive to the initial phase of SSVEP, normally

many channels are used simultaneously in the CC method in order

to avoid this drawback, and this increases the complexity of the
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system. All of the methods listed above are related to the power of

SSVEP. In other methods, phase is used to detect SSVEP [10, 22,

23, 24]. The methods above are all directly related to SSVEP

power and phase and can therefore be considered as direct

methods.

The detection of specific frequencies can also be ascertained by

using an indirect method. For example, an original signal which is

composed of varying frequencies can be transformed into a new

signal by filtering out the target frequency. By comparing

similarities between the original signal and the new signal, it can

be concluded indirectly that the target frequency is, or is not,

strong enough. Obviously, EEG is a kind of signal composed of

many frequency components. When a steady-repetitive stimulus

emerges in the visual field, the corresponding frequencies (or

defined as target frequencies) in the EEG are enhanced. In

consequence, it is possible to compare the similarities between the

original EEG and the remaining which filtered out target

frequencies. If the correlation coefficient is above a certain

threshold, suggesting that there is no clear influence on the original

EEG through filtering, it can be concluded that the level of power

corresponding to the target frequencies is low. In other words,

there is no SSVEP included in the EEG. Alternatively, if the

correlation coefficient is below a certain threshold, it can be

concluded that there is a valid SSVEP in the original EEG. This

method is termed the Similarity of Background (SOB) Method.

Although the SOB method and the CC method both make use of

the computing correlation coefficient, the SOB is an indirect

method and is insensitive to the initial phase of SSVEP, while the

CC method is a direct method, sensitive to the initial phase of

SSVEP. In order to evaluate the validity of the SOB method, the

SOB method, the PS method and the CC method are all used to

detect SSVEP in 1s-length and 3s-length EEG segments,

respectively. When detection accuracy is compared between

methods, the SOB method has been shown to have a greater

accuracy than the widely used PS and CC methods for short

periods, such as 1s-length under the situation of middle or weak

SSVEP. This comparative result suggests that the SOB method is

a good candidate for real-time SSVEP-based BCI applications.

Methods

2.1 Statement of Ethics
This study was approved by the Human Research and Ethics

Committee of the University of Electronic Science and Technol-

ogy of China. Before the experiment, all the subjects were told the

purpose and procedure of the experiment in detail and signed a

consent form. These forms were approved by the University of

Electronic Science and Technology of China Ethics Committee

Data Acquisition.

2.2 Stimulus Design
Eleven subjects participated in this experiment. They had

normal or corrected normal visual acuity. A high luminance LED

was used as the SSVEP stimulator and the subjects were seated

60 cm in front of the LED. The LED was activated by a series of

square waves with a 1:1 duty cycle of 33.33, 25, 16.67, 12.5, 8.33,

and 6.25 Hz, respectively. During the experiment, the subjects

were asked to blink normally and to avoid moving their bodies.

EEG was recorded using a 129-channel EEG system referenced at

Cz (Electrical Geodesics Incorporated (EGI) amplifier system 200,

USA). The sample rate was set to 250 Hz. Electrode impedance

was kept below 10 kV, and salt water was dropped into the

electrode periodically in order to retain quality contact with the

subject’s scalp. A 60s-length spontaneous EEG was recorded first

and used to build a threshold. A 60s-length evoked EEG was then

recorded for each stimulus. The data was stored on a hard disk for

offline processing. Since there is only one channel used for SSVEP

extraction in the SOB or PS methods, a signal electrode with

strong SSVEP is very important. According to the suggestions of

some previous electrode selection studies [25,26], Oz (No.76

electrode) was selected as the signal electrode for all stimuli. In

order to compare the SOB method with the CC method under the

same situation, only one signal channel (No. 76 electrode) was

used in the CC method for this work.

2.3 Methodology
SSVEP power concentrates at the stimulus frequency and its

harmonics, and stimulus frequency adopted in the SSVEP

experiment is usual higher than 5 Hz, while the frequency of the

noise caused by eye or body movement is far lower than 5 Hz, so

SSVEP has relative immunity to the noise such as eye or body

movement [5,7], no pre-processing method, such as eliminating

eye movement was adopted in this work. The frequency spectrum

of 60s-length evoked EEG at the signal electrode was checked first

for each stimulus. If a peak clearly identified at the frequency ‘f’ is

higher than 3 times of the level of power averaging over the range

from ‘f–2’ Hz to ‘f+2’ Hz, it suggests that the evoked EEGs are

valid and can be decoded by the different methods, which will be

identified below.

The SOB method can be described in three steps as follows. For

a fixed length, EEG segment ‘S’, is first processed by FFT to

obtain a spectrum. For high frequency stimuli such as 33.33 Hz

and 25 Hz, frequencies below 11 Hz in the spectrum are filted out

to cancel background EEG. For the other frequency stimuli such

as 16.67, 12.5, 8.33 and 6.25 Hz, the components below 5 Hz in

the spectrum are filtered out to avoid influence by the strong low

frequency EEG and the components between 9 Hz and 11 Hz in

the spectrum are filtered out to cancel the strong background a
signal. This pre-processed spectrum is then processed using

Inverse Fast Fourier Transform (IFFT) to get a new ‘S1’ signal

in the time domain. The filter adopted in the SOB method is

based on the frequency domain and is simple to realize.

Components can be filtered by setting the amplitude and phase

of the components to zero in the frequency spectrum. After

applying IFFT to the processed spectrum, the signal can be

established in the time domain by filtering out specific compo-

nents.

The pre-processed spectrum is further processed. For high

frequency stimuli such as 33.33 Hz or 25 Hz, the pre-processed

spectrum filters out only the components near the first harmonic,

i.e. frequencies from ‘f1–0.5’ Hz to ‘f1+0.5’ Hz, where ‘f1’ stands

for the first harmonic. For other frequency stimuli, the pre-

processed spectrum filters out the components near the first and

second harmonic, i.e. frequencies from ‘f1–0.5’ Hz to ‘f1+0.5’ Hz

and from ‘f2–0.5’ Hz to ‘f2+0.5’ Hz, with ‘f1’ and ‘f2’ standing for

the first and second harmonic respectively. This spectrum is then

processed using IFFT to get a new ‘S2’ signal in the time domain.

The third step of SOB concerns calculating the correlation

coefficient between the ‘S1’ and ‘S2’ signals, with the correlation

coefficient being computed according to ‘corrcoef’ function in

MATLAB. The transformation of FFT and IFFT are completed

using the ‘fft’ and ‘ifft’ function in MATLAB. Figure 1 illustrates

the detailed steps of the SOB method.

Before applying different methods to SSVEP detection,

spontaneous EEG and different frequency evoked EEGs were

divided into 60 segments of 1s-length. In the SOB and PS

methods, FFT was adopted. In order to improve the frequency

resolution, a ‘0’ series of 1s-length was added to the end of the

SSVEP Extraction by the SOB Method
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EEG segments to get a 0.5 Hz frequency resolution. The

technique of adding a ‘0’ series is widely applied in BCI studies

[3,5]. Two types of detection were utilized. The first shows

whether SSVEP can be detected from a specific segment including

a known frequency SSVEP. The second shows if other SSVEP

frequencies can be detected from the same segment. This

detection accuracy is called first type and second type accuracy.

In the SSVEP frequency recognition, a correct detection means

the first and second type of detection are both correct. Usually, the

overall system detection accuracy is smaller than the first or second

type accuracy. Specially, the best overall system detection

accuracy can at best equal the worst of the two accuracy rates.

The SOB method was first applied on the 60 spontaneous EEG

segments to get a series of correlation coefficients, which were used

to build a threshold of SSVEP. The threshold for each frequency

can be confirmed as follows: for a certain frequency, a hypothetical

threshold was first used to test the corresponding coefficient in

each spontaneous EEG segment and then adjusted continually

until 90% of these coefficients (i.e. 54 coefficients) were bigger than

the threshold. This means that the detection accuracy for

spontaneous EEG is 90% at this frequency. Following this, six

thresholds were built and the SOB method applied on every

evoked EEG segment six times, one time for each frequency,

resulting in six coefficients. Each coefficient is compared with its

corresponding threshold to confirm the inclusion of a correspond-

ing frequency SSVEP. If there is no coefficient smaller than the

corresponding threshold, then the detection for this segment is

wrong. If there are two or more coefficients smaller than the

corresponding thresholds, then the detection of the segment is also

wrong. The detection of this segment is correct, only if the

coefficient of the known frequency in the evoked EEG segment is

smaller than its corresponding threshold.

The PS method is then applied to these EEG segments. For a

specific frequency ‘f’ Hz, the relative-power of ‘f’ Hz is computed

as follows:

Rf~Pf

�
mean P f{1ð Þ,P fz1ð Þ

� �
ð1Þ

Where ‘Rf’ stands for the relative-power of ‘f’ Hz, ‘Pf’ stands for

the absolute-power of ‘f’ Hz, ‘mean(P(f-1), P(f+1))’ stands for the

average absolute-power from ‘f21’ Hz to ‘f+1’ Hz.

For high frequency stimuli such as 33.33 Hz and 25 Hz, only

the relative-power of the first harmonic is used as the indicator of

SSVEP. For the other low frequency stimuli, the sum of relative-

power of the first and second harmonic is used as the indicator of

SSVEP. The threshold selection and SSVEP detection were

similar to that of the SOB method. The PS method was first

applied on the 60 spontaneous EEG segments to get a series of

relative-power and then to get a series of indicators for different

frequency SSVEP. The threshold for each frequency is confirmed

as follows: for a certain frequency, a hypothetical threshold was

first used to test the indicator of the corresponding frequency in

each spontaneous EEG segment and then adjusted continually

until 90% of these indicators (i.e. 54 indicators) were smaller than

the threshold. This means that the detection accuracy for

spontaneous EEG is 90% at this frequency. After this, six

thresholds were built and the PS method applied to every evoked

EEG segment six times, one time for each frequency, resulting in

six indicators. Each indicator is compared to its corresponding

threshold to confirm that a corresponding frequency SSVEP is

included. If there is no indicator bigger than the corresponding

threshold, the detection for this segment is wrong. If there are two

or more indicators bigger than the corresponding thresholds, the

detection for this segment is also inaccurate. Only if the indicator

of the known frequency in the evoked EEG segment is bigger than

its corresponding threshold is the detection correct.

We applied the CC method to these EEG segments to detect

SSVEP. For a certain frequency ‘f’ Hz stimulus, a series of

sinusoidal signals of 1s-length with the same frequency ‘f’ Hz but a

different initial phase were built first. The initial phase ‘Q’ is a

series of estimated values, i.e. 0, (2*pi*1)/20, (2*pi*2)/20, …,

(2*pi*19)/20 radian. The CC method was first applied to the

Figure 1. Detailed steps of the SOB method. ‘f1’ stands for the first harmonic of a stimulus and ‘f2’ stands for the second harmonic of a stimulus.
The Band-stop filter, for example, ‘Band-stop filter (9 Hz,band,11 Hz)’, refers to the signal from the 9 Hz to 11 Hz filters.
doi:10.1371/journal.pone.0093884.g001
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spontaneous EEG segment. The correlation coefficient between

each sinusoidal signal with different initial phase and the

spontaneous EEG segment were computed, and the biggest

coefficient selected as the correlation coefficient of the corre-

sponding frequency for this segment. Thus, 6 correlation

coefficients can be established for each segment. For high

frequency stimuli such as 33.33 Hz and 25 Hz, only the coefficient

of the first harmonic is used as an indicator of SSVEP. For the low

frequency stimuli, the sum of coefficient of the first and second

harmonic is used as the indicator of SSVEP. These indicators can

be used to build the corresponding thresholds. For a specific

frequency, a hypothetical threshold is first used to test the indicator

in each spontaneous EEG segment. These were continually

adjusted until only 90% of the indicators (i.e. 54 indicators) were

smaller than the threshold, which meant that detection accuracy

for spontaneous EEG was 90% at this frequency. After this, six

thresholds were built and the CC method applied to every evoked

EEG segment six times, one time for each frequency, resulting in

six indicators. Each indicator is compared to its corresponding

threshold to confirm whether a corresponding frequency SSVEP is

included. If there is no indicator greater than the corresponding

threshold, the detection for this segment is wrong. If there are two

or more indicators bigger than the corresponding thresholds, the

detection for this segment is wrong also. Only if the indicator of

the known frequency in the evoked EEG segment is bigger than its

corresponding threshold is the detection for this segment correct.

Figure 2 illustrates the SSVEP detection steps for the three

methods.

In order to understand the performance of different methods

changing with the signal duration, the 60s-length spontaneous

EEG and SSVEP were divided into 3s-length segments respec-

tively. The similar steps as that for 1s-length segments were

employed on these 3s-length segments. The detection accuracies of

3s-length segments were compared to those of 1s-length segments.

In order to evaluate the differences between the extraction

methods, One-way Analysis of Variance (ANOVA) is used and the

significance level ‘p’ is set to 0.05. A ‘p’ value smaller than 0.05

suggests that there is a significant difference between the two

compared situations.

Results

3.1 Comparing First Type Accuracy
After applying FFT to the 60s-length evoked EEG of each

subject, a clear peak was found in the frequency spectrum for each

stimulus, suggesting the successful evocation of SSVEP under each

situation. Therefore, all evoked EEG can be used to detect SSVEP

using different methods. This experiment illustrates a wide variety

of SSVEP power across various subjects. For some subjects, all

SSVEPs under every stimulus were strong and extracted easily

with high accuracy using the PS, SOB and CC methods. For

example, when the EEG segment lasted 1s, the average first-type

accuracy of subject S1 was 92%, 95% and 85% for the PS, SOB

and CC methods respectively, while its peer was 98%, 96% and

86% for the PS, SOB and CC methods respectively when the

length of EEG segment was 3s. For some people, SSVEPs were

strong for certain stimuli, while weak for others. This difference led

to differentiated accuracy in detecting SSVEP. For example,

subject S7 had a very different detection accuracy under different

stimuli. For a 33.33 Hz stimulus, when the EEG segment lasted 1s,

first type accuracy was 92% for PS, 99% for SOB and 87% for CC

methods respectively, while its peer was 97% for PS, 98% for SOB

and 88% for CC methods respectively when the length of EEG

segment was 3s. While for a 25 Hz stimulus, when the EEG

segment lasted 1s, first type of accuracy was 37% for PS, 47% for

SOB and 44% for CC methods respectively, while its peer was

65% for PS, 50% for SOB and 46% for CC methods respectively

when the length of EEG segment was 3s. For all eleven subjects,

when the EEG segment was 1s-length, the overall averages of first

type accuracy for PS, SOB and CC were 60%, 68% and 58%,

respectively. When the EEG segment was 3s-length, the overall

averages of first type accuracy for PS, SOB and CC were 82%,

72% and 60%, respectively. When the EEG segment was 1s-

length, the ANOVA results between the PS and SOB methods

Figure 2. SSVEP detection steps for known frequency evoked EEG segments. ‘Output’ stands for the detection of an evoked EEG segment
being accurate or inaccurate.
doi:10.1371/journal.pone.0093884.g002
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were (F (1, 20) = 0.95, p = 0.34), which indicates that there is no

significant difference between the two methods if all subjects are

treated as one group. Likewise, the ANOVA result were

(F (1, 20) = 1.9, p = 0.18) between the SOB and CC methods

and (F (1, 20) = 1.47, p = 0.23) between the PS and CC methods,

which indicates that there is no significant difference between the

two methods if all subjects are treated as one group. When the

EEG segment was with a length of 3s, the ANOVA results were (F

(1, 20) = 1.3, p = 0.04) between the PS and SOB methods and (F

(1, 20) = 15.1, p = 0) between the PS and CC methods, which

means the accuracy of PS is significantly higher than that of SOB

or CC; there was no significant difference of the detection

accuracy between the SOB and CC (F (1, 20) = 2.9, p = 0.1).

For 1s-length EEG segments, when dividing the subjects into

three groups based on the detection accuracy, there was a big

difference between the PS and SOB methods, and the SOB and

CC methods. The ANOVA results for the group with accuracies

higher than 85% were (F (1, 4) = 1.93, p = 0.24) between PS and

SOB, and (F (1, 4) = 5.4, p = 0.08) between SOB and CC. This

indicates that there is no significant difference between the PS and

SOB methods or between the SOB and CC methods when

SSVEP is prominent. However, the ANOVA results for the group

with accuracies close to 70% were (F (1, 4) = 8.93, p = 0.04)

between PS and SOB, and (F (1, 4) = 12.6, p = 0.02) between SOB

and CC. This demonstrates a significant difference between the PS

and SOB methods and the SOB and CC methods with reference

to middle strength SSVEP. The ANOVA results for the group

with accuracies around 55% is (F (1, 4) = 14.2, p = 0.02) between

PS and SOB and (F (1, 4) = 12.2, p = 0.02) between SOB and CC.

These results suggest that the differences between the methods are

significant when SSVEP is weak. The ANOVA results between the

PS and CC methods for the three groups of different accuracy

were (F (1, 4) = 1.1, p = 0.29), (F (1, 4) = 1.3, p = 0.2) and (F (1,

4) = 1.6, p = 0.15) respectively. This illustrates that there is no

significant difference between the PS and CC methods for first

type detection under any situation. Fig. 3 shows the average first-

type detection accuracy for every subject using the PS, SOB and

CC methods for 1s-length segments. Fig. 4 shows the average first-

type detection accuracy for each subject using the PS, SOB and

CC methods for 3s-length segments.

Compared the first type detection accuracy of 1s-length segment

to that of 3s-length segment, for the PS method, the first type

detection accuracy of 3s-length segment is significantly higher than

that of 1s-length segment (F (1, 20) = 10.1, p = 0.001); while for the

SOB and CC method, the ANOVA results are (F (1, 20) = 0.01,

p = 0.95) and (F (1, 20) = 0.01, p = 0.98) respectively, suggesting

that there is no significant difference of the first type detection

accuracy between the 1s-length and 3s-length segments for these

two methods.

3.2 Comparing Second Type Accuracy
Second type accuracy for the PS, SOB and CC methods are

high for every subject under any stimulus. When the EEG segment

lasts 1s, the average second type accuracy for the PS, SOB and CC

methods is 87%, 92% and 89%, respectively. When the EEG

segment is with length of 3s, the average second type accuracy for

the PS, SOB and CC methods is 95%, 92% and 90%, respectively.

When the EEG segment is 1s-length, the ANOVA results of (F (1,

20) = 8.3, p = 0.009) between the PS and SOB methods demon-

strates that the second type accuracy of SOB is significantly higher

than that of PS. However, the ANOVA results of (F (1, 20) = 1.83,

p = 0.19) between the SOB and CC methods demonstrates that

there is no significant difference between the two methods when

calculating second type accuracy. Furthermore, the ANOVA

results of (F (1, 20) = 2.8, p = 0.15) between the PS and CC

methods demonstrates that there is no significant difference

between the two methods when calculating second type accuracy.

When the EEG segment is 3s-length, the ANOVA results of (F (1,

20) = 6.6, p = 0.02) between the PS and SOB methods and (F (1,

20) = 14.4, p = 0.001) between the PS and CC methods demon-

strate that the second type accuracy of PS is significantly higher

than that of the other two methods. However, the ANOVA result

of (F (1, 20) = 1.56, p = 0.22) between the SOB and CC methods

demonstrates that there is no significant difference between the

two methods when calculating second type accuracy. Fig. 5

illustrates every subject’s average second type accuracy using the

Figure 3. Average first type accuracy resulting from the PS,
SOB and CC methods for every subject for 1s-length segments.
doi:10.1371/journal.pone.0093884.g003

Figure 4. Average first type accuracy resulting from the PS,
SOB and CC methods for every subject for 3s-length segments.
doi:10.1371/journal.pone.0093884.g004
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three methods for 1s-length segments. Fig. 6 illustrates every

subject’s average second type accuracy using the three methods for

3s-length segments.

Compared the second type detection accuracy of 1s-length

segment to that of 3s-length segment, for the PS method, the

second type detection accuracy of 3s-length segment is significantly

higher that of 1s-length segment (F (1, 20) = 4.7, p = 0.01); while

for the SOB and CC method, the ANOVA results are (F (1,

20) = 0.33, p = 0.51) and (F (1, 20) = 0.41, p = 0.39) respectively,

suggesting that there is no significant difference of the second type

detection accuracy between the 1s-length and 3s-length segments

for these two methods.

Discussion

Three factors that likely have the largest influence on the

detection accuracy of SSVEP are the SSVEP phase, SSVEP

power and background EEG. The absolute or relative power of

SSVEP is used as an indicator of SSVEP in the PS method. This

indicator is irrelevant to the SSVEP phase. Therefore, the initial

phase of SSVEP has no influence on the accuracy of the PS

method.

Although the CC and SOB methods both make use of the

correlation coefficient, there is a significant difference between

them. Using the CC method directly to detect SSVEP only at one

electrode, runs the risk of not choosing the highest correlation

coefficient due to the fact that this method is very sensitive to the

initial phase of SSVEP. In order to understand this more

thoroughly, a sinusoidal signal can be added to a spontaneous

EEG to obtain a simulative SSVEP signal. The correlation

coefficient between the sinusoidal signal and the simulative SSVEP

signal can then be calculated. If the starting point of the simulated

SSVEP signal varies, (i.e. the initial phase of SSVEP varies), the

correlation coefficient changes significantly. For example, when a

12 Hz sinusoidal signal of 1 mv is added to the spontaneous EEG

at electrode No.76 for subject S1 to get a simulative SSVEP signal,

by shifting the starting point of the simulated SSVEP signal, the

correlation coefficient varies between the maximum 0.1372 and

the minimum–0.1379. Using the CC method to extract 12 Hz at

this channel results in many false detections, however, the power

of 12 Hz in the simulative SSVEP signal holds almost at the same

level. In this work, even though some estimated initial phases were

used to compute the correlation coefficient, which can increase the

coefficient to some extent, there were still limitations to obtaining

the largest coefficient. In a real BCI system, where the subjects are

randomly shifting their fixation point between flickers, the initial

phase of each SSVEP frequency is unknown. If the correlation

coefficient between the EEG at one electrode and the sinusoidal

signal of the corresponding frequency is directly computed,

detection accuracy will be low. Therefore, in studies in which

the CC method was introduced to extract SSVEP [21], a few

electrodes were used at the same time. Although this can improve

the accuracy of the CC method, it increases the complexity of the

BCI system, which is disadvantageous for a practical system.

The SOB approach has overcome the drawback of the phase

sensitivity of the CC method. Under this approach, instead of

directly computing the correlation coefficient between the

sinusoidal signal and the entire original EEG, the correlation

coefficient is computed between the original EEG in a defined

band and the remaining filtered target frequencies. There is no

need to construct a series of sinusoidal signals and detection

accuracy is irrelevant to the initial phase of SSVEP.

Any method of SSVEP extraction is sensitive to the SSVEP

power itself. The same rule applies for the PS, SOB and CC

methods. This is why a positive correlation can be observed

between the signal to noise ratio (SNR) and the detection

accuracy. The most important task in a BCI therefore, is to

improve the power of SSVEP, except when finding a valid

extraction method.

The absolute power of SSVEP is also dependent on other

extraneous factors such as attention or viewing angle, except for

stimulus intensity. Therefore, the absolute power of SSVEP

corresponding to a certain frequency may vary within a range

even if the same stimulus is used. In some situations, the absolute

power of SSVEP may not be strong enough. Thus, if the power of

background EEG increases to a certain extent, the relative power

may be below the threshold, which leads to false detection.

Figure 5. Average second type accuracy resulting from PS, SOB
and CC methods for every subject for 1s-length segments.
doi:10.1371/journal.pone.0093884.g005

Figure 6. Average second type accuracy resulting from PS, SOB
and CC methods for every subject for 3s-length segments.
doi:10.1371/journal.pone.0093884.g006
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Similarly, if the power of background EEG decreases to a certain

extent, a certain frequency with fluctuating power of a high value

can be detected as SSVEP. In other words, relative power is

sensitive to the power of background EEG. In the PS method,

relative power is often used as an indicator of SSVEP. Therefore,

the PS method is sensitive to the background EEG. In the SOB

method, in order to decrease sensitivity to background EEG, the

band selection of background EEG is very important when

constructing a new ‘S1’ signal. SSVEP power is very small

compared to the total power of background EEG. In consequence,

if the whole band of EEG is chosen in the SOB method, the

correlation coefficient holds almost unvaried, even if the strong

target frequency is filtered out. This leads to a false detection. To

prevent this, some strong background EEG is filtered beforehand.

The remaining band of background EEG needs to be broad

enough to prevent the average power of the remaining band from

fluctuating too much when some components vary over a wide

range. If not, some segments with a larger fluctuation of a certain

frequency that is not SSVEP, might be detected as the SSVEP of

this frequency, decreasing detection accuracy.

The filter parameters given in this work are empirical. In a real

BCI, they can be adjusted to an optimal value. For example, to

avoid a strong a signal, the signal from 8–12 Hz should filter out.

8.33 Hz and 12.5 Hz stimuli were used in this work, according to

the SOB method, the near band background signal should be

maintained so that only the background signal from 9 Hz to

11 Hz is filtered out. The filter in this work is based on the

frequency domain. Although FFT and IFFT can take up more

time, this consumption (10 ms or so) is much shorter compared to

the signal length and can therefore be applied in a simple BCI

system with a few stimuli. In fact, other kinds of filters in the time

domain such as FIR or IIR can also be selected. We have tested

this kind of filter and similar detection accuracy can be achieved.

In a complicated BCI system including dozens of target

frequencies, time consumption for filtering is too long and as

such filters in time domains such as FIR or IIR are preferred.

First type accuracy is influenced mainly by the power of SSVEP

itself. This is the same for the PS, SOB and CC methods.

According to the standards of SSVEP threshold selection, SSVEP

power is normally much higher than the threshold. However, for

some particular reasons (e.g. if the subject has not paid enough

attention to the stimulus or stared at the stimulus at an incorrect

angle), SSVEP power will decrease dramatically, reducing first

type detection accuracy. In this study, there was a big difference in

first type accuracy for the same person during different periods.

This is because this experiment was not a real BCI and the subjects

would sometimes divert their attention or move the viewing angle,

decreasing SSVEP power. In fact, when applying FFT for a long

enough period, such as 4–5 s length, a large fluctuation in SSVEP

power was observed for different segments. The subjects diverting

their attention or moving the viewing angle led to a clear inter-

subject difference of SSVEP intensity. If treating all subjects as one

group, first type detection accuracy varies acutely between

subjects, which is not a normal distribution, and the inter-subject

differences conceal the differences between methods. As such,

there is no significant difference in first type accuracy between the

methods. Dividing the subjects into groups according to their

SSVEP intensity, results in a significant difference between the

methods, for the groups with middle or low strength SSVEP. This

suggests that the SOB method is more valid than the PS and CC

methods in a situation where SSVEP is weak.

Second type accuracy is influenced mainly by background EEG.

In an SSVEP-based BCI, normally many frequencies are adopted

simultaneously. For a segment including a certain frequency

SSVEP that is strong enough, SSVEP can usually be detected.

However, for other frequencies, due to power fluctuations, they

may sometimes exceed the threshold and be detected as SSVEP.

This would lead to false second type detection. Since the SOB

method has lower sensitivity to background EEG compared to the

PS method, second type accuracy of the SOB method is

significantly higher than that of the PS method. Usually, random

noise is asynchronous and thus the CC method is sensitive to the

initial phase. Therefore, asynchronous noise can rarely result in a

large correlation coefficient, and the second type accuracy of the

CC method is similar to that of the SOB method.

First type accuracy and second type accuracy are both

important for a real BCI. A valid extraction method should have

high accuracies for both. If not, a balance should be found

between the two type accuracies. This balance is closely related to

the threshold. If the threshold is too low, first type accuracy will be

very high. However, excessive noise will be incorrectly detected as

SSVEP, subsequently decreasing second type accuracy. In

contrast, if the threshold is too high, background noise will not

exceed the threshold and high second type accuracy can be

obtained. However, some weak SSVEPs cannot be detected under

this high threshold, which can decrease first type accuracy. In this

study, in order to compare the validity of the three methods

qualitatively, the threshold was built based on a spontaneous EEG.

This is reasonable because in a BCI, some target frequency

components vary according to the subject’s attention, while other

background components hold at a similar level to the spontaneous

EEG. The threshold based on a spontaneous EEG can adapt to

this situation for second type detection. The balance parameter,

for example, the 90% first type accuracy for spontaneous EEG in

this study, can be adjusted to the designer’s preference.

The objective of this work is to develop a valid SSVEP

extraction method for a short-time period, so we mainly focused

on the detection for 1s-length segment. On the other hand, in

order to understand the performance of the different methods

changing with the signal duration, we also detected SSVEP in 3s-

length segment with different methods. The results show that the

detection accuracy of PS increases with the rise of duration, while

for the other two methods, the detection accuracy has no

significant improvement with the increase of duration. In the

SOB and CC methods, the SSVEP detection is based on the

computing of correlation coefficients, while this coefficient is

almost irrelative to the signal length, so the detection accuracy

would not vary with the increase of duration. The SSVEP is

synchronous, but the background noise is asynchronous. When

using FFT to get the power spectrum of the evoked EEG, the

synchronous signal would be enhanced as the duration increases,

while the asynchronous signal would almost keep the same level as

the duration increases. So the detection accuracy of a longer

segment is higher than that of shorter segment in the PS method.

Although the PS method has a high detection accuracy for the

longer segment, it is not suitable for a real-time system for its long

time consumption.

Conclusion

The SOB method is insensitive to the initial phase of SSVEP.

Compared to the PS method, the SOB method has a lower

sensitivity to background EEG. Although the SOB method and

the CC method both make use of the correlation coefficient, the

mechanism is completely different. When applying the SOB

method for detecting the SSVEP for a short period such as 1s-

length, higher detection accuracy than that produced by the PS
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and CC method can be acquired. All these features suggest that

the SOB method can be easily applied in a real-time BCI.
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