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Purpose: To reduce radiation dose in CT imaging, the statistical model based iterative reconstruction
(MBIR) method has been introduced for clinical use. Based on the principle of MBIR and its nonlin-
ear nature, the noise performance of MBIR is expected to be different from that of the well-understood
filtered backprojection (FBP) reconstruction method. The purpose of this work is to experimentally
assess the unique noise characteristics of MBIR using a state-of-the-art clinical CT system.
Methods: Three physical phantoms, including a water cylinder and two pediatric head phantoms,
were scanned in axial scanning mode using a 64-slice CT scanner (Discovery CT750 HD, GE Health-
care, Waukesha, WI) at seven different mAs levels (5, 12.5, 25, 50, 100, 200, 300). At each mAs
level, each phantom was repeatedly scanned 50 times to generate an image ensemble for noise anal-
ysis. Both the FBP method with a standard kernel and the MBIR method (Veo R©, GE Healthcare,
Waukesha, WI) were used for CT image reconstruction. Three-dimensional (3D) noise power spec-
trum (NPS), two-dimensional (2D) NPS, and zero-dimensional NPS (noise variance) were assessed
both globally and locally. Noise magnitude, noise spatial correlation, noise spatial uniformity and
their dose dependence were examined for the two reconstruction methods.
Results: (1) At each dose level and at each frequency, the magnitude of the NPS of MBIR was
smaller than that of FBP. (2) While the shape of the NPS of FBP was dose-independent, the shape
of the NPS of MBIR was strongly dose-dependent; lower dose lead to a “redder” NPS with a lower
mean frequency value. (3) The noise standard deviation (σ ) of MBIR and dose were found to be
related through a power law of σ ∝ (dose)−β with the component β ≈ 0.25, which violated the clas-
sical σ ∝ (dose)−0.5 power law in FBP. (4) With MBIR, noise reduction was most prominent for thin
image slices. (5) MBIR lead to better noise spatial uniformity when compared with FBP. (6) A com-
posite image generated from two MBIR images acquired at two different dose levels (D1 and D2)
demonstrated lower noise than that of an image acquired at a dose level of D1+D2.
Conclusions: The noise characteristics of the MBIR method are significantly different from those
of the FBP method. The well known tradeoff relationship between CT image noise and radia-
tion dose has been modified by MBIR to establish a more gradual dependence of noise on dose.
Additionally, some other CT noise properties that had been well understood based on the linear
system theory have also been altered by MBIR. Clinical CT scan protocols that had been opti-
mized based on the classical CT noise properties need to be carefully re-evaluated for systems
equipped with MBIR in order to maximize the method’s potential clinical benefits in dose reduction
and/or in CT image quality improvement. © 2014 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4867863]
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1. INTRODUCTION

X-ray computed tomography (CT) was introduced into the
clinical practice in the 1970s, since then it has become a pow-
erful imaging tool to diagnose diseases, to triage patients, and
to provide image-guidance for radiotherapies and minimally
invasive interventional surgeries. In the past four decades,
joint efforts by medical physicists, clinicians, industry scien-

tists, and engineers have been made to dramatically advance
CT and find its new clinical applications. As a result of these
collaborations, CT exams have helped to save lives and im-
prove the quality of life for millions of patients each year.1

However, there has been a growing public concern over the
small but uncertain risk associated the ionizing radiation from
CT exams.2 To minimize this arguable risk, several guidelines
for clinical CT routines have been established, including the
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Image Gently Campaign3 and the as low as reasonably achiev-
able (ALARA) concept.4 Meanwhile, technological advances
have also helped to further reduce radiation dose. These ad-
vances can be categorized as either hardware-driven methods,
including improved x-ray tube technologies,5–8 advanced tube
current modulation methods,9–11 kV/spectrum shaping,12–15

etc., or software-driven methods, including new image pro-
cessing and reconstruction algorithms.16–30

The recently developed model based iterative reconstruc-
tion (MBIR) image reconstruction framework16–21 is such a
CT reconstruction method that has demonstrated the promise
of generating clinically acceptable CT images at very low
dose levels.31–34 This new image reconstruction framework
provides the flexibility to incorporate a model of each com-
ponent of the CT data acquisition system, such as the cone-
shaped x-ray beam, the finite sizes of the focal spot, the detec-
tor elements, and the reconstruction voxels, and also the x-ray
physics, such as photon statistics and electronic noise, into the
reconstruction process. In contrast, the conventional filtered-
backprojection (FBP) CT reconstruction algorithm offers very
limited flexibility to the reconstruction procedure. The MBIR
method can also be adaptive to different tissue types or mor-
phologies; It can reduce noise in homogeneous regions (low
frequency content) and preserve details at edges (high fre-
quency content), by incorporating an adaptive regularization
method into its iterative reconstruction process.20

With the increasing clinical use of MBIR, optimizing CT
protocols to maximize its diagnostic benefit with the lowest
amount of radiation dose becomes urgent. Prior to the era of
CT iterative reconstruction (IR) methods, CT protocol opti-
mization could be conducted under the guidance of the linear
system theory and objective image quality measures such as
noise variance, noise power spectrum (NPS), noise equivalent
quanta (NEQ), and modulation transfer function (MTF).35–39

For example, the measured MTF and NPS using a quality
assurance (QA) phantom could be combined with a specific
clinical imaging task to predict the human observer diagnos-
tic performance, based on which scanning parameters (mAs,
kV, image pixel size, slice thickness, filter, etc.) could be op-
timized for the task.40 In this approach, NPS plays an impor-
tant role since its shape reflects the visual appearance (tex-
ture) of the image noise background, and its magnitude (i.e.,
noise variance σ 2) is directly related to the radiation dose
through35, 36 σ 2 ∝ dose−1. This relationship directly links ra-
diation dose and diagnostic performance and helps the cus-
tomization of CT exposure levels for different diagnostic tasks
or patients with different sizes.

For IR methods such as MBIR, however, CT protocol op-
timizations are much more challenging since the linear sys-
tem theory is not directly applicable,20, 30, 41, 42 and the clas-
sical image quality measures must be re-assessed for MBIR
before an accurate and robust CT protocol optimization
framework can be established. Toward this goal, Richard et al.
have developed a task-based approach to measure the MTF
of MBIR.41 They found that the MTF may depend on local
contrast level and may not be stationary within the image.
Pal et al.43 and Chen et al.44 have characterized the NPS of
MBIR and found that the method reduced the noise magni-

tude and shifted the noise spectrum toward lower frequen-
cies. Yu et al.45 have used the image-domain-based channel-
ized Hotelling observer (CHO) method to measure the task-
specific detection performance of a specific IR method. Their
CHO results demonstrated good correlation with human ob-
servers for relatively simple signal-known-exactly tasks.

In this paper, we focus on a systematic characterization of
the noise performance of MBIR equipped on several state-of-
the-art clinical 64-slice CT scanners in our institution. The
three-dimensional (3D) NPS was employed to quantify both
noise magnitude and noise spatial correlation. The 3D mea-
surement was motivated by the fact that the MBIR method is
implemented in 3D.20 The NPS was also measured in two di-
mension (2D) in the axial plane and in zero dimension (0D) to
directly quantify the noise magnitude. Because of the possi-
ble noise nonstationarity introduced by MBIR, all of the NPS
results were measured from noise ensembles collected from
repeated CT scans. The often-used approach of sliding a
region-of-interest (ROI) within an image to collect the noise
ensemble was intentionally avoided. The noise characteriza-
tion of MBIR was always accompanied by the noise charac-
terization of FBP for comparison purpose, and a particular
attention was given to the dose dependence of NPS.

2. METHODS AND MATERIALS

2.A. Data acquisition, image reconstruction,
and phantoms

A 64-slice clinical diagnostic CT scanner (Discovery
CT750 HD, GE Healthcare, Waukesha, WI) equipped with
both the standard reconstruction engine and the MBIR recon-
struction engine (Veo R©, GE Healthcare, Waukesha, WI) was
used in this study. The Veo reconstruction engine consists of
14 clustered computer nodes; each node is equipped with four
quad-core 2.53 GHz Xeon E5540 CPUs (Intel, Santa Clara,
CA) and 12 GB memory. The reconstruction speed varies for
different reconstruction volume sizes and scanning protocols;
it also depends on the reconstruction load. In this study, it took
about 24 min to reconstruct a relatively small image volume
with a 1024 × 1024 × 32 size acquired with a head scanning
protocol, and it took about 80 min to reconstruct a relatively
large CT image volume with a 512 × 512 × 658 in a clinical
chest-to-pelvis scanning protocol. However, it is interesting to
notice that, when the reconstruction engine was nearly fully
loaded with 26 image volumes of the same size (1024 × 1024
× 32), the reconstructions of those volumes took only about
45 min. This indicates that the Veo reconstruction engine has
the capacity to simultaneously reconstruct multiple indepen-
dent image volumes without having any obvious overhead on
the reconstruction time.

Three physical phantoms were used in this work (Fig. 1):
The first one is a water phantom with an outer diameter of
21.5 cm; the second and the third phantoms are a 10-year-
old pediatric head phantom (ATOM Pediatric 10 year phan-
tom, Model 706, Sections 1-9, CIRS Inc., Norfolk, VA) and a
1-years-old pediatric head phantom (ATOM Pediatric 1 year
phantom, Model 704, Sections 1-7, CIRS Inc., Norfolk, VA),
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(a) (b) (c)

FIG. 1. Physical phantoms used in this work. (a) A cylindrical water phantom with a PMMA wall; (b) CIRS 10-years-old pediatric head phantom; (c) CIRS
1-year-old pediatric head phantom.

respectively. The scanner was collimated to a 20-mm-thick
section of each phantom. The dimensions of the two anthro-
pomorphic phantoms at this position are approximately 17 cm
(AP) × 14 cm (LR) and 14 cm (AP) × 12 cm (LR), respec-
tively. All phantoms were scanned in an axial head scanning
mode with a tube voltage of 120 kV and a scanning time of
0.5 s. Other data acquisition and reconstruction parameters
are listed in Table I. The water phantom was scanned at seven
mAs levels (5, 12.5, 25, 50, 100, 200, 300), which correspond
to CTDIvol values of (1.0, 2.5, 5.0, 10.0, 20.0, 40.0, 60.0)
mGy, respectively. The two pediatric phantoms were scanned
at five mAs levels (5, 12.5, 25, 50, 100). The two relatively
high exposure levels (200 and 300 mAs) were not applied
to the pediatric phantoms due to their relative small diame-
ters. All scans were repeated 50 times at identical settings for
noise analysis. Since the axial scans covered only a single col-
limated section of each phantom, there was no patient couch
movement involved during the data acquisition of each phan-
tom. This helped to avoid any subtle geometric misalignment
across the 50 repeated scans.

The projection data of each scan were reconstructed us-
ing both the FBP method with a standard kernel and the Veo
method. Note that the current version of the Veo reconstruc-
tion does not allow users to adjust reconstruction parameters,
such as slice thickness or reconstruction matrix size. In the re-
mainder of the paper, (x, y) were used to denote the axial plane
while z was used to denote the longitudinal axis. A volume-of-
interest (VOI) and a region-of-interest (ROI) segmented from
the ith of the 50 repeated scans are denoted as Ii(x, y, z) and
Ii(x, y), respectively. The word “frequency” refers to spatial
frequency in the remainder of the paper and is denoted by
letter f.

TABLE I. Data acquisition and reconstruction parameters.

FBP Veo

Reconstruction FOV 250 mm 250 mm
Slice thickness 0.625 mm 0.625 mm
Slice interval 0.625 mm 0.625 mm
Total number of slices 32 32
Axial matrix size 512 × 512 1024 × 1024
Axial pixel size 0.488 mm 0.244 mm
Axial Nyquist frequency 1.025 mm−1 2.049 mm−1

Nyquist frequency along fz 0.800 mm−1 0.800 mm−1

2.B. Multidimensional noise power spectrum analysis

In this study, multidimensional NPS, including 3D NPS,
2D NPS of the axial (x, y) plane, and zero-dimensional (0D)
NPS (noise variance), were measured and analyzed. All NPSs
were calculated for frequencies within the ±Nyquist fre-
quency determined by the discrete sampling rates of the re-
constructed images (Table I).

The purpose of performing the 3D NPS analysis is to in-
vestigate the impact of 3D image reconstruction on the noise
magnitude and spatial correlation along both the axial and the
z directions. A VOI encompassing most of the uniform re-
gion inside the scanned volume of each phantom was used
to measure the 3D NPS. The physical dimensions of this
VOI are 142 × 142 × 20 mm3 (water phantom), 112 × 112
× 20 mm3 (large pediatric phantom), and 90 × 90 × 20 mm3

(small pediatric phantom). The dashed square in Fig. 2 shows
an axial cross-section of the VOI in the water phantom. The
3D NPS was calculated using38

NPS(fx, fy, fz)

= �x�y�z

NxNyNz

∑50
i=1 |DFT3D[Ii(x, y, z)−Ī (x, y, z)]|2

50
,

(1)

where �k and Nk denote the pixel size and the number of pix-
els of I along axis k, respectively. During the measurement,
the discrete frequency sampling rate was 0.008 mm−1 along
fx or fy and was 0.016 mm−1 along fz. The averaged image
Ī (x, y, z) in Eq. (1) is defined as

FIG. 2. The solid squares illustrate five ROIs (each denoted by a letter) in an
axial image that were used to measured the local 2D NPS. The size of each
ROI is 44 × 44 mm2. The dashed square (142 × 142 mm2) illustrates the
ROI used for measuring the global 2D NPS of the axial image.
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Ī (x, y, z) = 1

50

50∑
i=1

Ii(x, y, z). (2)

By subtracting Ī (x, y, z) from I(x, y, z), the DC trend of
each image pixel caused by the presence of water as well as
other deterministic structural nonuniformity can be removed
from the NPS calculations. Note that the noise power at the
origin of the frequency coordinates, i.e., NPS(0, 0, 0), is not
necessarily zero due to possible presence of noise aliasing in
the image.46

The 2D NPS analysis focuses on characterizing the noise
correlation and noise magnitude in the axial images. A ROI
in the central axial slice of each phantom was used to per-
form the measurement. The physical dimensions of this ROI
are 142 × 142 mm2 (water phantom), 112 × 112 mm2 (large
pediatric phantom), and 90 × 90 mm2 (small pediatric phan-
tom). The dashed square in Fig. 2 shows the ROI in the wa-
ter phantom. The 2D NPS was calculated using the following
formula:

NPS(fx, fy)

= �x�y

NxNy

∑50
i=1 |DFT2D[Ii(x, y) − Ī (x, y)]|2

50
. (3)

Because of the radial symmetry of the CT data acquisi-
tion system and the linearity of the FBP algorithm, the 2D
NPS of a FBP-reconstructed axial CT image is expected to
be radially symmetric. For images reconstructed by Veo, the
rotational invariance of the 2D NPS was reexamined during
the study. Once the radial symmetry was confirmed, the 2D
NPS was radially averaged and plotted as a function of the ra-
dial frequency (fxy) to demonstrate the frequency distribution
of noise. The shape of NPS(fxy) was further quantified by two
metrics: the first one (denoted as fpeak) is the frequency cor-
responding to the peak value of the NPS and the second one
(denoted as fmean) is the mean frequency defined as

fmean =
∫

fxy NPS(fxy) dfxy∫
NPS(fxy) dfxy

. (4)

The frequency-independent 0D NPS is equal to the noise
variance (σ 2) and is given by integrating the nD NPS along
the frequency axis as42

σ 2 ≡ NPS0D

=
∫

· · ·
∫

NPS(f1:n) df1 · · · dfn. (5)

Note that the 0D NPS measures the noise variance of those
VOIs/ROIs used to calculate the corresponding NPS and thus
location-dependent. The 0D NPS was used to compare the
noise magnitude between Veo and FBP and to quantify the de-
pendence of noise magnitude on the radiation exposure level
(quantified by mAs). It was also used to characterize the noise
spatial uniformity, the method of which is described below.

FIG. 3. ROIs in the noise standard deviation map that were used to calculate
the noise spatial nonuniformity index (NUI).

2.C. Characterization of noise spatial uniformity

Using data acquired from the 50 repeated scans, the ex-
pected value of the noise standard deviation (σ ) for each im-
age pixel at each reconstruction method and each exposure
level was be estimated as

σ (x, y) =
√√√√ 1

50 − 1

50∑
i=1

[Ii(x, y) − Īi(x, y)]2, (6)

where Ī has been defined in Eq. (1). To characterize the spa-
tial uniformity of the noise standard deviation, the axial plane
of the water phantom was divided into M = 518 small ROIs,
each with a dimension of 7.8 × 7.8 mm2 (Fig. 3). Then the
average noise standard deviation of all pixels in each ROI, σ̄ ,
was measured before the noise spatial nonuniformity index
(NUI) was calculated as

NUI = 1

σ̄avg

√√√√ 1

M − 1

M∑
j=1

[σ̄j − σ̄avg]2, (7)

where σ̄avg was given by averaging σ̄j across j. Namely,

σ̄avg = 1

M

M∑
j=1

σ̄j . (8)

Noise standard deviation values of the central and periph-
eral regions of the axial slice of the water phantoms were also
compared using (σ̄C − σ̄w)/σ̄C, where σ̄W and σ̄C denote the
mean noise standard deviation of the two ROIs defined in
Fig. 2. Similarly, the noise standard deviation values in the
central and peripheral regions inside the pediatric head phan-
toms were also compared for each reconstruction method.

The noise spatial uniformity in the axial plane is further
characterized by the local 2D NPS measured in five represen-
tative ROIs illustrated in Fig. 2. The physical dimension of
each ROI is 44 × 44 mm2, which corresponds to a matrix size
of 140 × 140 (FBP) or 280 × 280 (Veo).

2.D. Dependence of noise performance on slice
thickness

One option to reduce CT noise in the clinical practice is to
increase the axial slice thickness. This can be achieved dur-
ing the reconstruction by detector-row binning. Alternatively,
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a postreconstruction slice reformatting can be used to increase
the nominal slice thickness. The current commercial version
of MBIR (Veo) uses only the second approach. To study the
dependence of the noise performance of Veo on slice thick-
ness (�z), the native (0.625 mm) axial slices were binned to
generate images with �z = 1.25, 2.5, and 5.0 mm. The NPS of
the reformatted images was measured and compared with the
NPS of the 0.625 mm images. The impact of slice thickness
was examined on: (i) the magnitude of the noise; (ii) the dose
dependence of the noise magnitude; and (iii) the shapes of the
axial NPS quantified by peak frequency and mean frequency.

2.E. Characterization of noise properties
of composite images

Under the assumption that CT noise is dominated by pho-
ton statistics rather than electronic noise, it is expected that the
NPS of a FBP image acquired at a given dose D is the same
as the NPS of an image synthesized from a linear combina-
tion of images acquired at dose Di provided that

∑
iDi = D.

This can be analytically proven due to the linear nature of the
FBP algorithm. For example, the FBP images acquired at 100
and 200 mAs should be able to generate a composite image
that has the same NPS as the 300 mAs image. The composite
scheme is given by

Icomp = 100

100 + 200
I100 + 200

100 + 200
I200. (9)

Because these images were acquired at relatively high ex-
posure levels, the assumption of negligible electronic noise is
well justified. Therefore, the following equality can be proven
based on the NPS ∝ D−1 relationship and the standard error
propagation analysis:

NPScomp =
(

1

3

)2

NPS100 +
(

2

3

)2

NPS200

=
(

1

3

)2

3 · NPS300 +
(

2

3

)2 3

2
· NPS300

= NPS300. (10)

This NPS composite law was validated using the exper-
imental FBP data. Further, we applied the same composite
scheme to the Veo images to study the influence of the non-
linear reconstruction method on the noise characteristics of
images generated by dose partitioning.

3. RESULTS

3.A. Image comparison

Figure 4 shows representative axial CT images of the wa-
ter phantom reconstructed by FBP and Veo. The correspond-
ing noise-only image obtained by subtracting two sequential
scans is also presented in the same figure. A factor of

√
2 was

divided from the subtracted result to account for the doubling
of the noise variance due to the subtraction operation. For
both FBP and Veo, the magnitudes of image noise increase

with lower radiation dose. However, the dose dependence of
the noise magnitude is more pronounced in the FBP images:
The FBP image acquired at 5 mAs is significantly noisier than
the FBP image acquired at 300 mAs. In comparison, the Veo
method successfully reduced noise in the CT images acquired
at relatively low mAs level and made the noise magnitude rel-
atively constant across different mAs levels. In addition to the
difference in the noise magnitude behavior, the noise textures
are different between FBP images and Veo images: for FBP,
the noise textures across different dose levels are the same; for
Veo, however, the noise texture had a relatively fine graininess
at 300 mAs and a relatively coarse graininess at 5 mAs. The
change in noise texture in Veo images was further quantified
by the NPS results in Secs. 3.B and 3.C.

3.B. Three-dimensional noise power spectrum
comparison

The 3D NPSs of water phantom images acquired at a high
exposure level (300 mAs) and a low exposure level (5 mAs)
are shown in Figs. 5 and 6, respectively. To allow a fair com-
parison, the NPS of both FBP and Veo were displayed within
the ±Nyquist frequency of FBP. Some common features be-
tween the 3D NPS of FBP and Veo can be observed: (i) Both
NPSs were rotationally invariant in the axial plane; (ii) Both
NPSs decreased monotonically with increasing fz; (iii) At any
given fz, both NPSs demonstrated donut-shaped frequency
distributions in the axial plane. A peak can be identified at
some intermediate radial frequency for each NPS.

Despite these similarities, the 3D NPS of FBP and Veo also
demonstrated the following differences: (i) The Veo NPS was
of better spherical symmetry than the FBP NPS. (ii) The mag-
nitude of the NPS along any direction at any frequency was
reduced in Veo. This reduction was more aggressive at lower
dose; (iii) The frequency value corresponding to the peak of
the NPS in the axial plane was decreased in Veo; (iv) The
Veo NPS was “redder” along fz due to the use of some 3D
regularization along both axial and z direction. This effect is
more apparent at lower dose. In comparison, the NPS of FBP
demonstrated a pseudo-white noise distribution along fz due
to the pseudo-2D nature of the algorithm.

3.C. Two-dimensional noise power spectrum
comparison

Because of the radial symmetry of the NPS of FBP and Veo
in the axial plane, information about their 2D axial NPS can
be represented by the corresponding radial profile, NPS(fxy).
Figure 7 shows NPS(fxy) of the water phantom measured at
seven different mAs levels, from which the following charac-
teristics were observed: (i) The NPS of Veo was smaller in
magnitude than the NPS of FBP at each of the seven dose
levels. (ii) Veo lead to “redder” NPS; the frequencies corre-
sponding to the peaks of the NPS were smaller in Veo than
in FBP, which means that the noise are of longer spatial cor-
relation in Veo. This is consistent with the observations from
Fig. 4. (iii) The shapes of the NPS was dose dependent in
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FBP, 5 mAs FBP, 50 mAs FBP, 300 mAs

FBP, 5 mAs FBP, 50 mAs FBP, 300 mAs

Veo, 5 mAs Veo, 50 mAs Veo, 300 mAs

Veo, 5 mAs Veo, 50 mAs Veo, 300 mAs

FIG. 4. Central axial CT images (first and third rows; display range: [−170 230] HU) and the corresponding noise-only images (second and fourth rows; display
range: [−40 40] HU) of the water phantom. The noise-only images were obtained by subtracting two consecutive scans. A factor of

√
2 has been divided to

account for the doubling of noise variance after the subtraction.

Veo; Lower doses lead to NPSs with lower mean and peak
frequencies.

The 2D NPS measurements were repeated with the pedi-
atric head phantoms, and the shapes of their NPSs quantified
by the peak frequency (fpeak) and mean frequency (fmean) were
listed in Table II. For FBP, both fpeak and fmean demonstrated
negligible dependence on the phantom selection and on the

dose level. The value of fpeak is about 0.32 mm−1 and the
value of fmean is about 0.34 mm−1, which correspond to spa-
tial dimensions of 1.6 and 1.5 mm, respectively. In compari-
son, fpeak and fmean of Veo showed strong dependence on dose
and some dependence on the phantom selection. For example,
fmean of the water phantom was 0.23 mm−1 (corresponding to
a spatial dimension of 2.2 mm) at 100 mAs but decreased to
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FIG. 5. Representative cuts through the 3D NPS measured at 300 mAs. The display range was kept the same for all cases ([0 117] HU2 mm3).

0.15 mm−1 (corresponding to a spatial dimension of 3.3 mm)
at 5 mAs. At both of these two mAs levels, fmean of Veo in-
creased with phantom size. The relative increment in fmean is
about 30%–40% from the water phantom to the smaller pedi-
atric head phantom.

To further characterize the dependence of fpeak and fmean

on dose, their values were plotted versus mAs in Fig. 8.
For Veo, each of the plots is a straight line with a posi-
tive slope when a log-log scale is used, which indicates a
power-law relationship. The results of the power-law fittings
are shown in these two figures, and the correlation coeffi-
cients, R2, for all the power-law fittings were above 0.99,
suggesting excellent correlation. The exponent of the power-
law fitting is in the range of [0.12, 0.16] for both fpeak and
fmean, and it showed weak dependence over the phantom
selection.

3.D. Zero-dimensional noise power spectrum
comparison

For linear CT systems, it is well understood that the 0D
NPS (noise variance σ 2) scales inversely with dose level when
the quantum noise dominates. However, it remains unclear
whether the same scaling law holds true for IR methods. In
this study, noise standard deviations (σ ) measured in all three

phantoms were plotted as a function of mAs in Fig. 9. A
power-law fitting σ = α · (mAs)−β was performed to each
plot and the fitting results were tabulated in Table III. As ex-
pected, σ scaled inversely with the square root of mAs for
FBP images (β = 0.5). In stark contrast, the noise standard
deviation in Veo images demonstrated a novel dose depen-
dence: the exponent of the power-law fitting is in the range of
[0.21, 0.25], which means that σ is less sensitive to dose level
in Veo. For example, a 50% dose reduction will lead to only a
15%–19% increase in noise in Veo. In comparison, the same
amount of dose reduction will lead to 40% increase in noise
in FBP.

3.E. Dependence of noise performance on slice
thickness

For both FBP and Veo, slice rebinning is expected to have
no impact on the relative frequency distribution of the NPS
in the axial plane since it only operates along the z direc-
tion. This was confirmed by the mean frequency and peak
frequency data in Fig. 10(a). However, some aspects of the
noise performances of the two methods had different depen-
dence on slice thickness: For FBP, the noise standard devi-
ation in the axial FBP images is approximately proportional
to 1/

√
�z [i.e., σ 2 ∝ (�z)−1] due to the pseudo-white noise

Medical Physics, Vol. 41, No. 4, April 2014



041906-8 Li, Tang, and Chen: Noise performance of statistical MBIR reconstruction 041906-8

 f
x
  (mm−1)

 f y  (
m

m
−

1 )
FBP NPS ( f

z
 = 0 )

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

(a)

 f
x
  (mm−1)

 f z  (
m

m
−

1 )

FBP NPS ( f
y
 = 0 )

−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(b)

 f
y
  (mm−1)

 f z  (
m

m
−

1 )

FBP NPS ( f
x
 = 0 )

−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(c)

 f
x
  (mm−1)

 f y  (
m

m
−

1 )

Veo NPS ( f
z
 = 0 )

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

(d)

 f
x
  (mm−1)

 f z  (
m

m
−

1 )
Veo NPS ( f

y
 = 0 )

−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(e)

 f
y
  (mm−1)

 f z  (
m

m
−

1 )

Veo NPS ( f
x
 = 0 )

−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(f)

FIG. 6. Representative cuts through the 3D NPS measured at 5 mAs. The display range was kept the same for all cases ([0 7000] HU2 mm3).

distribution along fz. This relationship was confirmed by data
in Fig. 10(b), which shows that σ 2(�z) × �z is indepen-
dence of �z. Further, this slice dependence is independent
of dose due to the linearity of FBP, thus slice rebinning does
not change the exponent of the σ -dose power law. This was
confirmed by the data in Fig. 11(b), which shows that σ 2(�z)
× �z × mAs is independence of mAs. For Veo, its noise mag-
nitude has a much weaker dependence on slice thickness due
to the reduction in high frequency noise along fz. The slice
rebinning operation that acts like a low-pass filter along fz
should have limited impact on noises that have already been
low-pass filtered. This explains why the σ 2 × �z × mAs vs
�z plots of Veo demonstrated positive slopes in Fig. 11(b).
This effect is more pronounced at low dose level since the
proportion of low-frequency noise increases with decreasing
dose. This means the σ ∝ mAs−β power law is expected to
have a larger β value for thicker slices. This was confirmed
by our data in Table III. Given the different exponents in noise
amplitude vs slice thickness, one may expect the noise reduc-
tion benefit from the MBIR reconstruction diminishes at very
thick slices.

3.F. Noise spatial uniformity comparison

The NUI measured in FBP and Veo images were compared
in Fig. 12(a). At each dose level, Veo lead to at least 50% re-

duction in NUI. The improvement in noise spatial uniformity
can also be observed in Fig. 12(b), which shows the relative
difference in σ between the central and peripheral regions of
the water phantom. The FBP images were noisier in the cen-
tral region of both the water phantom and the pediatric phan-
tom [also shown in Fig. 13(a)]. Those inhomogeneous noise
spatial distributions were caused by the relatively longer x-ray
path lengths at the phantom centers and were homogenized by
using the Veo method [Fig. 13(b)].

The improvement in noise spatial uniformity was further
demonstrated by the local 2D NPS results in Fig. 14. For im-
ages reconstructed by FBP, the magnitude of the NPS of the
central region was larger than the peripheral regions. In addi-
tion, the NPS demonstrated losses in radial symmetry at the
peripheral regions, which was due to the divergent nature of
the x-ray fan beam used during the CT data acquisition.47 Veo
improved both the spatial homogeneity and the angular homo-
geneity of the NPS [Fig. 14(b)].

3.G. Breakdown of the NPS composite law

Using the weighting scheme in Eq. (9), the 100 and
200 mAs FBP images were combined to form a composite
image that looked the same as the 300 mAs FBP image (see
Fig. 15). The NPS results in Fig. 16(a) prove the quantitative
equivalence of these two images. The mean frequency (fmean)
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FIG. 7. Radially averaged 2D axial NPS of the water phantom. (a)-(b) Absolute NPSs. (c)-(d) NPSs normalized by the area under the NPS curve. The peak and
mean frequencies of these NPS plots are shown in Fig. 8.

is the same (0.33 mm−1) for the two images. For Veo, a dif-
ference can be found between the (100, 200) mAs composite
image and the 300 mAs image; the composite image lead to a
lower noise magnitude. The noise variance is 20.5 HU2 in the
Veo composite image and is 26.2 HU2 in the Veo 300 mAs im-
age. This means that by partitioning radiation dose into sep-
arate CT scans, CT images with a lower magnitude of noise

may be achieved by Veo. Meanwhile, Fig. 16 clearly demon-
strated that the image hybridization changes the image noise
texture: The high frequency noise was reduced while the low
frequency noise (noise below 0.1 mm−1) remained unchanged
in the composite image. The mean frequency (fmean) is
0.24 mm−1 for the composite image and is 0.26 mm−1 for
the 300 mAs image.

TABLE II. List of frequencies that correspond to the peak and mean values of the 2D axial NPS.

mAs

Frequency Method Phantoms 5 12.5 25 50 100 200 300

fpeak

(mm−1)

Water 0.320 0.318 0.316 0.318 0.317 0.315 0.317
FBP Ped. large 0.323 0.323 0.322 0.321 0.318

Ped. small 0.321 0.321 0.323 0.318 0.320

Water 0.102 0.126 0.138 0.155 0.171 0.184 0.202
Veo Ped. large 0.117 0.136 0.156 0.171 0.193

Ped. small 0.138 0.154 0.168 0.186 0.203

fmean

(mm−1)

Water 0.335 0.333 0.333 0.333 0.332 0.331 0.330
FBP Ped. large 0.336 0.336 0.335 0.335 0.335

Ped. small 0.337 0.337 0.336 0.336 0.336

Water 0.150 0.173 0.190 0.208 0.227 0.245 0.260
Veo Ped. large 0.171 0.196 0.216 0.237 0.258

Ped. small 0.202 0.226 0.247 0.266 0.290
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FIG. 8. Peak frequencies (first row) and mean frequencies (second row) of the axial NPS. The plots are displayed using log-log scales. The legend in (a) applies
to all.

FIG. 9. The dose dependence of noise standard deviation (σ ) evaluated at two different slice thicknesses (0.625 and 5.0 mm). All curves are displayed using
log-log scales.
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TABLE III. Results of the power-law fitting σ = α · (mAs)−β between the
noise standard deviation σ and the mAs value.

Method Phantom �z (mm) β α

0.625 0.51 216.18
Water 1.25 0.51 157.44

2.5 0.51 112.47
5.0 0.51 80.16

0.625 0.51 170.51
FBP Ped. large 1.25 0.51 123.37

2.5 0.51 88.24
5.0 0.51 62.87

0.625 0.51 141.41
Ped. small 1.25 0.51 102.32

2.5 0.51 73.20
5.0 0.51 52.08

0.625 0.21 17.61
Water 1.25 0.23 16.68

2.5 0.25 15.38
5.0 0.27 13.07

0.625 0.22 17.40
Veo Ped. large 1.25 0.23 16.47

2.5 0.25 14.94
5.0 0.27 12.54

0.625 0.24 19.07
Ped. small 1.25 0.25 16.09

2.5 0.27 14.22
5.0 0.28 11.68

4. DISCUSSION

4.A. Empirical explanation of experimental results

There are six major experimental findings in this work: (1)
At each dose level and at each frequency, the magnitude of
the NPS of MBIR was smaller than that of FBP. (2) While the
shape of the NPS of FBP was dose-independent, the shape of
the NPS of MBIR was strongly dose-dependent; lower dose
lead to a “redder” NPS with a lower mean frequency value.
(3) The noise standard deviation (σ ) of MBIR and dose were
found to be related through a power law of σ ∝ (dose)−β

with the component β ≈ 0.25, which violated the classical
σ ∝ (dose)−0.5 power law in FBP. (4) The effect of noise re-
duction by MBIR was most prominent for thin image slices.
(5) MBIR lead to better noise spatial uniformity when com-
pared with FBP. (6) A composite image generated from two
MBIR images acquired at two different dose levels (D1 and
D2) demonstrated lower noise than that of an image acquired
at a dose level of D1+D2. The first two findings have been
reported in an earlier work by Chen et al.,44 in which an ACR
CT accreditation phantom (diameter = 20 cm) was scanned
at six dose levels (CTDIvol ∈ [0.41, 8.2] mGy) to evaluate the
dose dependence of the 2D axial NPS. Both the magnitude
and the frequency distribution of our NPS results are consis-
tent with this previous work.

Because of the nonlinearity of the MBIR method, there
is no closed-form analytical formula to explain every exper-
imental finding of the noise properties of MBIR, such as
the exponents of the noise-mAs power law and NPS peak
frequency-mAs power law; There is also no general theoret-
ical foundation to support that every MBIR image will show
the same exponents, because the regularization method used
in the MBIR reconstruction framework is linked to the local
contrast gradient20 and is clearly dependent on how the reg-
ularization parameters were selected in commercial products.
It is very likely that a task-based approach will have to be used
to predict these exponents, although it currently remains as an
open question.

Nevertheless, the experimental findings presented in this
paper still represent the general features of the MBIR method.
An empirical interpretation of these general features is still
feasible based on the basic principles and implementation
methods of MBIR available in published literature:16–21 First,
the reduction in noise magnitude by MBIR should be at-
tributed primarily to the use of a regularization term in the ob-
jective function to encourage smoothness in the image. Sec-
ond, the reduction in peak frequency and mean frequency of
the NPS is also likely to be a consequence of using this reg-
ularizer, which introduces additional spatial correlations be-
tween neighboring voxels. As the neighborhood of each voxel
is defined in 3D and encompasses all of the 26 surrounding
voxels, the NPS tends to have a redshift along both the axial
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FIG. 10. (a) Exponents of the fpeak-mAs power-law and the fmean-mAs power-law as a function of slice thickness (Veo data only). (b) Exponents of the σ -mAs
power-law as a function of slice thickness for both FBP and Veo.
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FIG. 11. Dependence of noise variance σ 2 on slice thickness �z. (a) σ 2 versus �z; (b) (σ 2 mAs �z) versus �z. All plots are displayed using log-log scales.
The legend in (b) also applies to (a).

and the z directions. This shift is increased for large phan-
toms, which suggests that the regularization may be more ag-
gressive for noisier data. While the shift in NPS toward lower
spatial frequencies may come at the expense of a sharpness
loss for low contrast objects, it does not necessarily repre-
sent spatial resolution degradation for high contrast objects:
the regularizer used in MBIR uses different parameters for
homogeneous regions and edges based on the contrast gra-
dient between neighboring pixels. This is different from lin-
ear CT reconstruction algorithms such as FBP, in which a
change in the shape of the NPS usually represents a change
of the MTF in the similar manner for the entire image. Third,
the improvement in noise uniformity should be attributed pri-
marily to the use of statistical weighting in the data fidelity
term of the MBIR object function. This statistical weight-
ing is built based on the Bayesian estimation framework and
the probability distribution of the detector counts. It assigns
a smaller weigh to the projection data with higher noise
level and a relatively higher weight to the projection data
with lower noise level so that the noise spatial distribution
in the reconstructed image can reach a relative homogeneous
distribution.

4.B. Implications for CT protocol optimization

For linear CT reconstruction algorithms such as FBP, most
conclusions drawn from phantom-based measurements can be
generalized to actual patient scans. For example, the spatial
resolution characterized by a high contrast MTF phantom is
representative of the spatial resolution of patient images ac-
quired under the same system condition. One exception is the
noise spatial uniformity, which strongly depends on the pa-
tient anatomy. MBIR is to the opposite: it can flatten the noise
spatial distributions of even highly inhomogeneous objects,
but many of the physical properties of the image are object-
dependent. For example, the noise-mAs power-law relation-
ship found in homogeneous regions may not hold for other
regions dominated by inhomogeneous anatomical structure,
and the shape of the NPS may vary with image objects and
thus may not be quantitatively predicted. Nevertheless, our
results demonstrate that it is still possible to generalize some
of the experimental findings to a carefully selected range. For
example, the exponents of the noise-mAs power-law relation-
ship found in this work may apply to CT images of rela-
tively isotropic and homologous body parts (e.g., the cranial
cavity). Similarly, the exponents of the fpeak-mAs power-law
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FIG. 12. (a) Noise nonuniformity index (NUI) measured from the 518 ROIs in Fig. 3; (b) Relative difference in noise standard deviation between ROI W
(peripheral) and ROI C (central) in Fig. 2.
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FIG. 13. Noise standard deviation (σ ) maps of three local regions in the central axial plane of the 10-years-old pediatric head phantom. The σ -maps were
calculated from 50 repeated scans. (a) FBP reconstruction with its σ -maps displayed in the range of [−21 21] HU. (b) Veo reconstruction with its σ -maps
displayed in the range of [−4 4] HU. The two CT images are displayed in the range of [−300 500] HU.

FIG. 14. Local axial 2D NPS of FBP and Veo measured at 50 mAs in the
five local ROIs illustrated in Fig. 2. Note that the display window and level
of (b) are 80% smaller than these in (a).

relationship may stay at a relatively constant level for similar
kinds of body parts. In future quality checks and CT scan-
ning protocol development for MBIR, these findings could be
utilized to improve efficiency and clinical performance.

4.C. Limitations

The current study has several limitations that the authors
would like to acknowledge. The first limitation is related
to the use of the frequency-domain NPS analysis, which is
defined as the Fourier transform of autocovariance function
of the CT image therefore implicitly require the autocovari-
ance function to be stationary.48 For MBIR, there is no guar-
antee that this requirement can be fulfilled because of the

(a) FBP (weighted sum) (b) FBP (300 mAs) (c) Veo (weighted sum) (d) Veo (300 mAs)

FIG. 15. A comparison of the 300 mAs image and the (100, 200) mAs composite images for FBP (a)-(b) and Veo (c)-(d). To help visualize the noise texture,
the images were displayed over a relatively narrow W/L of [−40 40] HU.
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FIG. 16. NPS of (100, 200 mAs) composite images and 300 mAs images reconstructed by FBP (a) and Veo (b). The legend applies to both (a) and (b).

nonlinearity nature of this iterative algorithm. This work has
partially addressed this problem by restricting the NPS to lo-
cal regions and by using repeated scans. Directly perform-
ing the image-domain autocovariance measurement to char-
acterize the noise performance of MBIR can fundamentally
address this limitation, but this approach was intentionally
avoided in this study due to its extremely demanding require-
ment over the size of the noise ensemble to achieve any mean-
ingful statistical power. For task-based detectability measure-
ment, however, the image-domain model observer analysis
has been shown to be more feasible due to the incorporation
of the channel mechanism.45

The second limitation of the current study is its limited
scope: it only studied the noise performance of MBIR and
did not characterize its signal properties, such as the spa-
tial resolution and CT number accuracy. The spatial resolu-
tion is of particular interest since it usually has a tradeoff
with CT noise for FBP and since the object detectability is
jointly determined by noise and spatial resolution. MBIR is
likely to alter the conventional spatial resolution-noise trade-
off relationship introduce contrast-dependence to the spatial
resolution.41 The mismatch of the image pixel size between
FBP (0.49 mm) and MBIR (0.24 mm) further complicates the
comparison of the two methods. In addition, the spatial res-
olution along the z direction (slice thickness sensitivity) may
influence the noise performance but was not characterized in
this study. The shape of the NPS plots along the fz direction
suggests possible spatial resolution loss along the slice thick-
ness direction for low contrast objects, although this is cur-
rently only a speculation. Therefore, we made no claim about
the overall imaging performance of MBIR or how much dose
this method can save. Instead, we focused on investigating
the noise dependence on other physical factors (such as the
exposure level) and the corresponding impact to CT protocol
optimization.

The third limitation is related to the simplicity of the three
phantoms used for noise measurement, which lack high fre-
quency contains and are relatively homogeneous. As the regu-
larization method used in MBIR depends on the local contrast
gradient, it is likely that conclusions drawn from these phan-
toms are not directly applicable to objects dominated by high
frequency features.

5. CONCLUSIONS

In conclusion, noise power spectrum has been assessed for
a statistical MBIR method recently introduced to clinical CT
systems. Due to the intrinsic nonlinearity of the method, many
well-known CT noise properties have been modified. In par-
ticular, the tradeoff relationship between CT image noise and
radiation dose is significantly modified by MBIR to establish
a more gradual dependence of noise on radiation dose. In ad-
dition, the spatial frequencies corresponding to the peak value
and the mean value of the NPS are shifted to lower values in
low contrast regions of MBIR images. The unique noise char-
acteristics of MBIR indicate that extra efforts should be made
to establish new CT scanning protocols for MBIR to maxi-
mize the method’s clinical benefits with the minimum cost of
radiation dose.
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