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Loss of Bak enhances lymphocytosis but does not
ameliorate thrombocytopaenia in BCL-2 transgenic
mice

CJ Vandenberg1,2, EC Josefsson1,2, KJ Campbell1,2,3, C James1,2,4, KE Lawlor1,2, BT Kile1,2 and S Cory*,1,2

Bax and Bak are critical effectors of apoptosis. Although both are widely expressed and usually functionally redundant, recent
studies suggest that Bak has particular importance in certain cell types. Genetic and biochemical studies indicate that Bak
activation is prevented primarily by Mcl-1 and Bcl-xL, whereas Bax is held in check by all pro-survival Bcl-2 homologues,
including Bcl-2 itself. In this study, we have investigated whether loss of Bak or elevated Mcl-1 modulates haemopoietic
abnormalities provoked by overexpression of Bcl-2. The Mcl-1 transgene had little impact, probably because the expression
level was insufficient to effectively reduce Bak activation. However, loss of Bak enhanced lymphocytosis in vavP-BCL-2
transgenic mice and increased resistance of their thymocytes to some cytotoxic agents, implying that Bak-specific signals
can be triggered in certain lymphoid populations. Nevertheless, lack of Bak had no significant impact on thymic abnormalities
in vavP-BCL-2tg mice, which kinetic analysis suggested was due to accumulation of self-reactive thymocytes that resist
deletion. Intriguingly, although Bak� /� mice have elevated platelet counts, Bak� /�vavP-BCL-2 mice, like vavP-BCL-2
littermates, were thrombocytopaenic. To clarify why, the vavP-BCL-2 platelet phenotype was scrutinised more closely.
Platelet life span was found to be elevated in vavP-BCL-2 mice, which should have provoked thrombocytosis, as in Bak� /�

mice. Analysis of bone marrow chimaeric mice suggested the low platelet phenotype was due principally to extrinsic factors.
Following splenectomy, blood platelets remained lower in vavP-BCL-2 than wild-type mice. However, in Rag1� /� BCL-2tg
mice, platelet levels were normal, implying that elevated lymphocytes are primarily responsible for BCL-2tg-induced
thrombocytopaenia.
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Apoptosis has a vital role in regulating cell numbers during
haemopoiesis and failure to remove damaged, superfluous or
potentially dangerous cells can lead to malignancy or
autoimmunity. Many critical life-or-death checkpoints, parti-
cularly during lymphopoiesis, are governed by opposing
factions of the Bcl-2 protein family, which regulate the
‘intrinsic’ apoptosis pathway.1,2 Bcl-2, discovered via the
t(14;18) chromosome translocation typical of human follicular
lymphoma,3–5 inhibits apoptosis,6 as do its closest homo-
logues (Bcl-xL, Bcl-w, A1/Bfl1, Mcl-1 and, in humans, Bcl-B).
Other close homologues (Bax and Bak) instead promote
apoptosis, as do distant relatives known as BH3 (Bcl-2
homology region 3)-only proteins because they share only an
B26 amino-acid motif with the wider Bcl-2 family. During
cellular stress, BH3-only proteins are induced and bind with
high avidity via their amphipathic BH3 a-helix to the hydro-
phobic groove on the surface of pro-survival Bcl-2-like
proteins,7–9 thereby preventing them from restraining any
activated Bax or Bak molecules. Certain BH3-only proteins

(particularly Bim and cleaved Bid) can also bind weakly and
transiently to Bax and/or Bak, triggering their conformational
change and subsequent homo-oligomerisation on the outer
mitochondrial membrane. As a consequence, cytochrome c is
released into the cytoplasm, leading to the activation of the
proteases (caspases) that provoke cellular demolition by
cleaving vital proteins.

Although Bax and Bak are both widely expressed and
functionally redundant,10 recent studies suggest Bak may
have particular importance in certain cell types. Thus, loss of
Bak results in thrombocytosis, whereas loss of Bax does not,
indicating that Bak has the more important role in regulating
platelet life span.11,12 Furthermore, loss of Bak was able to
partially rescue thymic defects caused by conditional deletion
of Mcl-1, whereas neither overexpression of Bcl-2 nor loss of
Bax was able to do so.13 Specificity of interactions may
account for these observations: Bak binds tightly to Mcl-1 and
Bcl-xL but only poorly to Bcl-2, whereas Bax binds avidly to all
the pro-survival proteins.14–16 Presumably, therefore, Bax
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activation can be thwarted by all pro-survival proteins,
including Bcl-2, whereas Bak is kept in check by Mcl-1 and
Bcl-xL.

To further explore the role of Bak-specific cell death during
haemopoiesis, we have investigated whether loss of Bak or
increased expression of Mcl-1 enhances the impact of
pan-haemopoietic overexpression of Bcl-2. To do so, we
crossed vavP-BCL-2 transgenic (hereafter BCL-2tg) mice17

with Bak� /� 10 or vavP-Mcl-1 transgenic (hereafter Mcl-1tg)
mice18 and compared the phenotypes of single and doubly
mutant offspring. This study also enabled us to undertake
further analysis of the puzzling thymic and platelet phenotype
of BCL-2tg mice.

Results

Impact of overexpression of Mcl-1 and loss of Bak on
haemopoiesis in BCL-2tg mice. Overexpression of Bcl-2
via the haemopoietic cell-specific vavP-driven transgene19

enhances the survival of T- and B-lymphoid cells, which
accumulate in excessive numbers in the periphery.17,20 In
addition, BCL-2tg mice have a distinctive thymic phenotype:
a reduced proportion of pre-T cells (CD4þCD8þ double
positive; hereafter DP) and elevated proportions of the other

three major populations (CD4�CD8� double negative,
hereafter DN; CD4þCD8� single positive, hereafter CD4SP;
and CD4�CD8þ single positive, hereafter CD8SP).17 This is
referred to as the ‘low DP’ thymic phenotype of BCL-2tg mice
(see further below).

To assess whether overexpression of Mcl-1 exacerbates
the BCL-2tg phenotype, we compared the composition of
blood and haemopoietic tissues in 6-week-old neonates.
Despite a minor (Pr0.05) increase in the total number of DP
thymocytes in Mcl-1/BCL-2 bi-transgenic compared with
BCL-2tg mice, the proportion of DP thymocytes was
comparably low (lower left panel in Supplementary
Figure 1B) and there was little impact on the BCL-2tg-induced
lymphocytosis in the other lymphoid organs (Supplementary
Figure 1 and Supplementary Table 1).

To assess the impact of loss of Bak, we first analysed
haemopoietic tissues in young adult (12- to 14-week-old)
mice. Loss of Bak had little impact alone, but did increase
lymphocytosis in BCL-2tg mice (Figure 1 and Supplementary
Table 2). This was most apparent in the spleen where
cellularity, already elevated approximately fivefold in BCL-2tg
mice, increased to nearly sevenfold in Bak� /� BCL-2tg
animals, due primarily to a further elevation in the number of
immunoglobulin (Ig) isotype-switched (B220þ IgM� IgD� )
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Figure 1 Loss of Bak exacerbates lymphocytosis in BCL-2tg mice. Enumeration of total leukocytes and indicated lymphoid populations in the (a) spleen and (b) thymus of
12- to 14-week-old male mice (n¼ 6–10 per genotype: WT, white; Bak� /� , light grey; BCL-2tg, dark grey; Bak� /�BCL-2tg, black). B220þ IgM/Dþ indicates B220þ cells
that are IgMþ and/or IgDþ . Bars represent mean±S.E.M.; see also Supplementary Table 2. Statistical significance is shown only for BCL-2tg versus Bak� /�BCL-2tg;
*Po0.05, **Po0.01, Mann–Whitney test. (c) Expression of the indicated Bcl-2 family proteins in sorted DP thymocytes determined by western blot analysis of cells from two
independent mice for each genotype
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B-lymphoid cells and mature T cells (CD4þ and CD8þ ;
Figure 1a). A comparable cross of Bax� /� and BCL-2tg mice
revealed no comparable differences between BCL-2tg and
Bax� /� BCL-2tg animals (Supplementary Table 3).

Lack of Bak did not notably alter the low proportion of DP
thymocytes in the BCL-2tg thymus (Figure 1b and
Supplementary Table 2). BCL-2tg thymocytes have very high
levels of the pro-apoptotic BH3-only protein Bim, most being
sequestered by BCL-2,21 and Bim levels were unchanged in
either Bak� /� BCL-2tg or Mcl-1tg/BCL-2tg mice (Figure 1c
and Supplementary Figure 1C).

To explore the perturbation of T lymphopoiesis more
closely, we compared the thymus and spleen of BCL-2tg
and Bak� /� BCL-2tg mice at three time points: 6–8, 12 and
24 weeks (Figure 2 and Supplementary Table 4). The
decrease in the number of DP thymocytes was not as marked
at 6–8 weeks (B80 % that in wild-type (WT) littermates) as at
12 and 24 weeks (B46% and B47%, respectively), although
mature thymocytes (CD4SP and CD8SP) were already
significantly elevated at 6–8 weeks, as were T cells in the
spleen. Strikingly, there was an approximately fourfold
increase in the DN population in 6- to 8-week-old BCL-2tg
and Bak� /�BCL-2tg mice, and this was almost entirely due to
T-cell receptor bþ (TCRbþ ) DN cells (elevated 16-fold;
Figure 2a). These cells are probably mature T cells (TCRb is
highly expressed) that have downregulated their co-receptors
(CD4 or CD8) because they are autoreactive and have
escaped negative selection.22 The early increase in these
‘pseudo DN’ cells may inhibit the production of bona fide DN
thymic progenitor cells (see Discussion).

Loss of Bak increases resistance of BCL-2tg thymocytes
to certain apoptotic stimuli. To compare the resistance
of thymocytes of the different genotypes to apoptosis,
we first performed in vitro tests. In the absence of cytokines,
the Mcl-1 and BCL-2 transgenes provided comparable
protection, but in the presence of cytotoxic agents,
the BCL-2 transgene provided greater protection, consistent
with previous observations,23 and co-expression of
both conferred no additional advantage (Supplementary
Figure 2).

By itself, loss of Bak did not protect DP thymocytes from
spontaneous death in culture or from apoptosis induced by
dexamethasone or phorbol 12-myristate-13-acetate (PMA),
but it did enhance resistance to ionomycin at low (1mg/ml)
concentration and, at early time points, to DNA damage
(g-irradiation and etoposide; Figure 3a and Supplementary
Figure 3). Furthermore, loss of Bak enhanced the resistance
of DP thymocytes expressing the BCL-2 transgene to
apoptosis induced by etoposide treatment and, modestly, to
g-irradiation (Figure 3a). DP thymocytes are exquisitely
sensitive to CD3 antibody, which triggers apoptosis by
aggregating the TCR-CD3 complex.24,25 As a further test,
therefore, we injected mice of all four genotypes with an
optimal dose of CD3emonoclonal antibody (mAb) or with an Ig
isotype-matched control antibody, and determined thymus
weight and cellularity after 40 h (Figure 3b). Following CD3
antibody treatment, thymus weight dropped substantially in
both WT and Bak� /� mice, due primarily to a reduction in DP
thymocytes. As reported previously,26 expression of the

BCL-2 transgene provided DP thymocytes with only partial
protection against this insult (65%). Of note, however,
protection in the Bak� /� BCL-2tg mice was considerably
more robust (490%), suggesting that TCR-activated
apoptosis involves a Bak-specific component.

Pathology. BCL-2tg mice are predisposed to the develop-
ment of autoimmune kidney disease and, in later life,
follicular lymphoma.20 To determine whether overexpression
of Mcl-1 or loss of Bak increased the risk of morbidity,
cohorts of mice were monitored for 12 months. Most mice
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that became ill during this period showed evidence of
autoimmune kidney disease: weight loss, blood in the urine
and pale, often speckled, kidneys.

The overall survival of Mcl-1tg/BCL-2tg mice over 12
months was comparable to that of BCL-2tg mice and serum
Ig levels were similarly elevated in both cohorts
(Supplementary Figure 4). The autoimmune kidney disease
was most likely due to overexpression of Bcl-2 as Mcl-1tg
mice do not develop comparable symptoms.18

Loss of Bak resulted in a trend towards earlier morbidity in
BCL-2tg mice, although the difference between Bak� /�BCL-
2tg and BCL-2tg animals did not achieve statistical signifi-
cance (Supplementary Figure 5A). The elevation in IgM, IgG
and IgA antibody-secreting cells (ASCs) in the spleen and
bone marrow was similar between these cohorts
(Supplementary Figures 5B and C).

Although a few lymphomas developed in transgenic
mice of each genotype, neither overexpression of
Mcl-1 nor loss of Bak enhanced the susceptibility of the
BCL-2tg mice to follicular lymphoma during the time
period analysed. Like Mcl-1tg mice,18 certain Mcl-1tg/
BCL-2tg mice developed other lymphomas, at comparable
frequency.

Impact on platelets. Both Bak� /� and BCL-2tg mice have
platelet abnormalities: loss of Bak causes thrombocytosis,11,12

but Bcl-2 overexpression results, surprisingly, in thrombo-
cytopaenia.17 We therefore determined platelet levels in the
blood of Bak� /�BCL-2tg mice. Unexpectedly, loss of Bak
did not elevate platelets in the blood of BCL-2tg mice;
rather, Bak� /� BCL-2tg mice, like BCL-2tg mice, were
thrombocytopaenic (Figure 4a). Thus, Bcl-2 overexpression
is dominant over loss of Bak in regard to this phenotype.

At steady state, platelets circulate in the blood for up to
5 days in mice, 10 days in humans27,28 and the elevated
platelet count in Bak� /� mice is due to increased platelet life
span.11 To determine the impact of overexpression of BCL-2
on platelet life span, we injected BCL-2tg, Bak� /�BCL-2tg
and Bak� /� mice with NHS-biotin and tracked the
disappearance of labelled platelets from the circulation
(Figure 4b). Consistent with previous reports,11 platelet life
span was significantly extended in Bak� /� mice, with a
half-life of 100 h compared with 60 h in WT littermates.
Importantly, BCL-2tg animals showed an intermediate platelet
half-life of 75 h. Thus, overexpression of Bcl-2 enhances the
life span of platelets, albeit more modestly than loss of Bak.
Underlining the fundamental importance of Bak in regulating
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platelet life span, there was no additive effect in Bak� /�

BCL-2tg mice; platelet survival in these animals was
indistinguishable from that seen in the Bak� /� cohort.

Megakaryocyte (not shown) and platelet counts were
normal in young Mcl-1tg mice18 (Supplementary Figures 6A
and B) and platelet life span was also normal (Supplementary
Figure 6C), suggesting that the modest increase in platelet
Mcl-1 levels in this model (Supplementary Figure 6D), coupled
with its short half-life,29 is not sufficient to have any
measurable effect on overall survival times. Like BCL-2tg
mice, Mcl-1tg/BCL-2tg mice were thrombocytopaenic,
although the deficit in mature platelets was not quite as
profound (Supplementary Figures 6A and B).

Why does haemopoietic overexpression of Bcl-2 cause
thrombocytopaenia? The thrombocytopaenia in BCL-2tg
and Bak� /�BCL-2tg mice (Figure 4a) is at odds with the
enhanced platelet life span in these animals (Figure 4b). To
clarify this conundrum, we decided to investigate the BCL-2tg
platelet phenotype in more detail.

Megakaryocyte frequency was normal in the bone marrow
of BCL-2tg mice, as in Bak� /� mice, albeit somewhat
increased in Bak� /�BCL-2tg mice (Figure 4c). Although the
percentage of reticulated (newly formed) platelets was
unchanged in BCL-2tg compared with WT mice, their absolute
number was significantly reduced (Figure 4d), implying a
defect in platelet production from megakaryocytes. We
therefore tested the ability of megakaryocytes from WT and
BCL-2tg mice to produce pro-platelets in vitro. Consistent with
a previous report,30 Bcl-2 overexpression did not decrease

proplatelet formation by fetal liver-derived megakaryocytes
but, rather, caused a small but significant increase
(Figure 4e). These data indicate that, at least in culture,
BCL-2tg megakaryocytes exhibit no obvious defects in
maturation and proplatelet formation. Nevertheless, when
we analysed the ability of mice to recover from acute
thrombocytopaenia induced by injection of anti-platelet serum
(APS), we found that platelet rebound was significantly
impaired in BCL-2 versus WT mice (Figure 4f).

To further clarify the basis for the platelet defect, we
examined whether thrombocytopaenia in BCL-2tg mice is
platelet-intrinsic or -extrinsic (Figure 5). Bone marrow
chimaeric mice were generated by injecting lethally irradiated
Ly5.1 mice with 2� 106 Ly5.2 bone marrow cells from GFPtg
mice31 (in which GFP expression is ubiquitous) or BCL-2tg
mice, or with a 50 : 50 mixture of both. Analysis at 9 weeks
post-transplantation showed that the red blood cell count was
comparable in all three classes of reconstituted mice but, as
expected, the white blood cell count was higher and the
platelet count was lower in mice reconstituted with BCL-2tg
cells than in those reconstituted solely with GFPtg cells
(Figures 5a–c). In the GFPtg/BCL-2tg chimaeras, where the
proportion of GFPþ platelets was around 40% (Figure 5d and
Supplementary Table 5), total platelet counts were equivalent
to those seen in mice reconstituted solely with BCL-2tg cells
(Figure 5c). By 12 weeks, there were 24% GFP-positive
platelets and the proportion of GFP-positive megakaryocytes
was similar (22%; Supplementary Table 5). We infer that
(i) the BCL-2tg-driven thrombocytopaenia derives from bone
marrow cells; (ii) WT (GFPtg) haemopoietic cells cannot
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(f) Recovery from anti-platelet serum (APS)-induced thrombocytopaenia is impaired in BCL-2tg mice. Mice were treated with a single dose of APS and blood samples taken by
tail pricks daily. Platelet counts were determined by flow cytometry. Data represent mean±S.E.M., n¼ 6. *Po0.05, ***Po0.001, Student’s t-test
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compensate for the defect; and (iii) the defect in platelets is
cell extrinsic.

Ten weeks post-reconstitution, mice were injected with APS
and platelet numbers assessed daily for 5 days (Figure 5e).
In all mice, APS reduced circulating platelet numbers to o10%
within 24 h. In the chimaeric GFPtg/BCL-2tg mice, the rebound
was more robust than that seen in BCL-2tg-reconstituted mice,
but still significantly impaired relative to GFPtg-reconstituted
counterparts (Figure 5e). If the rate of production of platelets
had been slower only in cells expressing the BCL-2 transgene,
then the proportion of GFP-positive (i.e., BCL-2tg negative)
platelets would have been expected to increase over time in
the chimaeric GFPtg/BCL-2tg mice. However, it remained
constant over the 5 days (Figure 5f), again suggesting that
megakaryocyte- and platelet-extrinsic factors underlie the
thrombocytopaenia observed in BCL-2tg animals.

Role of the spleen. As the spleen can increase or decrease
the pool of platelets that it sequesters,32 and BCL-2tg
(and Bak� /�BCL-2tg) mice have enlarged spleens
(Supplementary Table 2), we determined platelet counts
before, and 4 weeks post, splenectomy in both WT and
BCL-2tg mice. Although platelet numbers increased in both
cohorts, the relative increment was equivalent: 1.4-fold
increase in WT and 1.5-fold in BCL-2tg mice (Figure 6a).

Furthermore, when acute thrombocytopaenia was induced in
splenectomised mice, BCL-2tg animals mounted a significantly
impaired response, with platelet counts very significantly lower
than those seen in WT littermates 5 days post induction
(Figure 6b). Although the degree of thrombocytopaenia in the
splenectomised BCL-2tg animals is modest, when the increase
in platelet life span in these animals is taken into account, it
indicates a significant residual defect, which is amplified under
conditions of emergency thrombopoiesis (Figure 6b).

Role of lymphocytes. Having established that the throm-
bocytopaenia in BCL-2tg mice was due to environmental
factors involving bone marrow-derived cells but extrinsic to
megakaryocytes and platelets, we reasoned that a non-
myeloid cell might be playing a role. We therefore crossed
the BCL-2tg mice with Rag1� /� mice, which lack mature B
and T lymphocytes.33 Circulating lymphocytes were greatly
reduced in BCL-2tg Rag1� /� compared with BCL-2tg mice
(Figure 6c), as expected, but blood platelet counts were
elevated 1.7-fold (Figure 6d). Indeed, platelet counts in
BCL-2tg Rag1� /� mice were comparable to those in WT
and Rag1� /� mice. Thus, the absence of mature lympho-
cytes prevents thrombocytopaenia in BCL-2tg mice. Given
the increased platelet life span conferred by overexpression
of BCL-2, however, the increase is not as much as might be
expected, suggesting that additional (unknown) factors might
contribute to the BCL-2tg phenotype.

Discussion

Bax and Bak are the critical effectors of apoptosis. Although
both are widely expressed and functionally redundant, genetic
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and biochemical data suggest that Bak is held in check
primarily by Mcl-1 and Bcl-xL, whereas Bax activation is
inhibited by all five pro-survival Bcl-2 homologues.14–16

Recent studies have suggested that Bak activation is the
principal trigger for apoptosis in platelets11 and in certain
thymic populations.13 To test whether Bak is critical at
other stages of haemopoietic development, we crossed
vavP-BCL-2tg mice with mice lacking Bak. We also crossed
vavP-BCL-2tg mice with vavP-Mcl-1tg mice, in which Bak
activation in haemopoietic cells should be more difficult to
achieve than in WT mice.

Constitutive overexpression of Bcl-2 during haemopoiesis
results in many changes: thymic abnormalities, most notably a
low proportion of DP thymocytes; striking peripheral lympho-
cytosis involving both B- and T-lymphoid cells; elevated ASCs
and serum Ig; poorly understood thrombocytopaenia; and
predisposition to autoimmune kidney disease and late onset
follicular lymphoma.19,20

Our analysis of young Mcl-1tg/BCL-2tg mice suggested that
overexpression of Mcl-1 did not significantly modulate the
BCL-2tg phenotype (Supplementary Figure 1), probably
because the level of Mcl-1, albeit significantly higher than
normal,18 was insufficient to effectively reduce Bak activation.

In contrast, Bak� /�BCL-2tg mice developed a more
severe lymphocytosis than BCL-2tg littermates, primarily
due to a further elevation in the numbers of mature B- and
T-lymphoid cells (Figure 1a), changes that were not seen in
Bax� /�BCL-2tg mice (Supplementary Table 3). The implica-
tion is that Bak can have a non-redundant role in maintaining
homeostasis within these populations. Bak must be less critical
in regulating ASCs, however, because their frequency was
comparable in BCL-2tg and Bak� /�BCL-2tg mice, as was the
risk of autoimmune kidney disease (Supplementary Figure 5).

Lack of Bak had no impact on the low proportion of DP
thymocytes characteristic of BCL-2tg mice (Figure 1b), which
kinetic analysis suggested was preceded by an accumulation
of DN cells expressing high levels of TCRb (Figure 2a).
Also notable in Bim� /� and Bim� /�Puma� /� mice, these
TCRbþDN cells are thought to be thymocytes that have
downregulated their co-receptors26,34 after escaping negative
selection at the DP stage.22 The ‘pseudo’ DN cells may inhibit
the expansion and maturation of bona fide DN progenitor cells
to DP (pre-T) cells,22 perhaps due to competition for niche
cells or cytokines.

DP thymocytes, normally highly sensitive to apoptosis, are
rendered significantly resistant to most cytotoxic agents by
overexpression of Bcl-2.24 Loss of Bak modestly enhanced
the resistance of DP thymocytes from BCL-2tg mice to
apoptosis induced by DNA-damaging agents in vitro
(Figure 3a) and significantly increased their resistance to
CD3 antibody treatment in vivo (Figure 3b). Thus, Bak may be
non-redundant for effecting apoptosis of certain lymphoid
populations, perhaps because of kinetic differences in the
activation of Bak versus Bax and/or a Bak-specific component
of certain apoptosis-inducing signals. Caþ flux (which is
induced by TCR/CD3 ligation) may have an important role in
the Bak activation, as, by itself, loss of Bak provided
significant protection against apoptosis induced by ionomycin
(Figure 3a). We have shown previously that loss of the pro-
apoptotic BH3-only protein Bim also provides greater

resistance to CD3 antibody than the BCL-2 transgene and
that Bim is the critical downstream apoptosis effector.26,35 Bim
can activate both Bak and Bax as well as inhibit all pro-survival
Bcl-2 family members.36–38

Our most unexpected finding involved platelets. The
observation that BCL-2tg mice are thrombocytopaenic17 led
to conjecture that platelet shedding by megakaryocytes
involves activation of apoptosis,39 and a considerable body
of subsequent work supported that notion (reviewed in White
and Kile32). However, counter to this proposal, we and others
recently demonstrated that deletion of Bak and Bax does not
impair platelet production.12,40,41 Thus, an explanation for the
thrombocytopaenic phenotype of BCL-2tg mice has remained
elusive.

Platelet survival is primarily dependent on Bcl-xL, which is
required in ageing platelets to restrain Bak, the principal
mediator of their apoptosis.11,12,42 We found that platelet life
span is extended in BCL-2tg mice (Figure 4b), demonstrating
for the first time that overexpression of a Bcl-2 family
pro-survival protein can positively influence the survival of
platelets in the circulation. BCL-2 may be able to partly
restrain Bak at these high, non-physiological concentrations,
as well as inhibit normal targets Bax and Bad, which also
influence platelet life span,12,43 albeit not to nearly the same
extent as loss of Bak.12 In any event, the thrombocytopaenia
in BCL-2tg animals must actually be more severe than
suggested by the platelet count alone – were this not the
case, the extended platelet life span conferred by the BCL-2
transgene would have provoked mild thrombocytosis.

Consistent with Kozuma and colleagues,30 megakaryocyte
numbers were normal in BCL-2tg mice, and their ability to form
pro-platelets in vitro was unimpaired. However, contrary to that
study, removal of the spleen did not raise their platelet counts to
that found in splenectomised WT mice, either at steady state or
during emergency thrombopoiesis (Figures 6a and b), ruling
out increased splenic sequestration as the principal cause.
Instead, we believe the thrombocytopaenia is underpinned by a
defect in platelet shedding caused by extrinsic factors in the
BCL-2tg haemopoietic microenvironment. Analysis of bone
marrow chimaeras supported this notion, as WT megakaryo-
cytes in a BCL-2tg environment were unable to produce
platelets at the same rate as those in a WT environment
(Figure 5e). Our data suggest that the lymphocytosis induced
by the BCL-2 transgene is a major contributing factor, as
platelet counts increased to WT levels in a Rag1� /� back-
ground (Figure 6d). Other as yet unidentified haemopoietic
cells must also have a role, however, as platelet counts were
not elevated above WT levels, as would be expected from the
increased platelet life span conferred by overexpression of
BCL-2. As vavP-BCL-2 transgene expression also elevates
levels of bone marrow macrophages and monocytes
(Supplementary Table 2), these cells may contribute. How-
ever, whether the impairment of platelet production is
mediated directly by lymphoid and other haemopoietic cell
types or indirectly, via effects on other tissues, remains to be
determined. Furthermore, it remains formally possible that, in
addition, BCL-2 overexpression does have a subtle intrinsic
impact on megakaryocyte function. Specific overexpression
of BCL-2 in the megakaryocyte lineage in vivo would enable
this to be assessed in the absence of extrinsic factors.

Impact of loss of Bak in BCL-2 transgenic mice
CJ Vandenberg et al

682

Cell Death and Differentiation



Materials and Methods
Mice. All mice used were on a C57BL/6J background and bred at the Walter and
Eliza Hall Institute (WEHI). Experimental protocols were approved by Animal
Ethics Committee of WEHI. Transgenic mouse lines were vavP-Mcl-1(33)18 and
vavP-BCL-2(69),17,20 which, respectively, express FLAG-tagged mouse Mcl-1
protein and human BCL-2 protein in haemopoietic cells.19 To generate
Mcl-1tg/BCL-2tg mice, Mcl-1tg males were mated with BCL-2tg females. To
generate Bak� /�BCL-2tg mice, BCL-2tg males were crossed with Bak� /� 10

females, then Bakþ /� BCL-2tg males were mated with Bakþ /� females.
Crosses were also performed with Rag1� /� ,44 Baxþ /� 45 and Tg(UBC-GFP)
30Scha/J mice (GFPtg mice).31

Haemopoietic analysis. Single-cell suspensions were prepared from
spleen, lymph nodes, bone marrow and thymus and viable leukocytes enumerated
using a haemocytometer and trypan blue exclusion or with a CASY Cell Counter
(Scharfe System GmbH, Reutlingen, Germany). An ADVIA 2120 haematology
analyser (Siemens, Erlangen, Germany) was used for obtaining blood cell counts.
The remaining blood was depleted of red cells by treatment with 0.168 M
ammonium chloride before fluorescence-activated cell sorting (FACS) analysis.
Cell composition was determined by staining with fluorochrome-labelled surface
marker-specific monoclonal antibodies followed by FACS analysis using an LSRI
(BD Biosciences, Franklin Lakes, NJ, USA). Data were processed using
FlowJo Version 9.3.2 (TreeStar, Ashland, OR, USA) and Weasel Version 3.0
software (Walter and Eliza Hall Institute, Melbourne, VIC, Australia). The
monoclonal antibodies, produced and labelled with fluorescein isothiocyanate,
R-phycoerythrin or allophycocyanin (APC) at WEHI unless otherwise indicated,
were: RB6-8C5, anti-Gr1; MI/70, anti-Mac1; H129.19, anti-CD4; YTS169,
anti-CD8; Ter119, anti-erythroid marker; ID3, anti-CD19; RA3-6B2, anti-CD45R-
B220; 5.1, anti-IgM; 11-26C, anti-IgD; S7, anti-CD43; T24-31, anti-Thy1; H57-59,
anti-TCRb; Jo2, anti-Fas/CD95 (BD Biosciences); anti-PNA (Vector Laboratories,
Cambridgeshire, UK).

Blood platelet counts were determined using an ADVIA 2120 analyser (Siemens)
or by flow cytometry, as follows: 5ml of tail vein blood was diluted 40-fold in PBS in
an EDTA tube and stained with CD41 antibody (clone MWReg30, BD Biosciences)
labelled with APC; 10ml was then added to PBS (980ml) containing 10ml beads
(ProSciTech, Townsville, QLD, Australia; 3.5–4mm beads, 1� 107/ml) and 1000
events were acquired by flow cytometry; platelet frequency was calculated as dilution
factor (4000)� number of events in platelet gate (CD41þ )� 1� 105. Reticulated
platelet numbers were determined by staining with thiazole orange and CD41-APC
antibody11 followed by analysis on a FACSCalibur flow cytometer (BD Biosciences).
Platelet life span was investigated by in vivo labelling with biotin.11 Induction of
thrombocytopaenia with APS, culture of fetal liver megakaryocytes, proplatelet
formation assays and platelet preparation were performed as described.11,12

CD3 antibody treatment. Mice were injected intraperitoneally with 30mg
hamster mAb to mouse CD3e (145-2C11) or, as a control, isotype-matched
antibody to TCRg (GL3) and killed after 40 h for analysis of thymic cellularity and
composition by flow cytometry.

Survival assays. Thymocyte populations isolated by flow cytometry were
cultured at 0.2–0.5� 106 cells/ml in high-glucose Dulbecco’s Modified Eagle’s
medium supplemented with 10% fetal calf serum (Bovogen, Melbourne, VIC,
Australia), 50mM 2-mercaptoethanol (Sigma-Aldrich, St. Louis, MO, USA) and
100mM asparagine (Sigma-Aldrich) without additional cytokines in the presence or
absence of 10mg/ml etoposide (Pfizer, Sydney, NSW, Australia), 10mM
dexamethasone phosphate (Hospira, Lake Forest, IL, USA), 10 ng/ml PMA
(Sigma-Aldrich), 10mg/ml ionomycin (Sigma-Aldrich) or following treatment with
10 Gy g-irradiation. Cell viability was determined by flow cytometry after staining with
fluorescein isothiocyanate-conjugated Annexin V and propidium iodide. Specific
viability was calculated at each time point as (viability of treated cells/viability of
untreated cells)� 100%. Alternatively, apoptotic cells were identified by active
caspase-3 staining. Cells were fixed and permeabilised using the BD Cytofix/
Cytoperm Kit for 20 min, then washed with BD Perm/Wash buffer and stained with
phycoerythrin rabbit anti-active caspase-3 antibody (clone C92-605, BD Biosciences),
then washed again in BD Perm/Wash buffer before analysing by flow cytometry.

Haemopoietic reconstitutions. The GFPtg/BCL-2tg haemopoietic
chimaeras were generated using bone marrow collected from GFPtg and BCL-
2tg mice. Bone marrow (2� 106) cells suspended in phosphate-buffered saline

were injected into lethally irradiated (2� 5.5 Gy spaced by 2 h) C57BL/6-
CD45.1 (Ly5.1) mice. To prevent infections, transplanted animals were initially
provided with water containing neomycin (Sigma-Aldrich). After stable
reconstitution of their haemopoietic system (9 weeks later), blood was collected
from the retro-orbital plexus for ADVIA and FACS analysis (see above).

Western blot analysis. Thymocyte lysates were prepared using RIPA
buffer (300 mM NaCl, 2% octylphenoxypolyethoxyethanol (IGEPAL CA-630;
Sigma-Aldrich), 1% deoxycholic acid, 0.2% SDS, 100 mM Tris-HCl pH 8.0)
containing protease inhibitors (Roche, Basel, Switzerland) and platelet lysates with
NP40 lysis buffer (1% octylphenoxypolyethoxyethanol, 150 mM NaCl, 50 mM Tris-
HCl, pH 7.4) containing protease inhibitors. Proteins were separated on NuPAGE
Bis-Tris gels (Life Technologies, Carlsbad, CA, USA) according to manufacturer’s
instructions. Blots were probed with: anti-Mcl-1 (clone 19C4-15; WEHI mAb
facility), anti-human Bcl-2 (clone Bcl-2-100;46 WEHI mAb facility), anti-Bcl-2 (clone
7; BD Biosciences), anti-Bim (polyclonal; Enzo Lifesciences, Farmingdale,
NY, USA), anti-Bcl-xL (polyclonal; BD Biosciences), anti-Bak (polyclonal;
Sigma-Aldrich) and anti-b-actin (clone AC-74; Sigma-Aldrich).

ELISA and enzyme-linked immunospot (ELISPOT). ASCs were
enumerated by ELISPOT. MultiScreen-HA filter plates (Merck Millipore, Billerica,
MA, USA ) were coated with 2mg/ml anti-mouse total Ig (DA, Silenus Laboratories,
Boronia, VIC, Australia) or 10 mg/ml anti-mouse IgA (Southern Biotech,
Birmingham, AL, USA). Red cell-depleted spleen or bone marrow cells were
added at 1� 104 or 1� 105 per well in RPMI/5% FCS/5mM 2-mercaptoethanol
and incubated for 18–19 h. The plates were washed and incubated with secondary
antibodies: anti-mouse IgA-biotin, anti-mouse IgG1-HRP/IgG2a-HRP/IgG2b-biotin/
IgG3-HRP or anti-mouse IgM-HRP (Southern Biotech). For biotinylated antibodies,
plates were washed again and incubated with streptavidin-HRP (Southern
Biotech). ELISPOTs were revealed by the addition of substrate solution: 250mg/ml
3-amino-9-ethylcarbazole (Sigma-Aldrich) in 0.05 M sodium acetate (pH 5.0) and
0.03% H2O2. ELISPOTs were counted on an ELISPOT reader (Autoimmun
Diagnostika GMBH, Strasburg, Germany).

Serum Ig levels were determined by ELISA. Plates were coated with specific
anti-mouse Ig antibodies (Southern Biotech). Purified mouse monoclonal IgMk
(TEPC 183), IgG1k (MOPC31c), IgG2ak (UPC 10), IgG2bk (MOPC 141), IgG3l
(Y5606) and IgAl (MOPC315; Sigma-Aldrich) were used to quantify Ig
concentration. Biotinylated or HRP-conjugated isotype-specific antibodies were
as for ELISPOT assay (with streptavidin-HRP, if required). The assay was
developed with 0.54 mg/ml diammonium 2,20-azino-bis(3-ethylbenzothiazoline-6-
sulphonic acid) (Sigma-Aldrich) in 0.1 M citric acid (pH 4.4) and 0.03% H2O2.
Absorbance at 492 nm was measured in a microplate reader.

Statistical analysis. GraphPad Prism (Version 5.0a; GraphPad Software, La
Jolla, CA, USA) was used to graph and statistically analyse data. The Mann–
Whitney test was used to determine statistical significance when samples had a
clear difference in S.D., otherwise, an unpaired two-tailed t-test was performed.
For analysis of Kaplan–Meier mouse survival curves, significance was determined
using the log-rank (Mantel–Cox) test.
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