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Purpose: Performance optimization of indirect x-ray detectors requires proper characterization of
both ionizing (gamma) and optical photon transport in a heterogeneous medium. As the tool of choice
for modeling detector physics, Monte Carlo methods have failed to gain traction as a design utility,
due mostly to excessive simulation times and a lack of convenient simulation packages. The most im-
portant figure-of-merit in assessing detector performance is the detective quantum efficiency (DQE),
for which most of the computational burden has traditionally been associated with the determination
of the noise power spectrum (NPS) from an ensemble of flood images, each conventionally having
107 − 109 detected gamma photons. In this work, the authors show that the idealized conditions in-
herent in a numerical simulation allow for a dramatic reduction in the number of gamma and optical
photons required to accurately predict the NPS.
Methods: The authors derived an expression for the mean squared error (MSE) of a simulated NPS
when computed using the International Electrotechnical Commission-recommended technique based
on taking the 2D Fourier transform of flood images. It is shown that the MSE is inversely propor-
tional to the number of flood images, and is independent of the input fluence provided that the input
fluence is above a minimal value that avoids biasing the estimate. The authors then propose to further
lower the input fluence so that each event creates a point-spread function rather than a flood field. The
authors use this finding as the foundation for a novel algorithm in which the characteristic MTF(f),
NPS(f), and DQE(f) curves are simultaneously generated from the results of a single run. The authors
also investigate lowering the number of optical photons used in a scintillator simulation to further in-
crease efficiency. Simulation results are compared with measurements performed on a Varian AS1000
portal imager, and with a previously published simulation performed using clinical fluence levels.
Results: On the order of only 10–100 gamma photons per flood image were required to be detected
to avoid biasing the NPS estimate. This allowed for a factor of 107 reduction in fluence compared
to clinical levels with no loss of accuracy. An optimal signal-to-noise ratio (SNR) was achieved by
increasing the number of flood images from a typical value of 100 up to 500, thereby illustrating
the importance of flood image quantity over the number of gammas per flood. For the point-spread
ensemble technique, an additional 2× reduction in the number of incident gammas was realized. As
a result, when modeling gamma transport in a thick pixelated array, the simulation time was reduced
from 2.5 × 106 CPU min if using clinical fluence levels to 3.1 CPU min if using optimized fluence
levels while also producing a higher SNR. The AS1000 DQE(f) simulation entailing both optical and
radiative transport matched experimental results to within 11%, and required 14.5 min to complete
on a single CPU.
Conclusions: The authors demonstrate the feasibility of accurately modeling x-ray detector DQE(f)
with completion times on the order of several minutes using a single CPU. Convenience of simulation
can be achieved using GEANT4 which offers both gamma and optical photon transport capabilities.
© 2014 American Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4865761]
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1. INTRODUCTION

Since its introduction over a decade ago, the digital x-ray
flat panel detector has matured to a point where it has re-
placed film in most medical applications. As the limits of

both detection efficiency and spatial resolution are pushed, the
task of making improvements in these areas is becoming in-
creasingly difficult. The current state-of-the art is the indirect
detector in which x rays interact with a scintillating mate-
rial, resulting in a burst of light which is then detected by an

031916-1 Med. Phys. 41 (3), March 2014 © 2014 Am. Assoc. Phys. Med. 031916-10094-2405/2014/41(3)/031916/18/$30.00

http://dx.doi.org/10.1118/1.4865761
http://dx.doi.org/10.1118/1.4865761
http://crossmark.crossref.org/dialog/?doi=10.1118/1.4865761&domain=pdf&date_stamp=2014-03-03


031916-2 Star-Lack et al.: Rapid Monte Carlo simulation of detector DQE(f) 031916-2

array of photosensitive detectors. Optimization of these types
of imagers requires characterization of the underlying inter-
actions and particle transport mechanisms for both x rays and
optical photons, with the goal of yielding the best image qual-
ity using minimal dose. Since flat panel imagers are expensive
and time-consuming to build, large-scale multivariable exper-
imental studies for design optimization are impractical. An-
alytical approaches quickly lead to intractable expressions,
thereby necessitating a numerical approach. Hence, Monte
Carlo modeling is the current tool of choice.

Spatial resolution, as characterized by the modulation
transfer function (MTF), is an important detector metric; and
the literature is rich with published Monte Carlo detector
optimizations which focus primarily on MTF.1–7 However,
optimization of the MTF fails to account for the contribu-
tion of noise to imaging performance. A better figure-of-merit
is the frequency-dependent detective quantum efficiency
[DQE(f)], which is the spectral representation in Fourier do-
main of the signal-to-noise characteristics of a given detector
configuration.

Experimental determination of detector DQE is well estab-
lished and practiced regularly to evaluate performance. The
DQE can be written

DQE(f ) = MTF(f )2

q · NNPS(f )
, (1)

where q is the x-ray photon (gamma) fluence in units of
gammas/mm2, and NNPS is the normalized noise power spec-
trum. Using an angled line source and the analysis procedure
outlined by Fujita et al.,8 Monte Carlo modeling of the MTF
is straightforward, and requires relatively few incident gam-
mas. The computational burden, and therefore the opportu-
nity for time savings, lies in the determination of NPS(f). In
this work, we demonstrate methods to reduce the number of
gammas required to accurately generate the NPS, resulting in
simulation times of minutes on a single CPU with no loss of
accuracy.

Table I describes the variables used in this study.

2. METHODS

2.A. Monte Carlo modeling environment

The bulk of the simulations in this study were performed
using the open-source C++ package, GEANT4,9 version 9.4,
patch release 3. GEANT4 is unique in that it offers both radia-
tive and optical photon transport capabilities, thus providing a
convenient tool for modeling indirect x-ray detectors in a self-
contained fashion.10 To maximize flexibility, different config-
urations of interaction and transport models are bundled into
“physics lists” which can be called into the user code. Each
physics list represents a trade-off between simulation speed
and accuracy. The simulations in this work were performed
using “Penelope Low Energy” physics in order to maximize
accuracy. Another user-definable parameter is the so-called
“range-cut,” or “production threshold,” which is in place to
increase computational efficiency. Before a secondary parti-
cle (e.g., a Compton electron) with a given energy is created,
its projected transport distance is calculated. If the projected
distance is less than the specified range-cut value, the particle
will not be transported and instead its energy will be deposited
immediately at the site of its creation. For our simulations, the
range cut was set to 0.5 μm for all particles.

The x-ray beam spectrum that was used was also gener-
ated with GEANT4 following the methodology of Constantin
et al.11 for the Varian TrueBeam system (Varian Medical Sys-
tems, Palo Alto, CA). The model included a 6 MV electron
beam impinging on a tungsten target producing x rays through
a brehmmstrahlung process. The forward-directed x rays were
attenuated by a tungsten flattening filter and interacted with
relevant hardware including the “jaw” collimators which were
set to produce a 10 × 10 cm field at a distance of 100 cm from
the source.

2.B. NPS from a flood image ensemble

The standard procedure to determine the NPS of an x-ray
detector is documented by the International Electrotechnical
Commission (IEC).12 In this method, the NPS is measured
by capturing a series of flood images satisfying a number of

TABLE I. Symbol definitions.

Symbol Description Symbol Description

Nx Number of detector pixels (1D geometry) χ2 Mean squared error of the qNNPS estimate
n Pixel index: n = 1, 2, . . . , Nx R̃(t) Estimate of noise autocorrelation function
I(n) Total detected signal intensity: I(n) = S(n) + Q(n) t Noise autocorrelation index: t = −Nx/2, Nx/2 + 1, . . . , Nx/2
S(n) Detected nonstochastic signal intensity Qph Zero-frequency quantum noise of detected signal
Q(n) Detected stochastic noise Nγ Number of gammas launched per flood image
f Frequency index: f = −Nx/2, −Nx/2 + 1, . . . , Nx/2 Nfl Number of flood images per experiment
NNPS(f ) Normalized noise power spectrum g Flood field index: g = 1, 2, . . . , Nfl

Iin(n) Input flux intensity (photons/pixel) �x Pixel spacing (mm)
q Input fluence at detector (photons/mm2) Nl Number of layers in Lubberts model
q̃NNPS(f ) Estimate of q · NNPS l Layer number: l = 1, 2, . . . , Nl

qNNPSact(f ) Actual q · NNPS h(l, n) Line-spread function associated with layer l
η Quantum efficiency H2( f ) NPS shape normalized so H2(0) = 1
η̃ Estimated quantum efficiency Hint Integral of H4( f )/Nx from f = −Nx/2 to Nx/2
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detailed criteria, with the system configured similarly to its
intended use. Following the IEC nomenclature, the 2D NPS
for a discrete detector is defined as

NPS(fx, fy)

= �x�y

NxNyNfl

Nfl∑
g=1

∣∣∣∣∣∣
Nx∑
n=1

Ny∑
m=1

[Ig(n,m)−Sg(n,m)]e
−i2π(nfx+mfy )

NxNy

∣∣∣∣∣∣
2

,

(2)

where Ig(n, m) is the detected signal for flood image number,
g, and pixel index, (n, m); �x, �y are the pixel dimensions;
S(n, m) is the nonstochastic signal; fx, fy are integers labeling
discrete points on the 2D frequency plane. The subtraction
of the nonstochastic signal S from I removes any systematic
trends, leaving only stochastic noise.

From Eq. (2), the number of photons in a NPS simulation
is governed by three parameters

1. The signal intensity, I(n, m).
2. The number of pixels in the region of interest (ROI),

Nx, Ny.
3. The number of flood images in the statistical ensem-

ble, Nfl.

The IEC procedure provides a minimum 4 × 104 pixel guide-
line for the product of Nfl, Nx, and Ny. For instance, a ROI hav-
ing 200×200 pixels would require an ensemble of no less than
Nfl = 100. Much of the theoretical basis for this can be found
in the works of Dobbins et al.,13, 14 in which it is shown that
the ROI dimensions should be much larger than the longest
spatial correlations.

The final variable most directly affecting the number of
simulated gammas is the desired signal intensity, I(n, m). For
this, the IEC procedure stipulates that the flood fields be mea-
sured at 0.3, 1, and 3 times the manufacturer-specified usage
dose.12 This is important for investigating the magnitude and
influence of electronic noise sources resulting from nonide-
alities in the detector. However, since a simulation is free of
such nonidealities, we can consider whether the number of
launched gamma photons in a flood field can be lowered from
the experimental requirements, which are typically on the or-
der of 103 photons/pixel, or 108 photons/flood field.

To determine a minimum signal intensity required for an
accurate simulation, we calculate the dependence of the de-
nominator in the DQE formula [Eq. (1)], denoted in this work
as qNNPS, on the number of launched gammas, Nγ , and flood
images, Nfl. qNNPS is defined as the NPS in Eq. (2) mul-
tiplied by the input fluence q and divided by square of the
average signal, Ī 2

qNNPS(fx, fy)

= q�x�y

NxNyĪ 2Nfl

Nfl∑
g=1

∣∣∣∣∣∣
Nx∑
n=1

Ny∑
m=1

[Ig(n,m)−Sg(n,m)]e
−i2π(nfx +mfy )

Nx Ny

∣∣∣∣∣∣
2

.

(3)

Ī , which is sometimes referred to as the “large area signal,”
can be determined in several ways. In the case of a simulation,
we have the luxury being able to ensure a spatially uniform
flux profile with no temporal drift. Hence, Ī is just the mean
of the detected signal

Ī = 1

NflNxNy

Nfl∑
g=1

Nx∑
n=1

Ny∑
m=1

Ig(n,m). (4)

For purposes of simplicity, we perform the ensuing analy-
sis in one dimension (x) with the understanding that the results
can readily be generalized to 2D.14 Following the formalism
of Dobbins et al.,13, 14 the pixel intensity, I(n), is represented
in terms of its nonstochastic signal, S(n), and an additive zero-
mean noise component, Q(n)

I (n) = S(n) + Q(n). (5)

For a given input intensity, Iin = Nγ /Nx , the expected
value, E, of the detected signal is

E[I ] = E[S + Q] (6)

= E[S] + E[Q] (7)

= ηIin, (8)

where η is the quantum detective efficiency, an intrinsic prop-
erty of the detector defined as the fraction of incoming gamma
photons that interact with the detector to produce a signal. For
this initial analysis, we assume use of a “photon counting” de-
tector whose produced signal is independent of an incoming
photon’s energy. We note that the results derived here are also
applicable to energy-integrating detectors by taking into ac-
count the Swank factor.15

In practice, η is not known and must be estimated from the
average signal, Ī , as part of the process of determining the
qNNPS. The estimated value, η̃, is the ratio of the averaged
detected signal to the input signal

η̃ = Ī

Iin
=

∑Nfl
g=1

∑Nx

n=1 Ig(n)

IinNflNx

, (9)

where we have substituted in Eq. (4) (in 1D) for Ī .
The 1D qNNPS estimate, denoted as q̃NNPS, is ob-

tained by substituting Iin = q�x into the 1D representation of
Eq. (3)

q̃NNPS(f ) = 1

Iinη̃2Nfl

Nfl∑
g=1

∣∣∣∣∣
Nx∑
n=1

Qg(n)e
−i2πfx n

Nx

∣∣∣∣∣
2

. (10)

To evaluate the impact of different simulation parameters on
the accuracy of the qNNPS estimate, it is first necessary to
characterize the noise processes relevant to an x-ray detector.
A key metric is the noise autocorrelation function, R(t), which
has the following estimate, R̃(t):

R̃(t) = 1

Nx

Nx+t∑
n=1

Q(n)Q(n + t), for t ≥ 0. (11)

As the noise processes are assumed to be wide-sense station-
ary, R̃(t) = R̃(−t).
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We start with the idealized case of a “perfectly” pixelated
detector with no additional blurring. Since the incoming pho-
tons are uncorrelated with a Poisson distribution yielding a
signal variance equal to the signal mean (η̃ Iin), the expecta-
tion of this detector’s noise autocorrelation function, denoted
as E[R̃ph], is a delta function scaled by the signal mean

E[R̃ph(t)] = lim
Nx→∞

(
1

Nx

Nx+t∑
n=1

Qph(n)Qph(n + t)

)

= E[Qph(n)Qph(n + t)]

= E[η̃] Iin δ(t). (12)

For almost all physical detectors, the detected noise, Q,
is colored by detector-specific blurring mechanisms includ-
ing light sharing and x-ray photon scattering (we ignore elec-
tronic noise for this analysis). As discussed by Lubberts,16

this noise coloring filter, h, differs from the cumulative blur-
ring filter which operates on the signal, S, and which deter-
mines the MTF. The discrepancy between the signal blurring
and noise coloring filters is the cause of a nonideal DQE(f)
shape that decreases as f increases. Lubberts16 demonstrated
that the NPS can be computed by summing the square magni-
tudes of the Fourier transforms of the optical line-spread func-
tions (LSFs) associated with all layers of a phosphor screen,
while the MTF is computed by averaging the LSFs from each
layer before the Fourier transform is taken. Thus, for a given
layer, l, the noise coloring operation can be represented by the
convolution of the deposited signal, Qph(l), with a wide-sense
stationary filter having a layer-dependent impulse response,
h(s, l),

Q(n, l) =
∑

s

Qph(n − s, l) h(s, l). (13)

The amplitudes of h(l) will vary as a function of layer num-
ber to reflect that layer’s contribution to the overall signal. For
this (more idealized) detector, we conserve the received sig-
nal, Qph, by normalizing the LSFs so that

∑
n, l h(n, l) = 1.

After substitution of Eq. (13) into Eq. (11), the estimated
noise autocorrelation function, R̃(t, l), for layer l is

R̃(t, l)) = 1

Nx

Nx+t∑
n=1

∑
s

Qph(n − s, l) h(s, l)

×
∑

r

Qph(n − r + t, l) h(r, l). (14)

The total noise autocorrelation estimate, R̃(t), is then the sum
of the noise autocorrelation functions from each layer.

2.B.1. Expectation of qNNPS

In order to determine the impact of key simulation param-
eters on accuracy and execution time, we first solve for the
expectation of the qNNPS [Eq. (10)]. The Wiener-Khintchine
relations can be used to write the expression for the qNNPS
estimate, q̃NNPS, as a function of the noise autocorrelation

function estimate, R̃

q̃NNPS(f ) = 1

Iinη̃2Nfl

Nfl∑
g=1

Nl∑
l=1

∣∣∣∣∣∣
Nx/2∑

t=−Nx/2

R̃(t, g, l)e
−i2πfx t

Nx

∣∣∣∣∣∣ ,
(15)

and, from this equation, a solution for E[q̃NNPS] is found in
Appendix A

E[q̃NNPS(f )] = H 2(f ) E

[
1

η̃

]
. (16)

H2( f ) is the sum of the Fourier transforms of the noise auto-
correlation functions of each layer, and is normalized so that
H(0) = 1. An estimate of E[1/η̃] can be generated by aver-
aging the measurements of 1/η̃, obtained using Eq. (9), over
many experiments as shown in Eq. (A7). However, this esti-
mate may be biased unless a sufficient number of photons are
launched due to the characteristic of the random variable η̃

that

E

[
1

η̃

]
�= 1

E [η̃]
. (17)

This, in turn, will incorrectly scale the qNNPS (and DQE)
estimates since

E[q̃NNPS(0)] = E

[
1

DQE(0)

]
= E

[
1

η̃

]
. (18)

Remarkably, as shown in Sec. 3, very few photons are re-
quired per flood field to eliminate the bias.

2.B.2. Simulation error, χ2

We next solve for the mean squared error, χ2, of the
qNNPS estimate, defined as the average squared difference
between q̃NNPS and its actual value, qNNPSact = H 2(f )/η

χ2 = 1

Nx

Nx/2∑
f =−Nx/2

⎡
⎣ 1

Nfl

Nfl∑
g=1

q̃NNPSg(f ) − 1

η
H 2(f )

⎤
⎦

2

,

(19)

where f = Nx/2 is the Nyquist frequency. The expectation of
the estimation error is also solved for in Appendix A

E[χ2] ≈ Hint ·
({

1

Nfl
E

[
2

η̃2

]
− 1

Nfl
E2

[
1

η̃

]}

+
{
E2

[
1

η̃

]
− 2

η
E

[
1

η̃

]
+ 1

η2

})
, (20)

where

Hint = 1

Nx

Nx/2∑
f =−Nx/2

H 4(f ). (21)

The first two terms in Eq. (20) are proportional to the re-
ciprocal of the number of flood fields (1/Nfl) thus indicat-
ing a reduction in error as Nfl is increased. The last three
terms describe a flood-independent error due to the estima-
tion bias only. For cases when there is a sufficient fluence
rate such that the estimation bias is effectively eliminated (i.e.,
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E[1/η̃] ≈ 1/η), then

χ2 ≈ Hint

η2 Nfl
. (22)

Equation (20) shows the important result that there is little
benefit to launching more photons per flood field beyond the
minimum required to avoid biasing the estimate. At that point,
for a given detector characterized by fixed values of η and
Hint, the mean squared error of the qNNPS estimate decreases
in proportion to the number of simulated flood fields as shown
by Eq. (22).

2.C. MTF and NPS from a point-spread function (PSF)
ensemble: Fujita-Lubberts-Swank (FLS) method

The above results imply that the number of detected gam-
mas for a flood-based Monte Carlo simulation can be dramat-
ically reduced from experimental levels, which are typically
on the order of Nγ = 108 photons per flood image. In Sec. 3, it
is shown that only 10–100 photons per flood image need to be
detected to avoid biasing the estimate. In this section, we pro-
pose a method to lower the input flux even further to the limit
that each instance becomes a single-gamma event producing
a PSF rather than a flood field. The method, which also al-
lows for simultaneous computation of the MTF, is illustrated
in Fig. 1 and described below.

For the ensuing analysis, we return to the more general
2D geometry. To compute the shape of the 1D NPS along the

x axis, the 2D PSF produced by each detected gamma photon,
p, is summed in the y-direction and its corresponding NPS is
calculated

NPSp(f ) =
∣∣∣∣∣∣DFTi

⎛
⎝∑

j

PSFp(i, j )

⎞
⎠

∣∣∣∣∣∣
2

, (23)

where i, j label detector pixels along the x, y directions, re-
spectively, and DFTi is the 1D discrete Fourier transform
in the i direction. The shape of the final 1D NPS curve, up
to a scale factor, is then obtained by averaging NPSp(f ) in
Eq. (23) over all detected events, Np

NPS(f ) ≡ 1

Np

Np∑
p=1

NPSp(f ). (24)

To determine the proper NPS scaling factor, we propose
using the Swank equation15 which applies to both photon-
counting and energy-integrating detectors by accounting for
the effects on signal-to-noise ratio of x-ray beam quality
and the energy-specific detector response. For each detected
event, p, the total signal, T(p), is computed. A histogram com-
posed of all the values of T is then generated to create a pulse
height spectrum (PHS). q̃NNPS(0) is subsequently computed
from the estimated quantum efficiency (η̃ = Np/Nγ ) and the
PHS using the Swank formula

q̃NNPS(0) = M2M0

η̃M2
1

, (25)

FIG. 1. Schematic flow chart for the proposed FLS simulation method (optical transport may or may not be included). Each gamma photon that interacts with
the imager produces a typically unique 2D point-spread function. To compute the NPS, each PSF is summed along one dimension to yield a PSF projection
which is Fourier transformed and squared to generate a NPS (Ref. 16). The NPS’ from all events are summed and normalized to compute the NPS shape (middle
row). Each PSF is also individually summed to give the total received counts for that event, which is then tallied into a pulse height spectrum from which the
DQE(0) is calculated using the Swank formalism (Ref. 15) (bottom row). By directing the gammas along an angled line, the MTF can be determined following
the Fujita procedure (Ref. 8) (top row). The results of these calculations are then combined to yield the final DQE(f) (right).
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FIG. 2. Varian AS1000 MTF and NPS shapes (see Sec. 2.E.4) simulated using the FLS technique with varying scintillation yield ranging from 1 to 64 000
optical photons/MeV. The q̃NNPS has been multiplied by DQE(0) so that it is normalized to a value of 1 at zero frequency. While the MTF remains relatively
unaffected by the choice of optical yield, an insufficient number of optical photons results in an artificial increase in the high frequency NPS values. As the
scintillation yield is increased, the simulated NPS asymptotically converges to its true shape.

where Mi label the ith moment of the pulse height spectrum.
Combining this result with Eq. (24) and normalizing the

NPS to 1 by dividing by its zero-frequency value, NPS(0),
yields an expression for the denominator of the DQE(f) in
Eq. (1)

q̃NNPS(f ) = q̃NNPS(0) · NPS(f )

NPS(0)
. (26)

With the assumption of shift invariance, the PSFs can be
placed anywhere on the detector face. If the incident gammas
are directed along an angled line, the MTF can also be readily
calculated from an oversampled LSF following the analysis
of Fujita et al.8 This MTF estimate can be combined with
Eq. (26) to calculate DQE(f) using Eq. (1). Angling the in-
put gammas also ensures adequate sampling for the NPS esti-
mate particularly for pixelated arrays. Because this approach
combines the established methods of Fujita,8 Lubberts,16 and
Swank,15 we have appropriately named it the “FLS” method.

2.D. Modeling optical transport

The simulation of scintillators, whether using a flood im-
age ensemble or a point-spread function ensemble, requires
the generation and tracking of optical photons, which in turn
introduces additional parameters to optimize in order to mini-
mize simulation times. One of the more obvious of these is the
number of optical photons generated per scintillation event.
In a Monte Carlo simulation, the number of optical photons
created is determined from a Poisson distribution with mean
μopt, given by

μopt = βEdep, (27)

where Edep is the energy deposited just before a scintillation
event and β is a constant with units Energy−1, known as the
scintillation yield.

In a physical scintillator, β depends on the details of the
material chemistry and electronic band structure. In most
cases, it is desired that this value be as high as possible in

order to ensure that quantum noise is larger than electronic
noise. However, for a simulation that is devoid of electronic
noise, the scintillation yield can be minimized to reduce ex-
ecution time once its effect on the MTF(f) and NPS(f) esti-
mates is understood. To explore this question, the FLS tech-
nique was applied to the AS1000 electronic portal imager
(EPID) (Varian Medical Systems, Palo Alto, CA) utilizing a
GOS screen as detailed in Sec. 2.E.4. β was varied from the
true physical yield of 60 000 opticals/MeV (Ref. 17) down
to 1 optical/MeV, while the number of incident gammas was
held constant at 200 000. The resulting MTF and NPS curves,
shown in Fig. 2, indicate that there is a much more profound
effect on the NPS than the MTF. The NPS changes from a
nearly flat shape when β = 1 to the more accurate sloped
shape as β is increased. Using a 6 MV spectrum, a yield
of 400 opticals/MeV resulted in an average detection rate of
57 opticals/gamma event and the resulting NPS curve dif-
fered by an average of only 4% from the maximum yield
(β = 60 000) curve. In general, the optimal yield for a given
simulation experiment will depend on the desired accuracy,
the incident beam energy, and relevant optical properties such
as scatter and attenuation. In our experience, at least 50 op-
tical photons/scintillation event should be detected to achieve
good accuracy, a requirement which can be programmed into
the simulator if desired.18

2.E. Validation studies

We first validated the formulas for the expectations of the
qNNPS and χ2 estimates [Eqs. (18) and (20)] using a 1D mul-
tilayer model to show that the number of launched gammas re-
quired for a simulation is greatly reduced compared to exper-
imental levels. We then compared our simulations of a thick
pixelated scintillator to full-exposure simulations previously
published by Wang et al.19 Finally, we compared a simula-
tion of a Varian AS1000 EPID, including gamma and optical
transport, with measurements made at 6 MV on a TrueBeam
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TABLE II. Parameters for the 20-layer scintillator model described by
Eq. (28) comprising the sum of two Gaussians. Layer l = 1 has the sharpest
LSF while Layer l = 20 has the broadest. The standard deviation, σ a, of the
narrow Gaussian ranges from 0.5 to 1.5 while the standard deviation, σ b of
the broad Gaussian ranges from 1.5 to 5. The narrow Gaussian is weighted
ten times as much as the wide Gaussian (B = 0.1), and Layer 1 contributes
twice as much to the overall signal as does layer 20 [A(1) = 1, A(20) = 0.5].

Parameter Formula Description

σ a(l) 0.5 + l−1
Nl−1 Narrow Gaussian sigma

σ b(l) 5 + 5 l−1
Nl−1 Wide Gaussian sigma

B 0.1 Wide-to-narrow Gaussian
weighting ratio

A(l) 1 − 0.5 l−1
Nl−1 Layer weighting factor

Nl 20 Number of layers

Aint
∑Nl

l=1 A(l)(1 + B) Normalization factor

radiation therapy system (Varian Medical Systems, Palo Alto,
CA).

2.E.1. 1D multilayer model

A 1D multilayer Lubberts model of light dispersion in a
scintillator was built using Matlab (Mathworks, Natick, MA).
Each layer of the scintillator had associated with it a LSF
modeled as the sum of two Gaussian functions, one of which
was relatively narrow and one relatively wide. The standard
deviations, σ , of the Gaussians changed linearly as a function
of layer number to simulate increased broadening for events
originating in layers further from the photodiode array. The
contribution from each layer to the overall signal intensity was
also set to be a function of layer number to model light atten-
uation in the scintillator. Taking the above considerations into
account, the LSF, h(n,l), was computed as a function of layer
l and pixel index n as follows:

h(n, l) = A(l)

Aint

[
σa(l)√

π
exp

( −n2

2σ 2
a (l)

)

+B
σb(l)√

π
exp

( −n2

2σ 2
b (l)

)]
. (28)

The coefficients for the above equation are explained in fur-
ther detail in Table II.

Figure 3(a) shows the LSFs from five different layers for
the model described above. Figure 3(b) shows the resulting
theoretical MTF2(f), qNNPS(f) shape, and DQE(f) shape, also
known as the Lubberts’ fraction, L( f )

L(f ) = MTF2(f ) qNNPS(0)

qNNPS(f )
. (29)

A sensitivity analysis was performed to evaluate the de-
pendence of the qNNPS estimate on the number of launched
gammas, Nγ , and the number of flood images, Nfl. For a given
“experiment” comprising Nfl 1D flood images, the number of
received photons for each flood image was determined from a
Poisson distribution with mean and variance equal to ηNγ (η
was set to be 0.5 for all cases, and the number of received pho-
tons was capped at Nγ ). In each flood image, each received
photon was randomly assigned to a layer l, following which
the appropriate LSF was computed using Eq. (28) and 10%
speckle noise was added. This noisy LSF was dropped into the
(1D) received signal buffer at a random position (n = 1, 2, . . . ,
N). After all photons for a given flood buffer were received
and all floods for a given experiment simulated, the qNNPS
for that experiment was estimated using Eq. (10), where η̃ was
computed according to Eq. (9). For the sensitivity analysis,
Nγ was varied over 6 orders of magnitude from 2 to 2 × 106

gammas/flood image, and Nfl was varied from 50 to 800.
For each combination of Nγ and Nfl, 20 experiments were
performed.

2.E.2. Pixelated scintillator simulation

Wang et al.19 used Monte Carlo simulations to investigate
several scintillator array designs for portal imaging. All the
arrays had a 1.106 mm pitch but comprised different materi-
als of varying thicknesses. We chose to analyze the 40 mm
thick cesium iodide (CsI) configuration since it has the high-
est DQE of the structures that were studied and involves the
most particle interactions. In their work, EGSnrc was used
to launch a total of 3.6 × 108 gamma photons per flood im-
age, sampled from a 6 MV linac spectrum. The launched

FIG. 3. Lubberts model described in Table II. (a) Representative LSFs from 5 (of 20) layers. (b) Resulting theoretical MTF2 curve, NPS shape given by the
ratio of qNNPS/qNNPS(0), and DQE shape given by the Lubberts’ fraction [Eq. (29)].
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photons were distributed uniformly across a 60 × 60 cm field
that was incident on a 600×600 pixel array. Energy deposition
events resulting from gamma interactions within the scintilla-
tors were scored (optical transport was not modeled) to create
a total of 50 energy deposition flood images. To process the
data, the central 500×500 pixels from each flood image were
extracted and divided into smaller images of size 250 × 100.
These smaller images were then averaged over the shorter di-
mension resulting in a total of 500 “slit” images for calcu-
lating the qNNPS. This technique, known as the “synthesized
slit,” differs somewhat from the IEC method but has been val-
idated in numerous publications.20–22

Applying GEANT4 to an identical simulation geometry,
we generated several flood data sets for comparison. Follow-
ing the IEC approach to processing flood data, the 2D qNNPS
was first computed from the central 500×500 pixels of each
flood image (no tiling) using Eq. (3). This was then trans-
formed into a 1D qNNPS by averaging the first ten rows on
either side of, but not including, the zero-frequency axis. To
study the impact of different fluence levels on simulation ac-
curacy, the average number of detected photons, ηNγ , was
varied from one photon per flood image up to the experimen-
tal level of 1 × 108 photons per flood image (note, since the
quantum efficiency of this detector is approximately 0.5 and
only the central 500 pixels were used for processing, the ac-
tual number of launched photons ranged from 3 to 2.5 × 108).
The number of flood images was varied from 50 to 500.

For the FLS simulation, a total of 20 000 gamma photons
were sampled from the TrueBeam spectrum and distributed
along a line of length 80 mm that was angled at 1.875◦ with
respect to the array edge. The use of a line source rather
than a flood source allowed us to reduce the readout array
to 150×150 pixels. The qNNPS was calculated using the
method outlined in Fig. 1.

Simulation accuracy was evaluated using a mean squared
error metric. A baseline qNNPS curve was first generated us-
ing our best possible reproduction of the Wang simulation
parameters, namely, Nfl = 50 and Nγ = 3.8 × 108 gammas/
pixel/flood. This baseline estimate was fitted to a sixth order
polynomial using least-squares regression to generate a refer-
ence curve, Polyfit. The residual mean squared error, χ2, for
each simulated qNNPS curve was then calculated

χ2 = 1

Nx

Nx/2∑
f =−Nx/2

[
q̃NNPS(f ) − PolyF it(f )

]2
. (30)

We note that the 6 MV TrueBeam spectrum used for our
simulations may have differed slightly from the 6 MeV Linac
spectrum that Wang et al.19 used.

2.E.3. AS1000 EPID measurements

Measurements of AS1000 MTF, NPS, and DQE were
made on a TrueBeam system operating at 6 MeV with the
flattening filter in place. The AS1000 EPID comprises a
1 mm thick copper buildup plate attached to a Gd2O2S (GOS)
screen which is coupled to an amorphous silicon photodiode

array having a pitch of 0.392 mm. The readout array size is
1024×768 pixels.

The MTF was measured by illuminating the panel through
a 300 μm slit formed by two parallel tungsten blocks, each
15 cm thick, positioned next to each other.23 The detector was
located 140 cm from the source, and the exit side of the slit
assembly was situated 4 mm from the face of the detector. The
slit was tilted 2.3◦ with respect to the vertical axis to allow for
spatial oversampling, and the beam was collimated down to a
field size of 70 × 20 mm2 centered on the blocks. Twenty-five
frames of data, each collected with 1.5 machine monitor units
(MU) (calibrated at 100 cm) were averaged together resulting
in a total detector exposure of 16.7 MU. For processing, the
Fujita method was used to generate an oversampled LSF from
the dark field- and gain-corrected slit image. To ensure that
the tails of the LSF approached zero, a sloping linear baseline
was subtracted prior to the MTF calculation.

Two data sets were used to determine the qNNPS. One
set comprised 100 images acquired with the radiation beam
turned off (dark field). For the other set, 512 images were
acquired with a 15 × 15 cm2 illumination field at the de-
tector (flood field). The dose was 1.5 MU/image at isocenter
(100 cm from the source) and 0.67 MU/image at the detector
(150 cm from the source), and the frame rate was 10 frames/s.
We irradiated across a 15 × 15 cm2 field rather than the en-
tire detector for two reasons: First, we desired to reduce the
amount of scattered radiation from the detector housing and
support structures. Second, since the flattening filter changes
the spectrum in a spatially dependent manner which will re-
sult in a spatially nonuniform NPS, we irradiated with a suffi-
ciently small field over which the spectrum is approximately
uniform.

To process the qNNPS data, the dark field images were
averaged, and the resulting mean dark field image was sub-
tracted from each of the flood field images to correct for
panel offset. Further detrending was achieved by normaliz-
ing to an average flood image constructed from the flood field
sequence. The qNNPS was then estimated from the central
256×256 pixels of the flattened flood field sequence using Eq.
(3). Corrections were also made for the effects of dark field
noise and lag on the NPS, which were less than 5% in total.

Determination of the qNNPS requires knowledge of the in-
put fluence, q. This entails a conversion from a reported MU
value to a fluence value (gamma photons per unit area). For
the TrueBeam system on which the measurements were made,
1 MU was calibrated to deliver a 1 cGy dose at a depth of
16 mm in water at the machine isocenter for a 10 × 10 cm2

field. The corresponding quantity of gamma photons was esti-
mated by summing the product of the beam spectrum and the
kinetic energy released in matter (KERMA) determined from
the values published by Rogers.24 The results of our analy-
sis yielded a KERMA dose equivalent factor of 1.42 × 107

photons/(cGy mm2).

2.E.4. AS1000 EPID simulations

2.E.4.a. Detector model. The physical layout of the
AS1000 imager is shown in Fig. 4 and is similar to the model
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FIG. 4. Schematic cross-section of AS1000 model geometry.

of the AS500 described by Kirkby and Sloboda.25 The con-
version layer is a FastBack (Fast-b) GOS screen (Carestream
Health, Rochester, NY), and there are several key optical pa-
rameters, including scattering and attenuation lengths, that
are relevant to the simulation. We used an isotropic scatter-
ing model with a scattering length of 17 μm as described
by Kirkby and Sloboda.25 In Appendix B, we show that this
gives functionally the same result as the Mie scattering model
of Liaparinos,3 but runs three times faster. The attenuation
length was 40 mm (Ref. 26) which corresponds to an imagi-
nary component of the index of refraction of 10−6.3 The com-
posite refraction index of the GOS screen was 1.7.3 The top
reflective support layer was modeled having a specular reflec-
tivity of 0.88.27 The protection foil was modeled as clear plas-
tic with an index of refraction of 1.5. The photodiode layer
had an index of refraction of 1.7 and was assumed to be
perfectly absorptive.28 For all of our simulations, the wave-
length dependence of the optical parameters was neglected.
Siebers et al.29 showed the necessity of placing a 10 mm wa-

ter layer behind the AS1000 to account for backscatter. Of
note is that the backscattering sources, which include the sup-
port arm and cables, are not uniformly distributed, hence the
10 mm thickness represents an overall average across the en-
tire detector.

2.E.4.b. Simulation parameters. For the flood field sim-
ulation, the irradiated area was 15 × 15 cm2 to match the
experimental conditions. Radiative transport throughout the
entire detector of size 40 × 30 cm2 was calculated in order to
capture all backscatter effects. To match the measurement, the
qNNPS was computed from the central 256×256 pixels using
the IEC processing method. In total, 400 flood images were
simulated, each with 6000 incident gamma photons sampled
from the 6 MeV TrueBeam spectrum. At 6 MeV, the AS1000
has a quantum efficiency of approximately 0.02, which trans-
lates to an average of 120 detected photons per flood field thus
ensuring a unbiased qNNPS estimate. The scintillation yield
was 400 opticals/MeV, based on the sensitivity study shown
in Fig. 2.
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FIG. 5. Simulation results using the layered model described in Table II. (a) Stacked plot of q̃NNPS(f ) for three different signal intensities, ηNγ . Each plot
shows the superimposed qNNPS estimates from 20 simulations started with different random seeds. A bias is seen for ηNγ = 1 (arrow) while the distributions
of the plots for ηNγ = 10 and ηNγ = 106 are nearly identical and show no bias. (b) Distribution of χ2 vs ηNγ . The circles show expected values from
Eq. (20) while the x’s show a measured value for each experiment. (c) q̃NNPS distribution as a function of the number of flood fields, Nfl, with ηNγ set to 32.
(d) Measured (x) and predicted (o) χ2 distributions. Combined, these plots show there is no further value to increasing the number of launched photons per flood
image beyond that required to eliminate the bias in the η̃ estimate. However, there is significant value to increasing the total number of flood images to reduce
noise.

For the FLS simulation, 400 000 gamma photons were
launched and distributed evenly over a rectangle of dimen-
sions 70 × 0.3 mm2, angled at 2.3◦ to match the MTF mea-
surement conditions. The detector area was 15 × 15 cm2.
The number of gammas was chosen to achieve a sufficiently
“smooth” MTF curve. If we were just interested in qNNPS
accuracy, then a factor of 10 fewer photons could have been
launched.

3. RESULTS

3.A. 1D multilayer Lubberts model

Figure 5 shows NPS simulation results using the multi-
layer Lubberts model detailed in Table II. The top two sub-
figures (a) and (b) show behavior as a function of the number
of detected photons, ηNγ , with the number of flood images,
Nfl, fixed at 150. Figure 5(a) displays q̃NNPS distributions
for three different flux levels (ηNγ = 1, 10, 1 × 106 detected
photons/flood). For each flux level, 20 simulation experiments
were initiated with different random seeds. Hence, the vertical
distribution of the dots is indicative of the amount of random
simulation noise. The lightly colored solid curve in each plot
in Fig. 5(a) is the theoretical qNNPS given by Eq. (A9).

A bias in the η̃ estimate occurs for the very low fluence
simulation (ηNγ = 1) as indicated by an arrow in Fig. 5(a).
This bias, which is manifest as a scaling error, is eliminated
once ηNγ > 10. That only ten gamma photons require de-
tection to obtain an accurate simulation using this model is
confirmed in Fig. 5(b) which shows the χ2 error as a func-
tion of the number of launched photons plotted over a 6-order
of magnitude range. As predicted by Eq. (20), the simulation
error is independent of the signal intensity once the flux is
sufficient to eliminate the bias.

The bottom row shows behavior as a function of the num-
ber of flood images with the number of detected photons held
fixed at 32. As seen qualitatively in the qNNPS distributions
in Fig. 5(c), the noise decreases as Nfl is increased. Quan-
titatively, as predicted by Eq. (22), the variance is inversely
proportional to the number of flood images [Fig. 5(d)].

3.B. Wang pixelated detector: Flood image ensemble

Figure 6 shows the simulation results from the flood-
based technique superimposed on the qNNPS curve published
by Wang et al.19 In all cases, only radiative transport was
modeled. Good agreement is obtained between our results
and those of Wang19 although there is a small (5%–10%)
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FIG. 6. Simulation of pixelated CsI detector described by Wang et al. (Ref. 19): (a) q̃NNPS(f ) vs number of detected gammas/flood, ηNγ , for a fixed number
of flood fields, Nfl = 50. A scaling error, due to the η̃ estimation bias, is seen for very low numbers of detected photons/flood. This bias is eliminated once ηNγ

≥ 100. (b) q̃NNPS(f ) as a function of Nfl for an average detection level of ηNγ = 32 gammas/flood image. The curve labeled “Wang” in (a) is directly from
the publication (Ref. 19). The curve labeled Polyfit in (a) and (b) is a sixth order polynomial fit to the qNNPS curve we generated using the Wang simulation
parameters, namely, Nfl = 50 and Nγ = 3.6 × 108 gammas/pixel/flood. The insets in the upper right of each plot show the χ2 error from Eq. (30) for each
qNNPS estimate. Improved accuracy is obtained as Nfl is increased, while there is no benefit to increasing the number of detected gammas/flood beyond that
required to eliminate the bias.

scaling difference between the two that may result from use of
slightly different spectra. Of note is that the curves generated
by our procedure are less noisy. This is likely because the IEC
analysis method utilizes a larger portion of information from
the 2D NPS profile than does the synthesized slit technique.

Similar to the results from the 1D multilayered model de-
scribed above, an estimation bias (manifest as a scaling error)
is also seen for low fluence rates. As shown in Fig. 6(a), the
bias is removed once ηNγ reaches 100. Similarly, if the input
fluence is held fixed so that ηNγ = 32, the MSE is reduced
as Nfl is increased. As shown in Fig. 6(b), as Nfl is increased
from 50 to 300, there is a large reduction in χ2 due to the
elimination of the remainder of the bias. Once Nfl reaches ap-
proximately 300, the reduction in χ2 continues but becomes
less pronounced. Together, Figs. 6(a) and 6(b) demonstrate
that the most efficient approach is to use as low a value of
ηNγ as possible while increasing Nfl to improve accuracy and
reduce noise.

3.C. Wang pixelated CSI detector: FLS simulation

Figure 7 shows the qNNPS estimate produced by the FLS
simulation of the Wang detector. Also shown is the reduced-
gamma IEC flood-based estimate from Fig. 6 for Nfl = 500
and Nγ = 80 gammas/flood (32 mean detected gam-
mas/flood). The IEC and FLS qNNPS(f) curves are in excel-
lent agreement with each other, having a maximum and av-
erage discrepancy of 2.8%, and 1.5%, respectively. For this
study, the FLS simulation required half as many input pho-
tons as the flood-based simulation to produce equivalent curve
smoothness. Both the IEC and FLS results show reduced

noise compared to the Wang simulation which utilized a total
of 3.6 × 108 incident gammas/flood image.

3.D. AS1000 portal imager: Simulation vs experiment

Figure 8 shows excellent agreement between measured and
simulated AS1000 MTF(f), qNNPS(f), and DQE(f) curves.
Since the flood method only generates a qNNPS(f) estimate,
the MTF plot comes from the FLS simulation, and because
the flood- and FLS-based qNNPS estimates completely over-
lap, only the FLS DQE(f) simulation is shown. The root mean

FIG. 7. Comparison of the simulated qNNPS(f ) from Wang et al.
(Ref. 19) with the simulated qNNPS(f ) from both reduced gamma meth-
ods (IEC and FLS) presented in this work. The reduced gamma IEC and FLS
results coincide to within 1.5% of each other and are in close agreement with
the Wang curve albeit with reduced noise.
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FIG. 8. Simulated and measured MTF, qNNPS, and DQE curves for the AS1000 imager operating at 6 MeV with the flattening filter in place. Very good
agreement is obtained between measurement and simulation, which included both radiative and optical transport. Sixth order polynomials were fit to each set of
data points (solid lines).

squared (RMS) differences between the measured and simu-
lated MTF2(f), qNNPS(f), and DQE(f) estimates are 0.015,
3.85, 0.00048, respectively, while the mean MTF2( f ), qN-
NPS(f), and DQE(f) estimates are 0.22, 36.0, 0.0044, respec-
tively. Thus, the average discrepancy between measurement
and simulation is 3% for the MTF2( f ), 7% for the qNNPS(f),
and 11% for the DQE(f). We note that the slight “bumpiness”
in the simulated DQE(f) curve is mainly due to noise in the
simulated MTF(f) and not in the qNNPS(f) estimate.

3.E. Computation times

Table III summarizes the CPU times required to generate
the curves in Figs. 7 and 8. The first entry is an estimated
execution time for the synthesized slit simulation of Wang
et al.19 since no timing numbers were explicitly reported. The
estimate comes from a study subsequently published by the
same group using a nominally identical detector geometry and
simulation parameter set which quoted an execution time of
150 000 CPU h for 2560 runs.30 Therefore, a nominal value
of 59 CPU h (3540 CPU min) was assumed for the execu-
tion time required by Wang et al.19 to generate a single flood
image. By comparison, a total of 53 000 CPU min (second
row) were required per flood image to generate the baseline
curve in Fig. 6 using nominally identical simulation param-
eters, but different transport code (GEANT4 with Penelope

physics vs EGSnrc). Although the GEANT4 code is found to
be significantly slower than the EGSNRC code, a 4–5-order
reduction in execution time was still achieved using the opti-
mized methods. The final entry in Table III contains the run
time for the FLS AS1000 simulation reported in Fig. 8 with
an optical yield of 400/MeV.

4. DISCUSSION

The results show that very fast simulation times of DQE(f)
can be achieved without loss of accuracy by prudently re-
ducing the number of gamma and optical particles that are
launched relative to what is required for a typical experimen-
tal acquisition. Using the flood-based approach, it was pos-
sible to reduce the number of launched gamma photons per
flood image by a factor of 107 relative to experimental values
without degrading the qNNPS estimate. The lower limit of
incident gammas is dictated by the uncertainty estimating the
quantum efficiency which leads to a bias that can be overcome
by using information from all events to estimate DQE(0)
through the Swank relation. This allows for an additional re-
duction in input gammas as the flood image is reduced to a
single-gamma event, and forms the basis for the newly pro-
posed FLS method that also has the advantage of generat-
ing data for MTF and NPS estimates concurrently. Ultimately,
this translated to a reduction in GEANT4 execution time for

TABLE III. Comparison of execution times using a single 2.2 GHz CPU for different simulation runs. The reduce gamma flood and FLS simulation times are
all on the order of minutes, even with the inclusion of full optical transport.

Simulation Incident gammas Number of Total incident Total
Geometry Reference method per flood flood images gammas CPU min

Pixelated scintillator Wang et al. (Ref. 19) Synthesized slit (NPS only) 3.4 × 108 50 1.7 × 1010 177 000 (estimated)
Pixelated scintillator Current work IEC (NPS only) 3.4 × 108 50 1.7 × 1010 2 650 000
Pixelated scintillator Current work IEC (NPS only) 80 500 4 × 104 8.3
Pixelated scintillator Current work FLS (MTF, NPS, DQE) . . . . . . 2 × 104 3.1
AS1000 EPID with optical transport Current work FLS (MTF, NPS, DQE) . . . . . . 4 × 105 14.5
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simulating the Wang detector from 2 650 000 CPU min if
using experimental acquisition parameters to 3.1 CPU min
when using optimized simulation parameters, while yield-
ing a significantly less noisy NPS curve. A general guideline
for simulation parameter optimization is that at least 10 000
gamma photons should be detected in total and, if modeling
optical transport, the yield should be set so that an average
of at least 50 optical photons are detected per scintillation
event.

A key observation from the study is that random simula-
tion noise is inversely proportional to the number of flood im-
ages (or total launched photons for the FLS method) provided
that the number of launched gammas per flood is sufficiently
high to eliminate the bias in the quantum efficiency estimate.
Thus, for a given simulation experiment, it is most efficient to
“spend” those photons creating as many individual NPS es-
timates as possible for averaging. This, naturally, favors the
use of point-spread functions over flood images. There also
may be other advantages to using point-spread functions. As
Dobbins14 point out, Eq. (2) is exactly valid only for a de-
tector of infinite extent, and care must be taken in the defini-
tion of the ROI size so as not to introduce finite extent effects
even for experimental dose levels. Since the FLS method re-
lies on the PSFs produced from single gamma events for its
noise correlation information, the detector extent needs only
to be sufficiently large so as to contain the entire PSF along
the simulated line. Another advantage of the FLS method is
that it generates an explicit estimate for qNNPS(0) whereas
qNNPS(0) must be extrapolated using the flood-based tech-
nique. These advantages in speed and robustness, combined
with the ability to acquire NPS and MTF data simultane-
ously would point to a preference for using the FLS technique.
Nevertheless, it should be noted that since actual experimen-
tal NPS data are (by necessity) acquired using the IEC flood
field-based method, it still may be desired to employ the re-
duced gamma flood simulation approach for purposes of de-
termining the magnitude of finite-extent (and other) artifacts
in the experimental data.

The FLS procedure shares some features in common with
previously published cascaded models, most notably those
of Kausch et al.26 and Badano et al.31 who also used point
sources to determine the NPS. In both approaches, the scintil-
lator is subdivided into many layers in the z-direction. A “li-
brary” of optical PSFs is first generated by launching a finite
number of optical photons isotropically from a point-source
in the middle of each layer and storing the information. A 3D
radiative energy deposition profile is then simulated by direct-
ing gamma photons from the source to a single point on the
detector and recording the energy deposited as a function of
x, y, and z. Then, for each layer, a combined PSF (and NPS)
is calculated by convolving the simulated energy deposition
profile with that layer’s optical PSF. Using the Lubberts for-
malism, the final NPS is computed by summing the NPS from
each layer while the MTF is the Fourier transform of the cu-
mulative point-spread function from all layers.32

Kausch et al.26 used the cascaded method to calculate
DQE(f), but employed a formula which differs from the con-
ventional definition [Eq. (1)], and we have not been able to

match their results using conventional simulation approaches
(it appears that their estimate of qNNPS may be biased). In
their work, Badano et al.31 did not determine DQE(f) but in-
stead studied the effects of various experimental parameters
on the Lubberts fraction to relate the shapes of the MTF and
NPS curves to each other. A key innovation introduced by
the FLS algorithm is the use of DQE(0) calculated from the
Swank equation to transform the Lubberts fraction L(f) into
DQE(f).

The cascaded approaches described above require execu-
tion of several separate programs including one for creating
the library of optical PSFs, one for creating the 3D radiative
energy deposition profile, and one for combining the results.
This may increase execution times, data storage requirements,
and complexities of operation compared to the proposed FLS
algorithm which requires only one program to be run and
takes advantage of GEANT4’s capabilities to simultaneously
transport optical and gamma photons. Another difference is
that oversampling of the PSF using the cascaded approach
was achieved by making artificially small pixels. This may
lead to errors when modeling periodic, spatially inhomoge-
neous detectors such as a pixelated scintillator unless mul-
tiple point sources are used to adequately sample the actual
(i.e., larger) scintillator pixels. Sampling must not only be ad-
equate in the z-, but also the x- and y-directions, a feature that
is “built-in” to the angled line Fujita method, provided the line
angle is properly selected.

We expect the techniques presented here will help facili-
tate the use of in silico design methods to optimize the per-
formance of both direct and indirect x-ray detectors with
the largest benefit likely conferred upon indirect detectors
which, previously, have not been well modeled due to pro-
hibitively high computational loads. There are three main
categories of such detectors: (1) Particle-in-binder screens
(e.g., GOS), (2) pixelated arrays, (3) vapor-deposited colum-
nar structures [e.g., CsI(Tl)], all three of which can be mod-
eled using the proposed techniques. For a particle-in-binder
screen, optimization of build-up layer thickness and material,
screen thickness, particle material and size, and binder index
of refraction may yield improved performance for a given
beam energy. For a pixelated array configuration, optimiza-
tion of scintillator material and thickness, pixel size, polish-
ing parameters, reflector properties, and glue material can be
explored. For a scintillator with a columnar structure, the col-
umn geometry including packing fraction, surface roughness,
and column shape may warrant investigation.

Finally, we note that for both the FLS and rapid flood-
field simulation methods that we propose, the reduction in
launched particles is made possible by exploiting the ide-
alized condition that no electronic noise sources (e.g., kTC
noise, video amplifier noise, digitization noise) are present.
When desired, however, these noise sources can still be ac-
counted for by adjusting the qNNPS curves appropriately.
Since in most cases, the electronic noise sources are white, a
constant value can be added to the qNNPS after simulation of
x-ray and optical transport is completed. The amount added
will depend on the nature of the electronic noise sources
which can be readily determined via measurement and
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simulation of the readout components.28 This assessment
need only be done once for a given set of electronics.

5. CONCLUSIONS

By judiciously reducing the number of gamma and optical
photons that are launched as part of a simulation experiment
of an indirect x-ray detector, DQE(f) can be modeled in min-
utes on a single CPU with no loss of accuracy. In addition to
optimizing the conventional flood-field approach for measur-
ing NPS, we demonstrated the validity of a novel simulation
method using an ensemble of point-spread functions which
offers even higher efficiency and robustness. Implementation
of these techniques using the GEANT4 simulation package
provides a powerful tool allowing for multiple design itera-
tions to be performed in a short amount of time, which we an-
ticipate will result in a quicker path to developing improved
x-ray imaging products.
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APPENDIX A: qNNPS(f) ESTIMATION ERROR

In this appendix, we derive formulas of the expectation of
the error of the qNNPS(f) estimate as a function of the number
of photons launched per flood field, Nγ and the number of
flood fields per experiment, Nfl.

1. Expectation of qNNPS

Since the qNNPS(f) is proportional to the Fourier trans-
form of the noise autocorrelation function [Eq. (15)], we
start by taking the expectation of the estimated noise-
autocorrelation function R̃, which is defined in Eq. (14). The
expectation of R̃ is a function of received signal, Qph, and the
blurring function, h, associated with layer number l

E[R̃(t, l)]

= lim
Nx→∞

1

Nx

Nx+t∑
n=1

∑
s

Qph(n − s, l)h(s, l)

×
∑

r

Qph(n − r + t, l)h(r, l)

=E

[∑
s

Qph(n−s, l) h(s, l)
∑

r

Qph(n−r+t, l) h(r, l)

]

=
∑

r

∑
s

E[Qph(n−s, l) Qph(n − r + t, l)] h(s, l) h(r, l)

= E[η̃] Iin

∑
r

∑
s

δ(t − s + r) h(s, l) h(r, l)

= E[η̃] Iin

∑
s

h(t − s, l) h(s, l). (A1)

Equation (A1) simply shows that the noise autocorrelation
function of each layer is proportional to that layer’s LSF con-
volved with itself, with the constant of proportionality given
by the expectation of the mean received signal, η̃Iin.

Equation (A1) can be substituted into Eq. (15) to determine
the expectation of the qNNPS(f) estimate, q̃NNPS(f ). The
qNNPS is computed by taking the Fourier transform of the
noise autocorrelation function for all layers, l, averaged over
all flood fields, g

E[q̃NNPS(f )]

= E

⎡
⎣ 1

η̃2IinNfl

Nfl∑
g=1

Nl∑
l=1

∣∣∣∣∣∣
Nx/2∑

t=−Nx/2

R̃(t, g, l)e
−i2πfx t

Nx

∣∣∣∣∣∣
⎤
⎦

= 1

IinNfl

Nfl∑
g=1

Nl∑
l=1

∣∣∣∣∣∣
Nx/2∑

t=−Nx/2

E

[
R̃(t, g, l)

η̃2

]
e

−i2πfx t

Nx

∣∣∣∣∣∣ (A2)

= 1

IinNfl

Nfl∑
g=1

Nl∑
l=1

∣∣∣∣∣∣
Nx/2∑

t=−Nx/2

E

[
1

η̃

]
Iin

×
∑

s

h(t − s, l) h(s, l)e
−i2πfx t

Nx

∣∣∣∣∣ (A3)

= E

[
1

η̃

] Nl∑
l=1

Nx/2∑
t=−Nx/2

∑
s

h(t − s, l)h(s, l)e
−i2πfx t

Nx (A4)

= E

[
1

η̃

] Nl∑
l=1

H 2(f, l), (A5)

where H(f, l) in Eq. (A5) is the Fourier transform of h(s, l).
The substitution of Eq. (A1) into Eq. (15) is made in going
from step (A2) to (A3). In going from Eq. (A3) to Eq. (A4),
the summation of E[R̃(t, g, l)]/Nfl over g is replaced with
E[R̃(t, g, l)] since the different flood fields are statistically
independent if assuming no lag from frame-to-frame. In going
from Eq. (A4) to Eq. (A5), the Fourier convolution theorem is
used to take the Fourier transform of h convolved with itself.

Equation (A5) restates Lubberts’ theory that the total NPS
is proportional to the sum of the NPS’ from each individual
layer, while showing that the constant of proportionality for
a simulation is E(1/η̃). The cumulative NPS shape, H( f ), is
then

H 2(f ) =
Nl∑
l=1

H 2(f, l). (A6)

Note that H(0) = 1 since the sum of all the layer-dependent
LSFs is 1 [i.e., h(l) is normalized so that

∑
n, l h(n, l) = 1].

Substituting Eq. (A6) into Eq. (A5), the expectation of the
qNNPS estimate is given by

E[q̃NNPS] = H 2(f )E

[
1

η̃

]
,
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where, from Eq. (9),

E

[
1

η̃

]
= lim

Nexp→∞
1

Nexp

Nexp∑
Iexp=1

NflN∑Nfl
g=1

∑N
n=1 Ig(n, Iexp)

(A7)

and Nexp is defined as the number of statistically independent
simulation experiments, Iexp, that are performed.

An important point to note is that q̃NNPS may be biased
since

E

(
1

η

)
�= 1

E(η)
. (A8)

Biasing occurs for very low fluence rates, conditions of which
are explored in the main text.

As the number of launched photons becomes sufficiently
large so that E[1/η̃] = 1/η, the expectation of actual qNNPS
is reached, given by

qNNPSact(f ) = E[q̃NNPS]E[1/η̃]=1/η = 1

η
H 2(f ). (A9)

2. Expectation of χ2

We now compute E(χ2), the expectation of the mean
squared error of the estimate by averaging the square of the
error for all points f between the positive and negative Nyquist
frequencies (±Nx/2)

E[χ2]

=E

⎡
⎢⎣ 1

Nx

Nx/2∑
f =−Nx/2

⎛
⎝1

Nfl

Nfl∑
g=1

q̃NNPSg(f )−qNNPSact(f )

⎞
⎠

2
⎤
⎥⎦

(A10)

= E

⎡
⎢⎣ 1

Nx

Nx/2∑
f =−Nx/2

⎛
⎝ 1

Nf l

Nf l∑
g=1

q̃NNPS g(f )

⎞
⎠

2
⎤
⎥⎦ (A11)

− 2E

⎡
⎣ 1

Nfl

1

Nx

Nx/2∑
f =−Nx/2

Nfl∑
g=1

q̃NNPSg(f ) qNNPSact(f )

⎤
⎦

(A12)

+E

⎡
⎣ 1

Nx

Nx/2∑
f =−Nx/2

qNNPS2
act(f )

⎤
⎦ . (A13)

Each of the above three terms is solved for separately. We
start with the third term, Eq. (A13).

3. Third term (A13)

The expectation of qNNPS2
act is straightforward as it is not

affected by statistical noise

E

⎡
⎣ 1

Nx

Nx/2∑
f =−Nx/2

qNNPS2
act(f )

⎤
⎦ = 1

η2Nx

Nx/2∑
f =−Nx/2

H 4(f ),

= Hint

η2
, (A14)

where Hint is defined to be the normalized integral of H4( f )

Hint = 1

Nx

Nx/2∑
f =−Nx/2

H 4(f ). (A15)

4. Second term (A12)

To compute the expectation of Eq. (A12), we note that the
noise associated with the estimate q̃NNPSg is uncorrelated
with the (noiseless) curve, qNNPSact, so that

E[q̃NNPSg(f ) · qNNPSact(f )]

= E[q̃NNPS(f )] · E[qNNPSact(f )]. (A16)

Hence,

−2 E

⎡
⎣ 1

Nfl

1

Nx

Nx/2∑
f =−Nx/2

Nfl∑
g=1

q̃NNPSg(f ) qNNPSact(f )

⎤
⎦

= −2
1

Nx

Nx/2∑
f =−Nx/2

E

[
1

η̃

]
H 2(f )

1

η
H 2(f )

= −2
Hint

η
E

[
1

η̃

]
. (A17)

5. First term (A11)

To compute the expectation of Eq. (A11), we divide the
summation of flood images into two subterms, one of which
has correlated components and the other of which has uncor-
related components

E

⎡
⎢⎣ 1

Nx

Nx/2∑
f =−Nx/2

⎛
⎝ 1

Nfl

Nfl∑
g=1

q̃NNPS2
g(f )

⎞
⎠

2
⎤
⎥⎦

= E

⎡
⎣ 1

Nx

Nx/2∑
f =−Nx/2

1

N2
fl

Nfl∑
g=1

q̃NNPS2
g(f )

⎤
⎦

+E

⎡
⎣1

Nx

Nx/2∑
f =−Nx/2

1

N2
fl

Nfl∑
g

Nfl∑
g′ �=g

q̃NNPSg(f ) q̃NNPSg′(f )

⎤
⎦.

(A18)

We first address the uncorrelated subterm. As previously
noted, q̃NNPSg is statistically uncorrelated with q̃NNPSg′

(for g′ �= g), and therefore the expectation of the product
of these two variables is equal to the product of their ex-
pectations. Hence, the expectation of the second subterm of
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Eq. (A18) is

E

⎡
⎣ 1

Nx

Nx/2∑
f =−Nx/2

1

N2
fl

Nfl∑
g

Nfl∑
g′ �=g

q̃NNPSg(f ) q̃NNPSg′ (f )

⎤
⎦

= 1

Nx

Nx/2∑
n=−Nx/2

1

N2
fl

Nfl∑
g

Nfl∑
g′ �=g

E[q̃NNPSg(f )] E[q̃NNPSg′ (f )]

= N2
fl − Nfl

N2
fl

· 1

Nx

Nx/2∑
f =−Nx/2

E2

[
1

η̃

]
H 4(f )

= E2

[
1

η̃

] (
1 − 1

Nfl

)
Hint. (A19)

To solve for the first (i.e., correlated) subterm of
Eq. (A18), Parseval’s theorem can be used to relate the sum of
the total (i.e., layer-independent) noise autocorrelation func-
tion squared, R̃2(t), in the spatial domain to the sum of
q̃NNPS2(f ) in the frequency domain

E

⎡
⎣ 1

Nx

Nx/2∑
f =−Nx/2

1

N2
fl

Nfl∑
g=1

q̃NNPS2
g(f )

⎤
⎦

= E

⎡
⎣ 1

I 2
inN

2
fl

Nfl∑
g=1

Nx/2∑
t=−Nx/2

R̃2
g(t)

η̃4

⎤
⎦

= 1

I 2
inN

2
fl

Nfl∑
g=1

E

⎡
⎣ Nx/2∑

t=−Nx/2

R̃2
g(t)

η̃4

⎤
⎦ (A20)

= E

⎡
⎣ 1

I 2
inNfl

Nx/2∑
t=−Nx/2

R̃2(t)

η̃4

⎤
⎦ , (A21)

where in going from Eq. (A20) to Eq. (A21), the summa-
tion of E[R̃g]/Nfl over g is replaced with E[R̃] as described
above.

Using the definition of R̃(t) [Eq. (14)], the summation of
R̃2(t) can be expanded as follows:

Nx/2∑
t=−Nx/2

R̃2(t) = R̃(0) + 2
Nx/2∑
t=1

R̃2(t)

=
(

1

Nx

Nx∑
n=1

(Q(n)Q(n)

)2

+2
Nx/2∑
t=1

(
1

Nx

Nx+t∑
n=1

(Q(n)Q(n + t)

)2

,

(A22)

where the symmetry property of the noise autocorrelation
function [R(t) = R( − t)] is used to allow the computation to
be performed over positive values of t starting from t = 1 to
t = N/2. This summation is expanded by multiplying out the
terms of Eq. (A22) and then regrouping using the following
identity (which strictly holds for wide-sense Gaussian pro-
cess but also approximately holds for a wide-sense Poisson

process33) to determine the expectation of the product of four
(possibly correlated) random variables

E[Q(1)Q(2)Q(3)Q(4)] ≈ E[Q(1)Q(2)]E[Q(3)Q(4)]

+E[Q(1)Q(3)]E[Q(2)Q(4)]

+E[Q(1)Q(4)]E[Q(2)Q(3)].

(A23)

After expansion of Eq. (A22), incorporation of Eq. (A23) and
regrouping, the expectation of the summation of R̃2(t) is ap-
proximately reduced to

E

⎡
⎣ Nx/2∑

t=−Nx/2

R̃2(t)

⎤
⎦

≈ lim
n→∞

1

N2
x

(
2N2

x E2[R̃(0)] +
Nx/2∑
t=1

2(N2
x − t)E2[R̃(t)]

+
(

2
Nx∑
k=1

2k

)
Nx/2∑
t=1

E2[R(t)]

)

+ lim
n→∞

1

N2
x

⎛
⎝O(Nx)

∑
t ′ �=t

E[R̃(t)]E[R̃(t ′)]

⎞
⎠

≈ 2E2[R̃(0)] + 4
Nx/2∑
t=1

E2[R̃(t)]

≈ 2
Nx/2∑

t=−Nx/2

E2[R̃(t)]. (A24)

Substitution of Eq. (A1) into Eq. (A24) yields

E

⎡
⎣ Nx/2∑

t=−Nx/2

R̃2(t)

⎤
⎦

≈ 2E2[η̃] I 2
in

Nx/2∑
t=−Nx/2

(∑
l

∑
s

h(t − s, l) h(s, l)

)2

.

(A25)

Using Parseval’s theorem again, we can relate the integral of
the square of the autocorrelation function to Hint

Nx/2∑
t=−Nx/2

(
Nl∑
l=1

∑
s

h(t − s, l) h(s, l)

)2

= 1

Nx

Nx/2∑
f =−Nx/2

(
Nl∑
l=1

H 4(f, l)

)
= Hint. (A26)

Now, combining Eqs. (A21), (A25), and (A26), the expec-
tation of the first (i.e., correlated) term of Eq. (A18) is

E

⎡
⎣ 1

Nx

Nx/2∑
f =−Nx/2

1

N2
fl

Nfl∑
g=1

qNNPS2
g(f )

⎤
⎦≈2 E

[
1

η̃2

]
Hint

Nfl
.

(A27)
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FIG. 9. Comparison of AS1000 simulation described in Sec. 2.E.4.a using the Mie scattering parameters of Liaparinos et al. (Ref. 3) and the isotropic scattering
model of Kirkby and Sloboda (Ref. 25). The MTF and NPS curves are practically identical. To save simulation time, we opted for the isotropic scattering model
of Kirkby and Sloboda (Ref. 3).

Finally, the total expression for the expectation of the mean
squared error is obtained by combining Eqs. (A14), (A17),
(A19), and (A27)

E[χ2] ≈ Hint ·
({

1

Nfl
E

[
2

η̃2

]
− 1

Nfl
E2

[
1

η̃

]}

+
{
E2

[
1

η̃

]
− 2

η
E

[
1

η̃

]
+ 1

η2

})
. (A28)

The first two terms of Eq. (A28) depend on the reciprocal
of the number of flood fields (1/Nfl), and show that there is
a reduction in error as Nfl is increased. The last three terms
describe the effects of the bias only.

APPENDIX B: EQUIVALENCE OF ISOTROPIC AND
MIE SCATTERING MODELS FOR GOS

Here, we show the functional equivalence of the isotropic
scattering model of Kirkby and Sloboda25 and the Mie scat-
tering model of Liaparinos et al.3 The Lanex screen consists
of granules of GOS ranging in size from about 5 to 9 μm that
are suspended in a polyurethane elastomer with a fill factor of
60%, resulting in a composite density of 4.6 g/cm3. This com-
posite layer is 0.29 mm thick and is attached to an elastomer
support layer containing embedded TiO2 particles to reflect
light with a probability of 0.88.27, 34

Liaparinos3 has shown that the transport of light in the
GOS composite can be modeled using Mie scattering, which
is based on solving the Maxwell equations for particles
whose sizes are somewhat larger than the wavelength of
light. GEANT4 has a Mie scattering class, which can be ini-
tialized through the definition of four parameters, MIEHG,
MIEHG FORWARD, MIEHG BACKWARD, and MIEHG
FORWARD RATIO. The parameter MIEHG is the scatter-
ing length (mm), and the remaining parameters characterize
the distribution of scatter in the forward and backward direc-
tion. The underlying theory for the GEANT4 implementation
is based on the Henyey-Greenstein (HG) distribution, details

of which can be found in the work of Liaparinos et al.,3 and
Poludniowski and Evans.27

The above inputs to GEANT4 can be calculated using the
HG distribution with knowledge of the particle and binder
complex refractive indices, as well as the particle grain diam-
eter. In their work on modeling of the closely related Kodak
Min-R screens, Liaparinos et al.3 used a complex refractive
index equal to 2.3-i 106 for the GOS particles with diameter
of 7 μm, and real refractive index of 1.35 for the binder. Use
of these parameters results in values of 0.00367 (mm), 0.99, 0,
and 0.82 for MIEHG, MIEHG FORWARD MIEHG BACK-
WARD, and MIEHG FORWARD RATIO, respectively.

While the Mie scattering model does provide an accurate
description of the scattering characteristics for GOS, there is
a significant amount of calculation overhead associated with
it, largely due to the short scattering lengths (in this case,
3.67 μm). Therefore, we sought to implement an isotropic
scattering model yielding identical results to decrease com-
putation time. Isotropic scattering also can be implemented
using the Mie class, by using MIEHG as the isotropic scat-
tering length, and setting MIEHG FORWARD and MIEHG
BACKWARD to zero, and MIEHG FORWARD RATIO to 1.
Through repeated simulations, we identified 17 μm as the op-
timal isotropic scattering length, consistent with the isotropic
scattering model of Kirkby and Sloboda3 as is shown in
Fig. 9. The isotropic model runs approximately 3× faster than
the Mie model.
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