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Abstract
Induction of tumor angiogenesis is among the hallmarks of cancer and a driver of metastatic
cascade initiation. Recent advances in high-resolution imaging enable highly detailed three-
dimensional geometrical representation of the whole-tumor microvascular architecture. This
enormous increase in complexity of image-based data necessitates the application of informatics
methods for the analysis, mining and reconstruction of these spatial graph data structures. We
present a novel methodology that combines ex-vivo high-resolution micro-computed tomography
imaging data with a bioimage informatics algorithm to track and reconstruct the whole-tumor
vasculature of a human breast cancer model. The reconstructed tumor vascular network is used as
an input of a computational model that estimates blood flow in each segment of the tumor
microvascular network. This formulation involves a well-established biophysical model and an
optimization algorithm that ensures mass balance and detailed monitoring of all the vessels that
feed and drain blood from the tumor microvascular network. Perfusion maps for the whole-tumor
microvascular network are computed. Morphological and hemodynamic indices from different
regions are compared to infer their role in overall tumor perfusion.

Introduction
Tumor-associated angiogenesis is an indispensable factor in the progression of solid tumors
beyond a minimal size (1–2 mm3) and is considered one of the hallmarks of cancer
(Hanahan and Weinberg, 2011). Tumor vasculature is characterized by chaotic morphology
and excessive sprouting while the blood flow in the tumor is highly heterogeneous (Jain,
2008). Therefore, it is crucial to elucidate the dynamics of tumor blood flow to understand
its role in drug delivery. Recent advances in microscopic imaging enable the accurate 3D
visualization of the individual vessel morphology in tumors as well as a description of their
function (Tyrrell et al., 2007). This also provides a unique opportunity for computational
modeling to make detailed predictions of microvascular hemodynamics compared to bulk
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estimates for the whole-tumor vasculature. Until recently this type of tumor blood flow
modeling was hindered because of the limited information regarding the detailed 3D
morphology of tumor vasculature. High-resolution techniques such as µCT (micro-computed
tomography) can provide such 3D data with high fidelity, and have paved the way for the
use of computational blood flow models in translational and personalized medicine.
Specifically, high-resolution spatial imaging spanning the whole-tumor vascular network
will enable realistic simulations of blood flow in every segment of the tumor vascular
network (Kim et al., 2012b).

Mechanistic, image-based hemodynamic modeling can aid in a detailed understanding of the
distribution of blood in vascular networks across various spatial scales (Guibert et al., 2013;
Guibert et al., 2010). Benedict et al. also used confocal microscopy to obtain microvascular
network data from immunostained skeletal muscle and performed hemodynamic simulations
based on this data (Benedict et al., 2011). Synchrotron radiation based micro-computed
tomography (SRµCT)-derived vascular data were used by Reichold et al. to simulate
cerebral blood flow (Reichold et al., 2009). Micro-computed tomography data were used by
Lee and Smith to implement a novel approach linking blood flow and hematocrit in a
coronary microvascular network model (Lee and Smith, 2008). Yang et al. employed µCT-
derived 3D vascular data to simulate the hemodynamics of the rat placenta and lung
vasculature (Yang et al., 2010). Recently, we employed µCT-derived 3D vascular data
acquired from a human breast cancer xenograft model to demonstrate the feasibility of
simulating tumor hemodynamics (Kim et al., 2012b).

One of the major hurdles to incorporating whole-tumor imaging data in multiscale
biophysical models is the ability to quantitatively analyze 3D vascular datasets spanning
three orders of magnitude (µm to cm) in an automated manner. Typically, high-resolution
3D image stacks are several gigabytes, and require specialized software for image
segmentation (Peng et al., 2010). The field of ‘bioimage informatics’ is relatively new and
involves the transformation of traditional image processing results to biologically
meaningful knowledge using informatics approaches (Myers, 2012). Bioimage informatics
approaches have been employed recently to trace the patterns of neurite morphology in fruit
flies and C. elegans (Peng, 2008; Peng et al., 2010). Similar algorithms have also been used
to complement analysis of single-cell level imaging data to track surface receptor
trajectories and actin filament speckle flows (Jaqaman et al., 2011; Ji et al., 2008).

In the current study, we are dealing with a large microcirculatory tumor vascular network
comprising numerous boundaries (i.e. blind ends) and an incomplete understanding of the
flow directionality compared to other well-characterized physiological systems (Pries et al.,
2009; Pries et al., 2010). Moreover, incomplete microvascular filling and limitations in
spatial resolution resulted in discontinuities in the topology of the tumor vascular network.
Therefore, we developed a 3D tracking and reconstruction algorithm to traverse the whole-
tumor 3D vascular network (to systematically examine nodes and segments), identify
discontinuities in the image dataset, and reconstruct the topology based on local cues in the
imaging data. Furthermore, we formulated an optimization algorithm to deal with the
incomplete boundary data and flow directionality in tumor vasculature. Our method
iteratively optimizes the boundary pressures employing a detailed nonlinear optimization
algorithm. Specifically, it involves the analysis of the effect of the number of boundaries on
the perfusion estimates for the tumor microvasculature and correlates it to similar
experimental findings. Our computational model takes into account the nonlinear
rheological properties of blood (i.e. Fahraeus, Fahraeus-Lindqvist and plasma skimming
effects) that are known to be significant in the microcirculation (Popel and Johnson, 2005).
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Overall, this study describes a novel bioimage informatics methodology for the
reconstruction of high-resolution, wide-area, 3D microvessel geometry from µCT data. This
approach enables the generation of detailed perfusion maps for the entire tumor vasculature,
as well as computation of various morphological and hemodynamic indices to gain insights
into perfusion heterogeneity in solid tumors (Pries et al., 2009; Secomb et al., 2012).

Materials and Methods
Ethics Statement

All animals were handled in accordance with good animal practice as defined by the
relevant national and/or local animal welfare bodies, and all animal work was conducted
under a protocol approved by the Institutional Animal Care and Use Committee (IACUC) of
Johns Hopkins University. The Johns Hopkins University animal facility is accredited by the
American Association for the Accreditation of Laboratory Animal Care and meets National
Institute of Health standards as set forth in the “Guide for the Care and Use of Laboratory
Animals” (DHHS Publication No. (NIH) 85–23, Revised 1985).

Tumor Model and Imaging Protocol
Tumor xenografts were initiated by orthotopic inoculation of 106 triple-negative human
breast cancer (MDA-MB-231) cells into the mammary fat pad of female NCr-nu/nu mice.
At 5 weeks post-inoculation the animals were deeply anesthetized with isoflurane and
sacrificed by perfusion fixation. First, 20 ml of PBS was injected into the left ventricle via a
25G butterfly needle (BD Vacutainer®; Becton, Dickinson and Company, Franklin Lakes,
NJ), followed by 20 ml of formalin. Finally, perfusion with 20 ml of the radio-opaque
vascular filling agent Microfil (FlowTech Inc., MA) as we described in (Kim et al., 2011).
The jugular veins were cut to allow drainage of perfusates, which were injected manually at
an approximate rate of 4 ml/min. The tumor volume was 280 mm3. All the animal
experiments were conducted according to an animal protocol approved by the Institutional
Care and Use Committee at Johns Hopkins Medical Institution. Ex-vivo imaging of the
complete tumor vasculature was performed using µCT. Samples were sent to be imaged at
Numira Biosciences (Salt Lake City, UT) with a volumetric µCT scanner (µCT40, ScanCo
Medical, Zurich, CH) at 8 µm isotropic voxel resolution, 55 kVp, 300 ms exposure time,
2000 views and 5 frames per view. The DICOM µCT data were converted to a raw data
format for analysis in the 3D visualization software Amira (Mercury TGS, Merignac,
France; San Diego, USA; Zuse Institute, Berlin, Germany). Tumor vasculature was
represented as segments as described in (Kim et al., 2012a). Briefly, vessels were extracted
using a Hessian-based, multi-scale ‘tubeness’ filter in ImageJ (Rasband, W.S., ImageJ, U. S.
National Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/, 1997–
2012). This filter convolves the image with a spherical Gaussian kernel in each voxel,
computes the Hessian matrix and the corresponding Hessian eigenvalues. Next, a binary 3D
vascular structure was obtained by applying an iterative threshold algorithm on the result of
the filter. Skeletonization of the binarized vasculature and extraction of vessel centerlines
was conducted using Amira software, resulting in a highly detailed tumor vascular network
consisting of a set of cylinders around the centerline points. The radius of each cylinder was
determined in Amira using the corresponding Euclidean distance map at these points.

The resulting data structures from this image processing were stored in an ASCII file that
encodes the topology of the tumor microcirculatory network. The microvascular network is
treated as a spatial graph, i.e. an object consisting of a set of centerline points (or nodes)
representing image voxels; their Cartesian coordinates; and edges that connect these nodes,
depicting the association of neighboring voxels (Dale and Fortin, 2010; Hirsch et al., 2012).
In such a vascular spatial graph, nodes are divided into three categories: branching, internal
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and boundary nodes. Branching nodes represent coordinates in which segments branch to
other segments (e.g. bifurcations) and have 3 or more nodes they are connected with (i.e.
minimum 3 degrees of freedom). Internal nodes are located between branching nodes, in a
graph sense, and are connected with 2 of their neighboring nodes (2 degrees of freedom).
These annotations are necessary to represent the length, average radius or other features
such as tortuosity of individual segments, which are defined as the series of edges between 2
branching nodes. These characteristics vary from segment to segment and allow the 3D
visualization software to represent the intricate characteristics of the microcirculatory
geometry. Boundary nodes represent the leaf vertices of the graph which are connected only
to one node (1 degree of freedom). They represent discontinuities in the microcirculation
(i.e. non-connected segments) or blind ends, which is common in tumors due to sprouting
(Vaupel, 2004).

3D Tracking and Reconstruction Algorithm
Despite the high spatial resolution and wide-area coverage, the resulting raw vascular
structure exhibited discontinuities that hindered the application of any mass balance or fluid
mechanics laws (Fig. 1). This was confirmed by treating the vasculature as a spatial graph
and performing graph-based analysis (see Supplementary Information). Therefore it became
imperative to create a method that could handle an enormous amount of data points and
reconstruct missing parts of the microvasculature. We developed a computer-aided image
data-driven approach to reconstruct and characterize the whole-tumor vasculature
(adjacency matrix and segment morphology vector) before proceeding to blood flow
simulations (Fig. 2).

The 3D tracking and reconstruction module (Suppl. Fig. 1) we have developed is presented
in detail in Supplementary Information. Briefly, it is an algorithm consisting of three
modules:

1. A breadth-first search (BFS) traversal algorithm mapped on a structured grid to
construct a directed graph of nodes (or digraph) (Suppl. Fig. 2).

2. A depth-first search (DFS) traversal algorithm exploiting the output of Module 1 to
topologically sort individual nodes into segments (Suppl. Fig. 3).

3. A sorting algorithm (Suppl. Fig. 4) to perform the following tasks:

a. Sort the outputs of Module 2 and encode their topology in a heap.

b. Develop a priority queue to visit the segments not explored by the BFS
algorithm and find common branching nodes and integrate them.

c. Index the segments and construct the final topology.

The algorithm was implemented in Java (Eclipse Foundation, Inc., Ontario, Canada) and
MATLAB (The MathWorks, Inc., Natick, MA) and executed in parallel CPUs mode.

Model for Pressure and Flow Distribution
The discretization of the tumor vascular network into nodes and segments allows us to apply
a generalized empirical 1D method to the network using a Poiseuille-type equation with
appropriate boundary conditions (Ji et al., 2006; Popel, 1980; Popel and Johnson, 2005). We
introduce blood flow rate (Qij) and pressure drop (Pi - Pj) in individual segments governed
by the equations:
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(1)

(2)

(3)

where Gij is the hydraulic conductance of a segment, µij is the apparent viscosity, and flow
rate Qij is related to pressure drop (Pi - Pj) by a Poiseuille-type equation. Viscosity of blood
µij in individual segments is evaluated by rheological formulas presented in the
Supplementary Information, which were derived by Pries and Secomb using a combination
of experimental data and mathematical modeling (Pries et al., 2001a; Pries et al., 2001b;
Pries et al., 1990; Pries et al., 1994).

Application of conservation of mass led to a sparse system of equations:

(4)

If suitable pressure boundary conditions are imposed at all boundary nodes Eq. 4 can be
transformed to:

(5)

where Gint is the sparse non-symmetric matrix containing the hydraulic conductance of
segments defined by branching nodes, and Pint is the pressure vectors of the corresponding
points; Gb is the vector of conductance of segments defined by the branching nodes that are
connected to boundary nodes, and Pb is the pressure vector of boundary nodes. This system
is solved for pressure (Pint) at all branching nodes based on the assumption that viscosity µij
and hematocrit (HDij) are known in all segments; we subsequently solve the full nonlinear
problem with unknown µij and HDij. We define and solve the problem in MATLAB using
the generalized minimum residual method (GMRES), which is a Krylov subspace iterative
method for sparse linear systems (Saad and Schultz, 1986).

Optimization Algorithm for Boundary Conditions of Tumor Vascular Network
Due to the atypical structure of the tumor microvascular network, the standard terminology
used to distinguish the microvessels (arterioles, venules and capillaries) cannot be used in
the same manner as in a normal physiological tissue. However, it is imperative to define
boundary conditions for the thousands of boundary nodes in the tumor vascular network.
Specific boundary nodes (of the order of tens) are pre-assigned as inlets and outlets to the
tumor vascular system. These boundary nodes are chosen in a similar manner as the nodes
chosen for the initiation of the BFS module. These boundary nodes belong to large diameter
segments (30–80 µm, at least 2-fold greater than the mean diameter) in the periphery of the
tumor and are assumed to be connected to peritumoral vessels (Gaustad et al., 2009). These
boundary nodes are assigned a range of boundary conditions based on reported
measurements for pressure of inlets, outlets and pressure drop across microvascular
networks (Less et al., 1997). However, the microvascular topology, even after the
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application of the BFS algorithm, contains a vast number of additional boundary segments
(on the order of thousands) that cannot be directly connected to any other segment (i.e. blind
ends) (Fig. 3). These segments can either be artifacts of the image reconstruction, immature
angiogenic sprouts, or connections to a capillary-like bed that includes diameters below the
spatial resolution of µCT. Another possibility is that due to the higher viscosity of the
Microfil (∼20cP) compared to blood, there might be structures that were not perfused and
therefore not visible to µCT. We treat this underdetermined linear system by applying an
optimization technique (Fry et al., 2012), exploiting available literature information on
blood perfusion studies of breast cancer, as well as the distinct nature of the tumor vascular
network. Our methodological approach is presented in the Supplementary Information and is
not biased regarding the choice of flow directionality.

Finally, we conducted sensitivity testing to explore the importance of the blind end density
to overall tumor perfusion. We performed independent simulations by varying the number of
blind ends via random sampling from a uniform distribution. The density of these blind ends
was calculated as number per unit length.

Nonlinear Model for Hematocrit Estimation
The above analysis was conducted under the assumption of constant hematocrit. However,
due to the phase separation effect of blood at vascular bifurcations where red blood cells and
plasma are unevenly distributed, the hematocrit distribution had to be calculated (Pries and
Secomb, 2003). This phenomenon induces heterogeneity of the hematocrit among the
segments of the vasculature (Dawant et al., 1986; Levin et al., 1986). In vivo experiments
performed in the rat mesentery allowed the formulation of empirical equations to be
developed to describe the phase separation effect in divergent bifurcations. The equations
are presented in the Supplementary Information and lead to estimation of discharge
hematocrit values. This process is then iterated until convergence (Ganesan et al., 2010;
Lorthois et al., 2011). A schematic summarizing the methodology for the blood flow and
hematocrit calculations is presented in Fig. 3.

Morphological and Hemodynamic Analysis
Morphological and hemodynamic parameters are calculated for the entire tumor vasculature
and various regions of interest (ROI) of the tumor (Safaeian et al., 2010). These include:

(6)

(7)

(8a)

(8b)
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(9)

Eq. 9 is based on Krogh's model for diffusion from capillaries.

The standard definition of tortuosity in 2-D is based on the ratio of arc length to the
Euclidean distance between two end nodes:

(10)

The box-counting algorithm in MATLAB was used to calculate the fractal dimension using
the processed binary image as an input (Gould and Reece, 2012; Moisy, 2006). The binary
image contains all vessel information in the form of a 3D matrix containing zeros and ones.

The flow rate vector (Qij) of the tumor vascular network estimated after the iterative
convergence of the mathematical model allowed us to estimate the following blood
transport-related measures (indices):

(11)

(12)

(13)

(14)

(15)

where mtissue is the tissue mass. We also calculated fractal characteristics and statistical
distributions of segment diameter, length, velocity and shear stress.

Results
Reconstruction of Tumor Microvessel Network

In Table 1 the performance of each Module is presented as a number of segments and nodes
that was able to capture. Module 3 which exploits the fully connected sub-network of
Modules 1 and 2, scores more than 90% with respect to the reconstruction of the initial raw
data. Fig. 4 presents the sequence of the output images as the bioimage informatics pipeline
produces them. Fig 4a presents the connected backbone sub-network of the whole
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vasculature produced by Modules 1 and 2. Fig. 4b presents the backbone sub-network
overlaid by the raw data and confirms that our approach minimally alters the vascular
structure. On the other hand, it allows the establishment of a framework upon which all the
other unconnected segments (Fig. 4c) can be positioned. This positioning by Module 3 does
not alter the salient morphological features of these entities (Fig. 4b vs. 4d). Such an
extensive tracking and coverage of the patterns of the segmented image permits comparison
of various regions. Thus, six ROI (20 mm3 in volume) were randomly selected; three near
the tumor core and three towards the rim to compare their perfusion characteristics and
potentially discover links between morphological and hemodynamic metrics.

Experimental Validation
Fig. 5 presents the frequency distributions of diameters and lengths of vessel segments of the
entire tumor vascular network. The exponential distribution best fits the data, which was
confirmed by χ2 goodness of fit (p-value<0.01) and one-sample Kolmogorov-Smirnov (K-S)
test (p-value<0.01). The confidence intervals of mean values were estimated through
nonlinear regression analysis. Table 2 summarizes the morphological parameters for the
entire tumor vascular network along with the comparison to values reported in the literature.
The mean value and range of tumor vascular density, vascular diameter, length and ratio S/V
are in agreement with those reported for various types of xenograft models (mostly breast)
(Nagy et al., 2012; Sitohy et al., 2012; Yuan et al., 1994). Similar findings are presented for
other morphological parameters such as tortuosity, mean extravascular length and fractal
dimension (Konerding et al., 1999; Vakoc et al., 2009).

Fig. 6 depicts the perfusion velocity for the whole-tumor vasculature as a composite image.
We observed the presence of vessel segments exhibiting high and intermediate flow
velocities, but most had velocities below 1 mm/s (Kamoun et al., 2010). The hemodynamic
characteristics of the tumor vasculature were examined for four different scenarios of
increased number of inlets/outlets to the system (Table 3). The major results from this
comparison were the following: perfusion was influenced by the number of blind ends
contributing to influx/efflux of blood, but this variation remained within the experimentally
reported range (Hirasawa et al., 2007; Kallinowski et al., 1989; Sabir et al., 2008). This
perfusion elevation yielded a seemingly contradictory result: a decrease in mean flow
velocity and shear stress, and an increase in VSTT and hypoperfusion of individual
segments. Moreover, mean flow velocity and the range of velocities computed agree with
values reported by high-resolution measurements using multiphoton microscopy in human
mammary adenocarcinoma and glioma xenograft models (Kamoun et al., 2010). These
values ranged up to 10 mm/s, while most of the data were below 1mm/s. This is consistent
with our predictions in Fig. 9. Moreover, velocity measurements in mesenteric networks
range up to 10–14 mm/s, which were also consistent with theoretical predictions (Pries et al.,
2003; Pries et al., 1995). Fig. 7 presents a spatially coarser perfusion map, in which the
vasculature was discretized and an average perfusion value estimated for each voxel
(100×100×100 µm3). This depiction shows pockets of voxels with high or low perfusion at
all distances from the core of the tumor. On average it appeared that the perfusion increased
towards the rim, but there were also well perfused regions closer to the tumor center
(Bowden and Barrett, 2011; Vaupel, 2004).

Fig. 8 presents the comparison of the hematocrit distribution and vessel clustering for two
different cases based on different influx/efflux boundary conditions. The boxplots show that
increased number of influx/efflux entities leads to a hematocrit distribution in the transport
vessels (VSTT<25s, HD>0.01) that is grouped around 0.4 with more outliers (i.e. smaller
IQR and whisker range in Fig. 8b) (Braun et al., 2002). In contrast, the omission of blind
ends from the hemodynamic calculations led to a profile more skewed towards values
smaller than 0.4 with fewer outliers (i.e. higher IQR and whisker range in Fig. 8a). Figure 8c
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showed that phenotypic clustering of hypoperfused (VSTT>25s) and low-hematocrit
(HD<0.01) vessels can be performed for both cases based on hemodynamics. The empirical
phenotyping clustering for perfused vs. unperfused vessel segments was based on whether
their VSTT was an order of magnitude higher compared to the maximum of the mean VSTT
values presented in Table 3. We believe that VSTT is a good indicator of hypoperfusion
because it takes into account both flow and length information per vessel segment. The
vessels with these characteristics span all diameter ranges, in agreement with results from
Kamoun et al. (Kamoun et al., 2010). In Figs 9–10 frequency distributions of flow velocities
and shear stresses in the tumor vascular network are presented. Gamma and exponential
distributions describe these hemodynamic measures for all cases as confirmed by χ2

goodness of fit (p-value<0.01) and one-sample K-S tests (p-value<0.01). The confidence
intervals of mean values were estimated through nonlinear regression analysis. The two-
sample K-S test confirmed that all distributions were unique (p-value<0.01).

Morphological and Hemodynamic Comparison of ROI
Table 4 summarizes the morphological parameters for the tumor vasculature extracted from
six ROI defined in Fig. 11. Blood volume and vessel length density of ROI located in the
periphery are significantly elevated compared to the whole vasculature, while the opposite
was observed for parameters such as extravascular diffusion distance and fractal dimension.
Two of the ROI (Core-2 and −3) close to the tumor center showed decreased blood volume
and vessel length density and higher mean extravascular distance compared to the whole-
tumor vascular network. ROI Core-1 showed comparable vessel length density and
extravascular distance and increased vascular density compared to the whole network. For
all core ROI, the fractal dimension ranged between 1.01 and 1.46 and in two cases (Core-2,
Core-3) was close to 1. Therefore, core ROI appeared more irregular and less self-similar
compared to peripheral ROI. In addition, all core ROI had decreased volume and length
density compared to the peripheral ROI (Kim et al., 2012a), which was consistent with
decreased space-filling capacity. Tortuosity was slightly influenced by the scale change
(whole network vs. ROI) but remained in a similar range compared to other imaging studies
(Vakoc et al., 2009). The ROI comparison highlighted the heterogeneity of geometric
features across tumor vasculature; this was even more profound when comparing regions
with different spatial locations (e.g. periphery vs. center).

Fig. 12 presents the comparison of the flow velocity frequency distributions of Core-1, − 2,
−3 vs. Rim-1, −2, −3 (inset table). The two-sample K-S test confirmed that the perfusion
velocity was significantly different for all rim vs. core comparisons except Core-1 vs. Rim-1.
In Table 5 hemodynamic metrics are reported to compare these ROI. The perfusion (ml/g/
min) values for all ROI were in the same range as values reported in other imaging studies
using PET (Beaney et al., 1984; Walenta et al., 1992), laser Doppler (Acker et al., 1990) or
dynamic CT (Feldmann et al., 1992; Hirasawa et al., 2007; Jain et al., 2008; Park et al.,
2009) in patients or animal xenograft models. Peripheral tumor regions were significantly
better perfused compared to core regions. Rim-3 ROI exhibited perfusion which was even
higher compared to the whole vascular network values. Rim-3 had similar range of
velocities and shear stress levels compared to other peripheral regions but significantly
smaller VSTT (Eq. 15) and hypoperfusion values. Among the core regions, Core-2 had
perfusion value which was in the same range as mean whole-tumor vascular perfusion. This
region also had the smaller VSTT range and percentage of hypoperfused vessels compared
to Core-1 and −3. Core-2 had one of the lowest MPL values along with Core-3 and Rim-3,
which is presumed to be indicative of hypoxia and functional shunting (Pries et al., 2010).
The opposite was observed for Core-1 MPL value despite the minimal perfusion and high
percentage of hypoperfused vessels.

Stamatelos et al. Page 9

Microvasc Res. Author manuscript; available in PMC 2015 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Discussion
We present the first combined bioimage informatics and computational modeling study to
investigate the hemodynamics of a whole-tumor vascular network based on high-resolution
3D µCT data. Pioneering research by Rakesh Jain (Jain, 2008), Peter Vaupel (Vaupel, 2004)
and others has shown that there is little resemblance between the microvasculature of normal
and tumor networks. The standard differentiation among arterioles, venules and capillaries
breaks down because of the disorganized and aberrant nature of the tumor vascular network
(Nagy and Dvorak, 2012). Additionally, one of the most prevalent structural differences is
the dilated diameters of all tumor vessels including the capillary-like ones. There are
numerous studies investigating these issues both recently using high resolution imaging
techniques such as multiphoton microscopy and optical frequency domain imaging
(Kamoun et al., 2010; Vakoc et al., 2009), but also in previous decades using corrosion
casting and microphotography (Less et al., 1991; Yuan et al., 1994). All of them indicate the
very small percentage of vessels within the diameter range of normal capillaries.
Consequently, based on the de facto structure of the tumor vascular network obtained from
high-resolution 3D imaging and the underlying assumptions of our model, we were able to
simulate perfusion for the whole tumor vascular network.

The fidelity of the reconstructed vascular network is dependent on the quality of vascular
filling of Microfil, the µCT contrast agent. Microfil is widely employed in µCT studies
because its hydrophobicity and low viscosity results in compartmentalization in the vascular
space and excellent filling of microvessels (Bentley et al., 2002; Chugh et al., 2009). It is
possible that contrast agent perfusion caused artificial dilation of blood vessels. However,
the µCT-derived vessel radii measurements were within the range of histological
measurements as presented in Table 2. Moreover, the hemodynamic predictions from our
computational model were consistent with relevant hemodynamic measurements as
presented in Table 3. All in all, these findings indicate that any artificial vessel dilation had
minor effects to our results.

The 3D algorithm comprising several modules allows the pattern recognition and
reconstruction of initially discontinuous raw imaging data based on a computer-aided image
analysis approach (Danuser, 2011). The blood flow modeling involves a well-established
model for the calculation of segment-by-segment blood flow, pressure, and hematocrit (Pries
et al., 2009); in addition a detailed nonlinear optimization algorithm was developed to adjust
the pressure boundary conditions to ensure mass balance. The predicted perfusion
characteristics were generally consistent with experimentally measured values reported in
the literature.

Use of all the backbone sub-network blind ends as pressure boundary conditions provided an
upper limit for perfusion that was comparable to physiological values in gray matter
(Rostrup et al., 2000). McDonald and co-authors (Morikawa et al., 2002) experimentally
estimated the fraction of blind-ended sprouts in a sample of tumor vessels at approximately
33%. If we assume that these sprouts account for no-flow boundaries, then Case 3 of Table 3
is the most relevant. In this case, 67% of the blind ends were assigned a pressure value and
33% a no-flow boundary condition; in addition, this scenario seems more realistic since the
average perfusion is well below the physiological range, but above the lower extreme
(∼0.08 ml/g/min). The contradictory result of perfusion elevation with the consequent
increase in VSTT and hypoperfusion of individual vessels can be attributed to the
heterogeneity of the structure and the fact that these measures evaluate quantities at different
scale. Perfusion is a bulk measure evaluating total blood flow rates in the network. The other
measures result from estimation of hemodynamics in individual segments, and therefore
contain finer scale information. Finally, such finding indicated that additional inlets
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(increased total perfusion) do not necessarily improve the flow in all segments of the tumor
(Pries et al., 2009).

VSTT was estimated based on structural and hemodynamic calculations for each segment
(Suppl. Fig. 5), and exhibited an exponential distribution with mean and confidence intervals
as reported in Table 3. A possible explanation for this result is that segments with velocities
(or flow rates) greater than the mean velocity mostly have length lower than the mean
segment length. The reason why VSTT tends towards lower values under
pathophysiological conditions is based on the structural characteristics of the tumor
microvasculature and functional shunting. Namely, short pathways through the tumor vessel
network are enlarged and offer routes of decreased resistance for blood flow compared to
longer ones (Pries et al., 2010). This measure is not to be confused with the total mean
transit time (MTT), which is a bulk measure widely reported in perfusion imaging studies
(Jain et al., 2008). The MTT represents the average time needed for blood plasma to traverse
the tumor vasculature, but does not provide any additional information on a segment-by-
segment basis.

The comparison of perfusion among ROI confirms that the structural heterogeneity of tumor
microvessels leads to functional abnormalities and hemodynamic variations (Pries et al.,
2010). Despite the estimation of several 3D morphological and hemodynamic parameters, a
direct global correlation of these metrics with perfusion is not feasible in the present study.
The limited number of tumors in the present study precludes quantification of the variability
in blood flow distribution. A significantly larger experimental sample is required to address
that issue. These characteristics can facilitate assessment of tumor perfusion, but they cannot
be used as biomarkers to predict antiangiogenic efficacy or ROI-targeted delivery of
chemotherapeutics without further validation (Hlatky et al., 2002). On the other hand, an
assessment of the variation of these parameters relative to each other can be beneficial for
characterizing the differential perfusion in ROI under certain scenarios. For instance, Core-2
and Rim-2 have approximately the same percentage of hypoperfused vessels and similar
VSTT but different perfusion (Table 5). Rim-2 (better perfused) has relatively higher vessel
length density (Table 4). This relationship between length density and blood perfusion has
been reported among different tumor samples as well as among regions of the same sample
(Kim et al., 2011). Comparison of Core-2 and Core-3 ROI which have similar length and
surface density, but different regional perfusion demonstrates the utility of hemodynamic
measures such as VSTT and shear stress. It is worth mentioning the difference in VSTT,
which was significantly lower for Core-2 compared to Core-3. Our estimates are in
qualitative agreement with a recent perfusion CT imaging study in patients with pancreatic
endocrine tumors. Patients without angioinvasion or lymph node metastasis and a
proliferation index < 2% (i.e. number of cells that are dividing) seemed to have significantly
lower MTT distribution compared to patients with angioinvasion, lymph metastasis and a
proliferation index > 2% (d'Assignies et al., 2009). Another dynamic CT imaging study in
patients with hepatocellular carcinoma revealed that patients unresponsive to bevacizumab
had almost four times higher MTT compared to patients with steady disease or partial
response to treatment (Zhu et al., 2008). In these cases there was a positive correlation
between VSTT and MTT. This may be expected as tumor size and its vascular path lengths
increase, but will not always be the case for smaller tumors or ROI.

Finally, despite the estimated perfusion in Core-1 (extremely low) the MPL value, which is
postulated to be indicative of hypoxia (Pries et al., 2009), was very high. This ROI has small
length density and high degree of hypoperfusion. A possible explanation for this prediction
is that MPL takes into account the sum of flow rates, which may be extremely
heterogeneous in the tumor. That is, few high flow paths close to each other would transport
the blood and drain it out of the ROI while other areas would remain relatively isolated and
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minimally perfused. These high flow pathways also raise the average shear stress levels of
the. A recent microfluidic study reported that endothelial cell shear stress inhibits sprouting
when VEGF gradients are present (Song and Munn, 2011). In that case, MPL does not
provide meaningful regional information and may not be appropriate for assessing
functional shunting. This finding emphasizes the importance of hypoperfusion as a criterion
for inferring tumor hypoxia.

The bioimage informatics methodology (Myers, 2012) presented here could be expanded in
future studies to include spatiotemporal growth and remodeling of the tumor vasculature. It
would be useful to reevaluate the application of steady state blood flow models in a system
that has complex dynamics (Munn et al., 2012). Application of steady state models is
common in microcirculatory systems (Popel and Johnson, 2005) but the complex fluid
mechanics of tumor microcirculation might require alternative computational approaches
(Koumoutsakos et al., 2013). For example, recent advances in discrete modeling of blood
cells (e.g. lattice-Boltzmann and Dissipative Particle Dynamics methods) should enable
simulations of blood cell interaction in realistic microvasculature (Fedosov et al., 2013; Sun
and Munn, 2008; Yin et al., 2013).

This study is based on the analysis and extraction of useful biological information from
high-resolution, 3D µCT data of the whole-tumor vasculature and enabled comparison of
different ROI in terms of morphological and hemodynamic indices. Such a platform can
facilitate the hemodynamic and structural evaluation of tumor vasculature at various stages
of tumor progression. Moreover it can provide critical information about the relative
significance of the various parameters under different therapeutic treatments or
physiological conditions. The predictions of these computations can be further compared
and validated with laser speckle blood flow imaging or other in vivo measurements of blood
flow (Rege et al., 2012), and correlated with molecular measurements such as VEGF and
GLUT-1 immunostaining (Kim et al., 2012b; Meisner et al., 2012). Finally, antiangiogenic
and chemotherapeutic drug delivery strategies can be optimized using such a framework
since it can potentially identify ROI that may be more amenable to therapeutic intervention
since the chaotic tumor vasculature often impedes efficient drug delivery (Jain and
Stylianopoulos, 2010). The computational algorithm we developed, in conjunction with
multiscale imaging can be used to investigate the efficacy of antiangiogenic and anticancer
agents on the tumor vasculature and provide guidance for their delivery (Lloyd et al., 2008;
McDougall et al., 2002; Owen et al., 2011).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Nomenclature and Abbreviations

Adjacency Matrix A symmetric matrix consisting of ones and zeros indicating
whether or not 2 nodes are connected with a segment

BFS breadth-first search traversal algorithm (systematic visiting of
nodes and segments of the graph)
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DFS depth-first search traversal algorithm (systematic visiting of
nodes and segments of the graph)

D segment diameter

G hydraulic conductance

IQR interquartile range (measure of data dispersion)

L segment length

LD vascular length density

mtissue mass of tumor tissue

Minimum Heap tree-based data structure where the parent nodes have always an
identity (key) smaller than their children nodes

MPL flow-weighted mean path length

MTT total mean transit time

N total number of segments

P pressure

Priority Queue data structure where each element is served based on a
predefined priority

Q flow rate

R maximum extravascular diffusion distance of oxygen

ROI regions of interest

SD vascular surface density

S/V ratio of vascular surface area over vascular volume

Segment Morphology A vector storing the length and diameter of each individual
segment of the vasculature

u mean velocity

VD vascular volume density

Vtissue volume of tumor tissue

VSTT vascular segment transit time

Greek Letters

µ apparent viscosity

µCT micro-computed tomography

τ vascular wall shear stress

Subscript

b boundary segments

int internal segments

in inlet feeding segments
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ij segment between nodes i and j
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Highlights

• A bioimage informatics method is presented to reconstruct the tumor
vasculature.

• A hemodynamic model is used to estimate blood perfusion across the
vasculature.

• The results of the analysis are assessed with data from cancer xenograft models.

• Comparison of morphology and hemodynamics is presented across vascular
regions.

• This computational platform enables assessment of tumor perfusion
heterogeneity.
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Fig. 1. 3D micro-CT derived whole-tumor microvasculature from a human triple-negative breast
cancer xenograft (MDA-MB-231 cells)
Vessel segmentation results in morphological discrepancies and discontinuities in the
vasculature. (a) Raw tumor vascular network. (b), (c) and (d) insets illustrate magnified
regions of the raw vascular network. Scale bars: 1 mm (a), 100 µm (b), (c) and (d).
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Fig. 2. Outline of the combined computational-experimental procedure for tumor vasculature
characterization
Human breast cancer xenografts are excised and high resolution µCT imaging is performed.
Image vessel segmentation yields noisy discontinuous raw vascular structures that require
further processing. The 3D tracking and reconstruction algorithm consists of 3 modules.
Module 1 implementation involves connection of discontinuous vessels based on
geometrical similarities (patterns). The output of Module 1 is a graph involving an ensemble
of nodes that are fully connected. Module 2 implementation involves reconstruction of
individual segments from these nodes and annotation of them (internal, branching,
boundary). Module 3 implementation involves integration of this connected sub-network to
the remaining structure through identification of common nodes. The output of the algorithm
is the adjacency matrix and the segment morphology vector that uniquely characterize the
network connectivity and morphology.
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Fig. 3. Schematic of the iterative process for pressure and hematocrit estimation in the
microvascular network
The outputs of bioimage informatics algorithm and an initial assumption for hematocrit and
boundary conditions are the inputs to the hemodynamic model. The linear blood flow model
provides initial estimates of internal and boundary pressures. The regional perfusion is
checked if it is in the experimentally reported range. The mass balance is checked with
respect to vessel segments that perfuse or drain blood from the vasculature. If any of these
conditions is not satisfied the nonlinear constrained optimization routine adjusts the
boundary pressure vector, and the blood flow model is run again with updated boundary
conditions. The optimization is based on a compartmental model shown in the inset
flowchart, simulating the exchange of blood between the tumor microvasculature and the
blood pool compartment. This influx/efflux takes place through boundary segments as the
ones presented in the inset image. The nonlinear model provides estimates for hematocrit
values across all segments of the vasculature. The process is iterated until convergence.
Scale bar: 100 µm.
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Fig. 4. Sequence of output images illustrating the microvascular network reconstructed by the
3D tracking algorithm
(a) Red segments represent the connected backbone sub-network tracked by Modules 1 and
2. (b) Grey segments represent the raw data which were not captured by Modules 1 and 2.
(c) Blue segments represent the unconnected segments tracked by Module 3. (d) Red and
blue segments are integrated and provide the final structure of the vasculature. Panels scale
bar: 1 mm. Insets scale bar: 200 µm.
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Fig. 5. Frequency distributions of tumor vessel segment radii and lengths
(a) Frequency distribution of segment diameters is exponential for the tumor vascular
network. (b) Frequency distribution of segment lengths is exponential for the tumor vascular
network. The panels present the mean values and the confidence intervals.
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Fig. 6. Whole-tumor perfusion map
(a) Detailed perfusion map of the whole-tumor vascular network color-coded by perfusion
velocity (mm/s). (b) and (c) insets illustrate a magnified 3D perspective of different regions
of tumor vasculature color-coded by perfusion velocity. Perfusion velocities >1 mm/s are
color-coded bright red. Scale bars: 1 mm (a), 200 µm (b) and (c).
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Fig. 7. Discretized 3D whole-tumor perfusion map
Three different perspectives of the 3D perfusion map for the tumor vascular network. A
coarse spatial 3D grid has been overlaid to discretize the vascular network and provide an
average perfusion estimate in 100×100×100 µm3 voxels. Perfusion units: ml/g tissue/min.
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Fig. 8. Comparison of hematocrit variation and vessel clustering for two case studies of blood
flow simulations
(a) Boxplot of hematocrit variation of transport vessels for the Case 1: No blind end
contribution to influx/efflux of tumor vascular network. (b) Boxplot of hematocrit variation
of transport vessels for the Case 2: 67% of blind end contribution to influx/efflux of tumor
vascular network. Red line in the boxplot presents the median value. The bottom and top of
the box present the lower and upper quartiles (25th and 75th percentile respectively). The
lower and upper whiskers present the 9th and 91st percentile of dispersion. (c) Scatter plot of
hematocrit vs. segment diameter for both cases and different vessel sub-types: Hypoperfused
(VSTT>25s) and low-hematocrit (HD<0.01).
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Fig. 9. Frequency distributions of flow velocities for two cases of blood flow simulations
The frequency distribution of velocities (mm/s) is gamma function for both cases accounting
for different percentage of blind end contribution to influx/efflux of tumor vascular network.
(a) No blind ends, (b) 67% blind ends. The panels present the mean values and the
confidence intervals.
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Fig. 10. Frequency distributions of shear stress for two cases of blood flow simulations
The frequency distribution of shear stress (dyn/cm2) is exponential for both cases accounting
for different percentage of blind end contribution to influx/efflux of tumor vascular network.
(a) No blind ends, (b) 67% blind ends. The panels present the mean values and the
confidence intervals.

Stamatelos et al. Page 28

Microvasc Res. Author manuscript; available in PMC 2015 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 11. Regions of interest (ROI) for morphological and hemodynamic analysis
The regions extracted from the rim and the cores are color-coded by velocity (mm/s), and
are broadly comprised of 3 core ROI (Core1-3) and 3 rim ROI (Rim1-3). Scale bars: 400
µm.
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Fig. 12. Comparison of velocity frequency distribution for core and rim regions of interest
The regions which are extracted from the rim and the core of the tumor are presented color-
coded by perfusion velocity (mm/s). The probability density distributions of velocities can
be described by a gamma function for all regions. (a) Inset table comparing the velocity
distributions with the two-sample K-S test. View of the vascular network annotating the
position of rim regions (b) and core regions (c). Scale bars: 1 mm.
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Table 1

Segments and nodes identified and reconstructed by the different modules of the 3D tracking algorithm.

Tumor Vascular Network Nodes Segments

Raw Vascular Network 562,243 53,778

Module 1+2 57,447 4,430

Module 3 453,166 41,095

Module 1+2+3 510,613 45,525
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Table 2

Geometrical and fractal properties of tumor vascular network and comparison with characteristic values
reported in the literature.

Properties Tumor Vascular
Network

Literature Values (Refs)

Volume Density - VD (%) 0.67 0.15–1.25 (Nagy et al., 2012; Sitohy et al., 2012)

Length Density - LD (mm/mm 3) 20.87 10–72 (Kim et al., 2012a)

Vascular surface area to
Vascular volume ratio - S/V (mm2/mm3)

165 122–376 (Chugh et al., 2009)

Mean Diameter (µm) 18.46 5–225 (Hashizume et al., 2000; Yuan et al., 1994)

Mean Length (mm) 0.23 0.06–0.3 (Pathak et al., 2011)

Maximum extravascular diffusion distance
(µm)

123 30–250 (Konerding et al., 1999)

Fractal Dimension 2 1.94–2.04 (Baish et al., 2011)

Tortuosity 1.41 1.4-2 (Vakoc et al., 2009)
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