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Abstract
This work proposes an optimal control approach for the termination of re-entry waves in cardiac
electrophysiology. The control enters as an extracellular current density into the bidomain
equations which are well established model equations in the literature to describe the electrical
behavior of the cardiac tissue. The optimal control formulation is inspired, in part, by the
dynamical systems behavior of the underlying system of differential equations. Existence of
optimal controls is established and the optimality system is derived formally. The numerical
realization is described in detail and numerical experiments, which demonstrate the capability of
influencing and terminating reentry phenomena, are presented.
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1 Introduction
Owing to its importance for computational science and engineering, the field of partial
differential equation (PDE) constrained optimization is a frontier problem. One such
interesting application is the optimal control of the reaction-diffusion model equations in
cardiac electrophysiology. The electrical behavior of the cardiac tissue is described by a
system consisting of partial differential equations coupled with ordinary differential
equations which model the ionic currents associated with the reaction terms. These are the
so called bidomain model equations [14, 30, 39]. Mathematically, as shown in Eqs. (2-4) the
bidomain equations can be cast into an elliptic partial differential equation (PDE) that links
the distribution of the transmembrane voltage, v, within the tissue to the extracellular
potential, u, and a parabolic PDE that describes the cellular activation and recovery
processes (reaction term) and the diffusive effect onto the adjacent tissue.

The general form of a PDE-constrained optimal control problem is the following:
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where u, v and w are the state variables, and Ie is the control variable of the optimal control
problem. Here e(u, v, w, Ie) = 0 abbreviates the coupled systems of PDE and ODE
constraints consisting of the bidomain equations which are given by

(2)

(3)

(4)

where u: Q → ℝ is the extracellular potential, v : Q → ℝ is the transmembrane voltage, w :

Q → ℝn represents the ionic current variables,  and  are
respectively the intracellular and extracellular conductivity tensors, Ie(t) represents the time
dependent extracellular current density stimulus which has a spatial support as described by
the characteristic functions χΩc1(x) and χΩc2(x) in the computational domain. Further
χΩc1(x) and χΩc2(x) are the characteristic functions where an anode and a cathode are
placed. The term Itr is the transmembrane current density stimulus as delivered by the
intracellular electrode. The Iion(v, w) is the current density flowing through the ionic
channels and the function g(v, w) determines the evolution of the gating variables, which are
determined by an electrophysiological cell model, see [1] for more description on these
models. The above mentioned Eq. (2) is an elliptic type equation, Eq. (3) is a parabolic type
equation and Eq. (4) is a set of ordinary differential equations which needs to be resolved in
each spatial point of the computational domain. The conductivity tensors are symmetric and
to satisfy for constants 0 < m < M

(5)

The ionic activity at the cell membrane is modeled by a ordinary differential equation. In the
numerical computations, we used a modified FitzHugh-Nagumo (FHN) model, called
Rogers-McCulloch model [34], which consists of only two variables and has a cubic non-
linearity.

(6)

(7)

where g, η1, η2, η3 are positive real coeffcients, vth > 0 is a threshold potential and vp the
peak potential.

In the absence of a conductive bath both intracellular and extracellular domains are
electrically isolated along the tissue boundaries and homogeneous Neumann boundary
conditions are appropriate to reflect this fact. The initial values of the transmembrane
voltage and ion current variables are given by prescribed values. We set ∂Q = ∂Ω × [0, T]
and specify the initial and boundary conditions by
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(8)

(9)

(10)

where η is the outward unit normal vector to the boundary of the domain, v0 : Ω → ℝd

denotes the initial transmembrane potential and w0 : Ω → ℝd is the initial ionic current
variables at time t = 0.

Stimulated by the fact that cardiovascular diseases are among the leading causes of death in
the industrialized world, the development of models which describe the bioelectric activity
of the heart is an area of active research. Under healthy conditions the electrical activation of
the heart takes place in a highly organized fashion in order to ensure that the heart effciently
fulfills its main function, to pump blood into the circulatory systems. However, disturbances
in the formation and/or propagation of electrical impulses may induce reentrant activation
patterns which lead to a noticeable increase in the heart’s activation rate. Ultimately, such
fast rhythms, referred to as tachycardia’s, may transition to even less organized almost
chaotic activation patterns, an electrical state which is termed fibrillation. Under such
conditions the heart loses its capacity to pump blood and death ensues within minutes. The
only reliable therapy to restore a healthy rhythm is the delivery of a strong electrical shock.
This therapy is referred to as electrical defibrillation and is nowadays reliably achieved in a
large patient population via the implantation of devices, so-called implantable cardioverters
defibrillators (ICD), which monitor the heart rate and, if needed, deliver a discharge to
restore a normal rhythm.

Although ICD therapy has proved to be efficient and reliable in preventing sudden cardiac
death [4], it is far from ideal. There are several known adverse effects secondary to the
administration of electrical shocks, the most prominent are linked to electroporation [12],
(i.e. the formation of pores in the cellular membrane that allow the free and indiscriminate
redistribution of ions, enzymes and large molecules between intracellular and interstitial
space), and its after-effects which are indirectly caused by the high field strengths required
to terminate fibrillatory activity with suffciently high probability. More importantly,
psychological effects on patients play a non-negligible role. Conscious patients may
perceive shock delivery as extremely painful which leads to traumatization and reduction in
quality of life. The link between the high shock strengths required and adverse effects
provides the motivation for posing the defibrillation process as an optimization problem, as
stated in Eq.(1), where one aims to achieve defibrillation with minimal energy and,
consequently, with minimal detrimental side effects.

The optimal control approach to cardiac arrhythmias is to determine an applied electrical
field in such a way that it optimizes a given design objective, which is, in our case, the
restoration of a tissue state in which fibrillatory propagation cannot be maintained. This can
be achieved by driving the whole tissue to a resting state, or equivalently, to an excited state.
In both cases the main ingredients for maintaining fibrillation, namely the presence of both
propagating wavefronts and a suffcient mass of excitable tissue at rest, referred to as
“excitable gap”, in which these wavefronts can travel, are missing. Achieving these
objectives is challenging since, on biophysical grounds, shock-induced changes in
polarization of both polarities are always present during shock delivery.
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The numerical results for optimal control of the monodomain model, which is a simplified
version of the bidomain model, were presented by the authors in previous articles, see [22,
23]. There it was assumed that both electrodes are of the same polarity in the control
regions. Here we consider a more realistic scenario based on a full bidomain model where
defibrillation electrodes are modeled to be of opposite polarities. That is, one electrode
induces positive polarizations (cathodal stimulus) and another electrode induces negative
polarizations (anodal stimulus). By considering these different polarities the compatibility
condition, which is required for the elliptic system, can be satisfied if one ensures that the
total current injected at the cathodal electrode and current withdrawn at the anodal electrode
match up to zero. An alternative approach can be based on using grounded electrodes. In
terms of defibrillation the use of a full-blown bidomain formulation is of utmost importance
to properly account for membrane responses to externally applied electric fields in the far-
field distant from any stimulating electrodes. As has been shown in previous studies [36,
37], the monodomain equations predict surface polarizations only, but no polarizations of
the tissue bulk since the activation function is zero in absence of unequal anisotropy ratios.

In the electrophysiological community, numerous theoretical papers have addressed the
defibrillation problem [38]. These studies determine success and failure of defibrillation
shocks by constructing vulnerability grids where stimuli of a given fixed pulse shape are
delivered while varying the key determinants of shock success and failure, namely strength
and coupling interval [2, 17, 28]. That is, an extracellular current stimulus is defined as

 where magnitude  and coupling interval tc are varied while the pulse
shape s is kept constant. Finally, for each strength a probability over all coupling intervals is
computed to determine a dose-response curve. Shocks have to be chosen to cover weak
strengths of low success probability up to high strength of high probability, including
strengths where shocks succeed for all coupling intervals. This strength is referred to as the
upper limit of vulnerability [9]. The optimal control approach to defibrillation, as presented
in this study, is quite different. For a given coupling interval tc, that is, the timing of the

onset of shock delivery, both pulse shape s(t) and magnitude  of the stimulus are the result
of the optimization procedure.

The bidomain model equations themselves, which arise as constraint in Eq.(1), pose
significant numerical challenge [42]. In our study, we have chosen a finite element method
for the spatial discretization. A linearly implicit Runge-Kutta method, which is explained in
Section 3, was used for the temporal discretization of the parabolic part. Analogous
discretization methods are used for the adjoint equations. To enhance the solution process
for the primal equations only, parallelization techniques have been applied successfully [29,
27, 24, 31].

Turning to the optimal control problem, we recall that the optimality system involves the
primal as well as the adjoint equations. Each of these two systems has similar complexity
and must be solved frequently within any iterative solution process for the optimal control
problem. It is therefore most natural to employ parallelization within the solution process for
the optimal control problem. In this regard, we parallelized our optimization codes based on
the freely available public domain package DUNE [5].

When solving the bidomain equations the question of how to deal with the singularity of the
elliptic system has to be addressed. Solvability of the elliptic equation (2) requires that the
following compatibility condition holds:

(11)
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Uniqueness of the elliptic system needs to be addressed as well. In our numerical
implementation, we have chosen a stabilized saddle point formulation approach adapted
from Bochev and Lehoucq [7].

The organization of the remaining paper is as follows: relevant existence and uniqueness
results for the bidomain model will be discussed in next section. In Section 2.2, the optimal
control formulation is presented and a formal derivation of the adjoint equations and the first
order optimality conditions, which are the basis for numerical solution are provided. The
numerical approach to solve the optimality system is explained in Section 3. Finally, in
Section 4 the numerical results with several test cases are presented to demonstrate
successful defibrillation using an optimal control approach.

Notation
Throughout the paper we use standard notation and denote by Ω the bounded cardiac tissue
sample domain in ℝd, d = 2 or 3, with Lipschitz boundary ∂Ω and outer normal η. The
space-time domain and its boundary are denoted by Q = Ω × (0, T] and ∂Q = ∂Ω × (0, T],
respectively. The inner product and norm in L2(Ω) are abbreviated by (·, ·) and |·| or |·|L2, and
similarly the inner product and norm on H1(Ω) are denoted by (·, ·)H1 and ||·|| or ||·||H1

respectively. Further, we denote by

the L2-space of zero-mean functions, and we set H = L2(Ω), and V = H1(Ω).

2 Analytical background
In this section we provide analytical background on the bidomain equations and the
associated optimal control problem.

2.1 Weak solutions
We recall well-posedness of the bidomain equations. Throughout it is assumed that (v0, w0)
∈ L2(Ω) × L2(Ω), that (5) is satisfied, and that 2 ≤ p ≤ 6.

Definition 2.1. A triple (u, v, w) ∈ L2 (0, T; V) × (L2(0, T; V) ⋂ C(0, T; H) ⋂ Lp(Q)) × C(0,
T; H) with vt ∈ L2(0, T; V*) + Lp′(Q) and wt ∈ L2(0, T; V*) + Lp′(Q) is called weak solution
of (2)-(4), (8)-(10), if for all (φ, ψ, χ) ∈ V × H × V/ℝ as well as for all a.e. t ∈ (0, T)

(12)

(13)

(14)

where V* denotes the dual to V with H as pivot space and .

Theorem 2.2. (Existence, uniqueness, a-priori estimates of weak solutions) For any T > 0
there exists a weak solution to the bidomain system (2)-(4), (8)-(10) and we have the a-
priori estimate
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(15)

Here |·|X denotes the norm in , the
dependence of the spaces on the temporal interval (0, T ) is suppressed and C is independent
of (v0, w0, Ie, Itr).

If (v0, w0) ∈ L2(Ω) × L4(Ω) and (Ie, Itr) ∈ L∞(0, T; ℝ) × L∞(0, T; L2(Ω)), then the weak
solution is unique.

For the proof we refer to [23], [18].

2.2 The optimal control problem
Here we formulate the optimal control problem. This necessitates the choice of an
appropriate cost-functional which is minimized subject to the system of bidomain equations.
The control variable consists of the extracellular current which must be chosen in such a
manner as to facilitate defibrillation in the best possible way. More precisely we are
interested to construct a cost functional which is able to terminate re-entrant arrhythmias by
applying an extracellular current as a control. After substantial numerical tests with a variety
of different cost functionals we propose the following procedure which is guided by the
dynamical behavior of FitzHugh-Nagumo type reaction diffusion systems, see eg. [21,
Chapter 7].

Let us divert for a moment and consider the nonlinear system of ordinary differential
equations

(16)

To understand the qualitative behavior of this system we investigate the null isoclines
 and . It is convenient to express

We find that the origin is a stable steady state of the system (16). If the system is perturbed
and originates from some  satisfying

then  and  increases until . Subsequently 
decreases and tends to the origin as t → ∞. For typical parameters the speed in the
horizontal direction is significantly faster than in the vertical direction, see Figure 1.
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In short, if the system is perturbed above a certain threshold, the trajectory rapidly increases
until a plateau is reached, from which it slowly decays and returns to the stable origin. In
this consideration we ignored spatial phenomena, but we can think of this behavior taking
place at every point x in the spatial domain. The trajectories (indexed by the spatial
coordinates x) influence each other, leading to complex phenomena, as, for instance, the
formation of virtual electrodes [36]. With this behavior in mind, the optimal control
problems which we test in this study correspond to the situation where, assuming that the
system was excited locally, we apply extracellular current during an optimization phase with
the goal to drive the cardiac tissue in a given observation region into a pre-specified
electrical state. In a successful defibrillation episode the whole tissue returns to a stable
resting state during the post shock phase which follows the optimal control phase. In this
scenario, in a real heart the next following naturally activation, as initiated by the sinus
node, or a stimulated activation, as initiated by a cardiac pacemaker, can overtake control
over the heart’s rhythm. We refer to Figure 3.

So the optimal control problem actually refers to the optimal shock phase. During this
optimization period, denoted by (0, T), the control aims at driving the transmembrane
voltage v to a desired value denoted by vd. This could be the value at the plateau, or a
trajectory related to some non-optimal shock experiment. These considerations result in a

term of the form  in the cost functional, where domain Ωobs ⊂ Ω denotes
the observation region.

Let us next discuss the control variable Ie. We consider the case that the extracellular current
Ie(t) depends only on time, with the spatial support specified and fixed by the user. In our
simulations, we inject the current through the anode, supported in the subdomain Ωc1, and
withdraw current at the cathode, supported in subdomain Ωc2. To assure conservation of
current the total currents injected and width drawn at the anodal and cathodal electrode,
respectively, have to sum up to zero. Since it is desirable to keep the R amount of the

applied extracellular current small it is natural that a term of the form  enters the
cost functional.

All together this results in the following optimal control problem:

(17)

Above α is the weight of the cost of the control and

(18)

for some M ∈ (0, ∞).Utilizing a pointwise norm bound on Ie is one of the possibilities to
ascertain uniqueness of the solutions to the bidomain system. It can also be physiologically

relevant, since it has a differently effect on the solution than the term  which
appears in the cost-functional. An alternative to guarantee uniqueness involves structural
assumptions on the conductivity tensor, [8].

Theorem 2.3 (Existence of global minimizers). The problem of minimizing J subject to the

bidomain system, i.e. problem (17), admits a global minimizer .

Proof. The proof of the theorem is given in appendix A. ∎
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2.3 First order necessary optimality system
In this section we formally derive the optimality system associated to (17). We follow a
Lagrangian approach and introduce the Lagrange functional

The first order optimality system is given by the Karusch-Kuhn-Tucker (KKT) conditions.
For this purpose the partial derivatives of  with respect to u, v and w are set equal to zero:

(19)

(20)

(21)

where p, q and r are the Lagrange multipliers associated to u, v and w respectively. The
terminal conditions are

and the boundary conditions for the adjoint states must satisfy

(22)

(23)

In addition the zero mean condition  holds for all t ∈ (0, T). Finally we
have the optimality condition:

(24)

for almost every t ∈ (0, T ), which, in case the constraints are not active becomes

(25)

3 Numerical approach
In this section we give a brief overview of the space and time discretization techniques to
solve the primal and adjoint equations numerically. In spite of the fact that the solution is
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smooth this poses challenging numerical problems due to complicated underlying wave
phenomena which put restrictions on spatial and temporal scales. In our numerical
simulations we used a finite element method for the spatial discretization and linearly
implicit Runge-Kutta methods for the temporal discretization.

3.1 Semi-discretization in space
In this subsection we give an overview of the spatial discretization of the primal and dual
equations by a finite element method based the weak formulation which we recall for the
readers convenience.

3.1.1 Space discretization of the primal problem—A weak solution triple (u, v, w)
satisfies for a.e. t ∈ (0, T )

(26)

(27)

(28)

together with initial and boundary conditions (8)-(10). Let Vh ⊂ H1(Ω) be the finite
dimensional subspace of piecewise linear basis functions with respect to the spatial grid. The

approximate solutions u; v and w are expressed in the form ,

 and , respectively, where  denote the basis
functions. This semi-discretization in space results in the differential algebraic system:

(29)

(30)

(31)

together with initial conditions for v and w, where 

and  are the stiffness matrices,  is the

mass matrix, the vectors Ie, Iitr are defined by  and

, respectively. The expression (Iion)(v,w) is defined by

3.1.2 Space discretization of the dual problem—We use the same finite element
space to discretize the dual equations. Here the approximate solutions p, q, and r can be
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expressed in the form ,  and

 respectively and the following semi discrete form of the dual
equations is obtained:

(32)

(33)

(34)

with terminal conditions q(T ) = 0, r(T) = 0. The locally defined mass matrix for the

observation domain is . The expressions (Iion)v(v, w) and
(Iion)w(v, w) are defined by

Remark 3.1. The iterative linear solver to obtain the current solution for (29) is initialized by
the solution of the previous time-level. Here we make use of the fact that u0 has zero mean.
Then the compatibility condition for the singular algebraic system Eq. (29) is satisfied at
each iteration level, i.e.

where c = (1, …, 1)T is a constant vector. Analogously, at every time-level the iterative
procedure for solving (32) is initialized by a zero-mean function. Then the compatibility
condition for the singular algebraic system (32) is satisfied.

3.1.3 Solving the singular linear system—The linear systems (29) and (32) are
singular since the solution is only defined up to an additive constant. There are mainly two
approaches to compute finite element solutions for such systems. One approach is to specify
a solution datum at a particular node or in some sub region of the computational domain.
The other approach is to compute a consistent singular system either by a properly modified
direct procedure that recognizes zero pivots1 or by a minimization-based iterative solvers
such as the Lagrange multiplier method and a mixed formulation, see [7] for a more detailed
discussion.

In our computations we adapted a stabilized saddle-point formulation from the Bochev and
Lehoucq [7] to solve the elliptic system uniquely. For this purpose let ω be a smooth
function satisfying (1, ω) ≥ 0 and introduce the space

1http://www.mcs.anl.gov/petsc/petsc-as/
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Also, define the orthonormal ω-mean of u by

Then the energy functional associated to equation (2) at any fixed t ∈ (0, T) can be
expressed as: find the minimum over V of

(35)

where  and

.

Using the stabilized saddle point approach from Bochev and Lehoucq, the unconstrained
minimization of the penalized energy functional is expressed as,

(36)

where ρ > 0 is a stabilizing parameter. The optimality system for (36) is given by

(37)

Lemma 3.2. Problem (36) or equivalently (37) has a unique solution u ∈ V for each b ∈ H.

The proof is a direct consequence from [7, Theorem 4.2, page 55]. Here the requirement b ∈
H necessitates that v is a strong, rather than a weak solution. This can be guaranteed by
additional assumptions on the problem data, [18]. After the finite element discretization for
(36) with basis functions {φi} the finite dimensional system can be expressed as follows

(38)

where Aie is the stiffness matrix and Φ = (φi, ω) is the weighted basis mean vector. Since

 is positive definite on V it follows that  is positive definite on ℝN. The
kernel of Aie is spanned by the constant vector c = (1, …, 1)T. The weighted zero mean
property of elements v ∈ ℝN is described by ΦTv = 0. Moreover, Aieu = b admits a unique
solution u* with wTu* = 0, provided that wTb = 0.

We assume that , for almost every x ∈ Ω. Then
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Proposition 3.3. Let  and u* be the solutions to (38) and Aieu = b, with ΦTu = 0
respectively. Then  and .

Proof. Taking the inner product of (38) with c we find that

Since cTΦ ≠ 0 this implies that . Moreover

Since the solution to Aieu = b with ΦTu = 0 is unique we have , as desired. ∎

3.2 Time discretization
Now we will turn our discussion to the time discretization for the Eqs. (30) and (33). Those
two equations can be expressed in the following general form,

(39)

To solve (39), we introduce discrete steps:

which are not necessarily equidistant. We further set τi = ti+1 − ti and denote by ui the
numerical solution at time ti. For time discretization linearly-implicit Runge-Kutta methods,
specifically Rosenbrock methods, are used. These belong to a large class of methods which
try to avoid the nonlinear system and replace it by a sequence of linear ones. An s-stage
Rosenbrock method of order p with embedding of order  has the form

(40)

(41)

(42)

The coefficients γ, αj, ajl, cjl, ml, and  are chosen in such a way that certain consistency
order conditions are fulfilled to obtain a sufficiently high convergence order. For the
construction of the Jacobian matrix K we used exact derivatives of the vector F(x). We
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assume that  which is reasonable since one would prefer to continue the integration with
the higher order solution x. In our computations the ROS3PL method, see [20], is
implemented to solve the primal and adjoint equations. It has four internal stages, it is third
order accurate, it satisfies the L-stability property and has no order reduction in the PDE
case. After time discretization one ends up with a system of linear equations which needs to
be solved by effcient iterative solvers. Here we use the BiCGSTAB [40] method with SSOR
preconditioning.

During every iteration of the optimization algorithm we used uniform time steps to solve the
primal and adjoint equations. For the post-shock simulations, however, adaptive time steps
were used to speed up the direct simulations. These adaptive time steps were constructed by
using the second solution  to compute a local temporal error between different orders of
solutions. In the ROS3PL method the order of the second solution is , see [20]. After the

i-th integration step the value  is taken as an estimator of the local
temporal error. In computations a new time step τnew, see Gustafsson et al. [13], calculated
on the basis of

(43)

The parameter β > 0 is a safety factor. The factors βmin and βmax restrict the time step jumps.
If εi+1 < TOLt we proceed to the next time step, otherwise the time step has to be shortened
and repeated. We set TOLt = 0.001 in our computations.

3.3 Solving the complete linear system
In this subsection we give a step by step procedure to solve the full optimality system. First
we describe the solution of primal system by decoupling the system as follows.

S1: Use the solution at vi, solve the ODE equation (31) for wi+1 by using the explicit
Euler method.

S2: Use the solution at vi, solve the discretized elliptic system (29) for ui+1 by using the
stabilized saddle point approach which is explained in subsection 3.1.3.

S3: Finally, by utilizing the computed solutions ui+1 and wi+1, solve the discretized
parabolic equation (30) for vi+1 by applying the linearly implicit Runge-Kutta method
which is explained in subsection 3.2.

Analogously, solve the discretized adjoint system, backward in time, by decoupling the
system as follows.

D1: Using the solutions at pi+1 and ri+1, solve the discretized parabolic equation (33)
for qi by employing the linearly implicit Runge-Kutta method which is explained in
subsection 3.2.

D2: Using the solution at qi, solve the discretized elliptic system (32) for pi by adopting
the stabilized saddle point approach which is explained in subsection 3.1.3.

D3: Utilizing the solution at qi, solve the ODE equation (34) for ri by using the explicit
Euler method.

Now we turn to the solution of the complete optimality system. To solve the discretized
minimization problem, the nonlinear conjugate gradient method is used; we refer to [25] for
details. The termination of the optimization algorithm is based on the following condition.
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(44)

Next we summarize the optimization algorithm procedure that we utilize for the
computational results that we present below.

A1: Guess initial control  and set k ← 1

A2: Solve the primal equations (2)-(4) for uk, vk and wk forward in time as explained in

above steps (S1)-(S3) using .

A3: By utilizing the available solutions uk, vk and wk solve the dual equations (19)-(21)
backward in time as explained in steps (D1)-(D3).

A4: Compute the gradient of the reduced cost functional  and update the control

 using Hager-Zhang update, see [25, page no. 123, Eq.(5.50)] for more details.

A5: If the termination criteria Eq. (44) is not satisfied, then update  and k ← k
+ 1 and continue with step A2.

In our optimization algorithm, the line search method is based on the Wolfe conditions, see
for more details [25, page no. 33].

3.4 Parallel implementation
Recent research work on parallel tools and high performance computing for the bidomain
equations is devoted to modeling techniques which can accommodate the anatomically
complex geometries of the heart [32] and, at the same time, can handle such fine scale
spatio-temporal simulations with suffcient effciency, see e.g. [29, 41, 26, 24, 38, 31]. In the
context of optimal control of the bidomain equations the necessity of repeatedly solving the
coupled forward-backwards systems of primal and adjoint equations for possibly very
different inputs representing the controls, calls for using a parallel implementation, which in
our case is combined with a nonlinear conjugate gradient algorithm for solving the optimal
control problem.

The essence of parallel numerical simulation is to distribute the computational load evenly
across all processors which is mainly achieved by domain decomposition algorithms. In our
simulations we used the software package DUNE [5], which is a C++ template based
programming environment for solving a general class of PDE’s. The internal parallel Yasp
grid in DUNE is used for parallel grid constructions. It supports various levels of
overlapping grids for parallel simulations. We used a zero level of overlapping grids,
particularly non overlapping grids. For the domain decomposition technique the original
domain is partitioned into subdomains and each subdomain is assigned to a single processor.
On each subproblem a reduced size problem, which is coupled to adjacent problems along
interface boundaries, is solved. The interface coupling can be relaxed at the expense of
introducing additional communication in the solution of the algebraic system which is
obtained after space and time discretization.

To solve the discretized optimality system, a variant of the non-linear conjugate gradient
(NCG) method based on the Hager-Zhang update [25, page 123] is implemented. For each
time step in every iteration of the linear solver we need additional communication to solve
the primal and adjoint equations, which, in turn, is needed in every iteration of the
optimization algorithm. Also, we need additional communication for the evaluation of the
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norm of the gradient of the cost functional as well as for the cost itself. Our spatial
discretization routine code makes strong use of the DUNE package [5], especially the dune-
pdelab discretization module.

4 Numerical Results
In this section numerical results on the basis of three different test cases are presented. In all
cases the computational domain Ω = [0, 2] × [0, 2] ∈ ℝ2 of size 2 * 2 cm2 is fixed and a 128
× 128 uniform quadrilateral spatial grid is used. During the shock we fix the time step length
Δt = 0.04 msec, while we allow adaptive time stepping criteria for the ROS3PL method
during the post shock simulations to speed up the calculations.

The computational domain and relevant subdomains are depicted in left Figure 2. The
control domains are chosen to be Ωc1 = [0, 0] × [0.03, 2] of size 0.03 * 2 cm2 and Ωc2 =
[1.97, 0] × [2, 2] of size 0.03 * 2 cm2.

To induce the reentry we a standard S1 − S2 stimulation protocol: First, we applied an initial
stimulus S1 of Itr = 100 μA/cm2 at time t = 0 msec for a duration of 5 msec along the bottom
edge of the tissue sheet to induce a planar wavefront traveling towards the top edge of the
sheet. At time t = 183 msec, when the critical recovery isoline arrived at the center of the
sheet, a second S2 stimulus of Itr = 100 μA/cm2 was applied in a small region of 0.3 cm
radius at the center of the domain for a duration of 5 msec. This S2 stimulus generated two
phase singularities at the intersections between critical recovery isoline with the boundary of
the S2 stimulus region, leading to a so-called Figure of Eight reentrant pattern. Direct
simulation was continued until time t = 435 msec to ensure that the induced reentry is
maintained for prolonged periods of time. The solution at t = 435 msec was then chosen as
the initial state for our numerical study, see Figure 3 for the three temporal horizons.

Conductivities were chosen to arrive at physiological conduction velocities with the
FitzHugh-Nagumo model and to keep anisotropy ratios within the range of values reported
in experimental studies [35]. For the control case under healthy conditions conduction
velocities of 0.65 m/s and 0.325 m/s were assumed in the longitudinal and transverse
directions, respectively, with an anisotropy ratio of 4.18. These considerations led to the
following choice of simulation parameters, σil = 2.0 · 10−3 S/cm, σit = 3.1 · 10−4 S/cm, σel =
2.0 × 10−3 S/cm, σet = 1.3 · 10−3 S/cm g = 1.5 S/cm2, vth = 13 mV, vp = 100 mV, η1 = 4.4 S/
cm2, η2 = 0.012; η3 = 1.

To account for structural heterogeneities, as they emerge, for instance, during fibrosis in the
process of aging [11], the intracellular conductivity tensors were modified by multiplying
with random numbers in the range (0, 1), see Figure 4. Further, we set those random
numbers which were below a threshold of 0.34 equal to 10−12. This led to regions of very
low intracellular conductivity which effectively decoupled these regions and blocked any
arriving wavefronts. The random distribution of these regions approximates a conductivity
matrix as observed in the case of severe diffuse fibrosis where roughly 34% of the tissue is
fibrotic [19]. The introduction of these heterogeneities influences upon the response of the
tissue to extracellularly applied fields, leading to shock-induced changes in tissue
polarization over the entire observation domain, despite the absence of heterogeneities in the
electric field. Conduction velocities in this pathological scenario reduced down to 0.24m/s
and 0.16m/s in the longitudinal and transverse direction, respectively. With the given
parameters the action potential duration was 98 msec, resulting in a wave-length of 2.35 cm
and 1.57 cm in the longitudinal and transverse direction, respectively. That is, the
wavelength is at the same size scale as the dimension of the tissue of 2 cm and thus

Nagaiah et al. Page 15

J Math Biol. Author manuscript; available in PMC 2014 April 08.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



sustained reentrant activations can be induced. For all subsequent induction and
defibrillation experiments these lower conductivities are used.

Now we turn discussion to the stopping criteria for the optimization algorithm in the
computations. The optimization algorithm is terminated as soon as (44) is satisfied. If this
condition is not met within the prescribed number of iterations, let us say 200 optimization
iterations, then we terminated the optimization algorithm. In the line search algorithm the
initial step length starts with θ = 1 for the NCG method and is reduced by a factor of 2 for
subsequent rejected step sizes, see Nocedal and Wright for details [25]. We developed an
optimization code based on the public domain FEM software package DUNE [5]. The
parallel computations are done on Dell precision T7500 dual quad core (overall 8 cores)
machine, clocked at 3 GHz and equipped with 24 GB RAM.

In the first test case the prescribed extracellular stimulus strengths is applied to the primal
equations, without any optimization. This serves to understand the mechanisms by which
extracellular stimuli act to terminate arrhythmogenic episodes. In the second test case we
utilized these solutions, which were generated with different stimulus strengths, as desired
solutions vd for the optimization approach. The presented numerical results demonstrate that
the optimal control strategies allow significant reductions of the total energies required to
achieve termination of reentry. Also, as shown in the third test case, short time control can
improve the reduction of total applied energy. The final test investigates whether our
optimization results are robust with respect to variations of physiological parameters which
appear in the ionic model.

4.1 Direct stimulus without optimization
The effect of extracellular stimuli on the primal equations is presented. For this purpose a
time dependent extracellular current stimulus is applied for a duration of 4 msec. During the
shock we apply four different shock strengths, Ie = 0 mA/cm3, 500 mA/cm3, 1000 mA/cm3

and 5000 mA/cm3 which translated into electric field strengths ||∇u|| of 0.0067 V/cm, 5.215
V/cm, 10.268 V/cm and 49.872 V/cm. The corresponding shock and post shock numerical
results for the transmembrane voltage are shown in Figures 5-6 at the three locations
indicated in Fig. 2. Note that “t = 0” in the Figs. 5-6 corresponds to t = 435 in the time-
horizon graph of Fig. 3.

The solution of the transmembrane voltage for Ie = 0 mA/cm3 is shown in Fig. 5. At all three
observation sites p0–2 the tissue remains at rest since no wavefronts propagate there during
the 4 msec shock period. For all non-zero stimulus strengths shock-induced changes in v of
both polarities are induced at all three locations 5. Fig. 6, showing the post-shock evolution
of v, reveals that a stimulus strengths Ie ≥ 1000 mA/cm3 is sufficient to drive the tissue to the
resting level. This is not the case for the weaker stimulus Ie = 500 mA/cm3, where reentry is
re-established, see Fig. 6. We further observe that with increasing strength Ie the time
elapsed post-shock until all activities subsided, is reduced. For Ie = 1000 mA/cm3 this took
approximately 97.8 msec, whereas it took only 84.60 msec for Ie = 5000 mA/cm3.

The solution of extracellular potential u during the shock is governed by the applied currents
Ie, which establish a linear distribution of u from cathode to anode where potentials are
positive at the cathode, negative at the anode and zero in the center of the tissue. That is, the
electric field ∇u is constant over the entire domain.

4.2 Tracking type cost functional
Here we investigate the feasibility of applying an optimal control approach to achieve
successful defibrillation. As desired states vd we use the solution profiles of the
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transmembrane potentials which were obtained in the previous test case during the shock
period i.e. we choose vd in the cost functional J as

(45)

which are the transmembrane potentials corresponding to the stimuli strengths Ie = 500 mA/
cm3, Ie = 1000 mA/cm3 and Ie = 5000 mA/cm3.

To solve the optimal control problems, we utilize the exact same setup as before, with the
only difference being that Ie(t) is determined now by the optimization procedure. Again,
time traces of the solution v are presented at locations p0–2. The optimization is initialized
with a starting value of (Ie)0 = 400 mA.

The solution profile of the extracellular potential is depicted in Figure 7. Without
optimization, the extracellular potential was raised immediately to approximately 6, 840 mV
(33, 436 mV ) for stimulus strength 1000 mA/cm3 (5000 mA/cm3) at p0 and it remained there
throughout the duration of the shock. In the optimization case, see left panel in Fig. 7, u is
smaller. This is certainly also the case at the locations p2 where u is a mirror image of u
observed at p0. At p1 u is small in both cases since p1 is located close to the center where u
is zero due to symmetry reasons.

Comparing Fig. 6 and Fig. 10 reveals that the shock-induced changes in transmembrane
voltage are smaller in the case where the forcing function Ie is derived on the basis of the
optimization procedure.

Figs. 11 and 12 show the spatio-temporal evolution of the reentrant activation for both
uncontrolled and optimally controlled transmembrane voltage. Shown in Fig. 12 is the
optimal control case which used vd1000 in the cost functional J. As can be seen in the t = 3
ms panel of Fig. 11, a large number of virtual electrodes appear at the microscopic size
scale. After the break of the shock, these small-scale polarizations start to diffuse out (panel
t = 4.49 ms in Fig. 12). The appearance of numerous small-scale virtual electrodes all over
the tissue in both excitable gap as well as in depolarized regions effectively blocked the
further propagation of the spiral wave. The analysis of state variables at the end of the
optimization period revealed that the values of the recovery variable w immediately ahead of
the wavefront were higher as compared to the values immediately before shock onset prior
to the optimization period. This increase in w was suffcient to prevent excitation of tissue
ahead of the wavefront, thus driving the entire system to the resting state. Refer to Figure 1
for the phase plane portrait of the simplified FHN system.

In left panel of Fig. 13, the minimum value of the cost functional is plotted as a function of
the NCG iterations for different values of vd. The final value of the cost is not small, which
is consistent with our expectations: first, there is a non-eligible control cost and, secondly,
we certainly do not expect v to follow vd exactly. For vd500 fewer optimization iterations
were required than for vd1000 and vd500. They time course of the optimal control Ie(t) for vdi,
with i = 2, 3, 4 is shown in the right panel of Fig. 13. The total energy required is clearly
reduced in the optimization case as compared to case without optimization, i.e. where a
constant stimulus strength was applied using the primal equations only. Although the
differences are rather subtle for the weaker shock strengths vd500 and vd1000, for the stronger
shock in the vd5000 case there is a striking difference. It should be noted that only the cases
vd1000 and vd5000 defibrillated successfully. In the case vd500 which corresponds to Ie = 500
mA/cm3, this could not be achieved, independently of whether optimization was used or not.
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4.3 Short time control
Here we present numerical results based on the following cost functional:

(46)

where the shock duration ts is chosen to be shorter than in the previous case where a
duration of ts = 4 msec was used to produce the tracking functions vd. Accordingly we set

. The aim here is to obtain a control which requires less energy compared to the
reference case ts = 4 msec, but still drives the system to rest. Two different durations ts = 3.6
msec and ts = 3.0 msec were tested using vd1000.

The optimal control values are presented in the right panel of Fig. 14. For the shock
durations ts = 3.6 msec and 3.0 msec, the optimal controls required more energy during the
initial phase and less energy towards the end of the shock relative to the reference case with
ts = 4 msec. Overall, the total energy is 3.837 A s/cm for ts = 4 msec, it is 3.157 A s/cm for ts
= 3.6 msec and 3.002 A s/cm for ts = 3.0 msec. In all these cases the system goes to rest in
the post shock period.

4.4 Robustness with respect to variations in physiological parameters
In this subsection numerical results are presented changing physiological parameters to test
the robustness the approach. This can be considered as using a pre-existing trajectory
solution which was computed on based on existing data and testing the successful
defibrillation for different patient data. In fact, we use vdi as computed in the previous
subsection. All parameters here remain the same except for

These changes result in slower conduction velocity and a shorter action potential duration,
which translates into a shortened wavelength, compare Figs. 16 and 11. Specifically, the
conduction velocities were 0.57 m/s and and 0.28 m/s in the longitudinal and transverse
direction in the physiological control case (0.65 m/s and 0.32 m/s before). In the fibrotic case
where intracellular conductivities were varied randomly, conduction velocities were reduced
to 0.22 m/s and 0.14 m/s in the longitudinal and transverse direction, respectively (0.24 m/s
and 0.16 m/s before). Action potential duration shortened from 98 msec down to 48 msec.
Overall, this reduced the wavelength to 1.05 cm and 0.67 cm in longitudinal and transverse
direction (2.35 cm and 1.57 cm before), This reduction changes the ratio between
wavelength and tissue size. This provides the substrate for maintaining more complex and
more sustained arrhythmias which renders achieving successful defibrillation more
challenging.

The corresponding minimization value of the cost functional is depicted in the left panel of
Figure 15. We can observe that the complete optimization takes less iterations to converge
the algorithm comparing with the optimization considering no change parameters for the
desired solution trajectory using Ie = 1000 mA/cm3 and Ie = 5000 mA/cm3, see Figure 15 and
Figure 13.

Turning to the optimal control result we recall that before changing the parameters, the
initial reentry wave disappeared completely during the post shock simulation after t = 97.80
msec. After changing the physiological parameters, the initial reentry wave front almost
disappeared after time t = 66 msec (with vd1000). But a small wave front excited from bottom
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left corner after the disappearance of the initial reentry wave. This introduces a single wave
front in the computational domain, it passes through the domain and disappears completely
from the top right corner after 320 msec, see Figure 17 for the 2D visualization of the
optimally controlled transmembrane potential.

The optimal control for vd1000 and vd5000 is shown in the right panel of Fig. 15 using the
modified parameters. In this case, the total energy of the controls is 3.981 A s/cm and 4.468
A s/cm, which is somewhat higher than those for before the change of the parameters.

5 Discussion
An optimal control technique for achieving successful defibrillation of reentrant activation
patterns in a 2D sheet of cardiac tissue was proposed based on the bidomain equations,
taking into account their dynamical systems behavior for proper choice of a cost functional.
The extracellular current acting in a small strip of spatial support within the computational
cardiac tissue acts as control. In the simulations, heterogeneity is modelled by allowing a
non-uniform distribution of the intracellular conductivities. As a consequence a large
number of virtual electrode polarizations appear within the controlled cardiac domain,
inducing a change in the electrical state which prevents pre-shock wavefronts to propagate.
The zero mean condition for the elliptic part of the primal and adjoint system was realized
by adopting a stabilized saddle point approach, see [7]. The numerical results show that the
optimal control strategies lead to successful defibrillation with lower control energy when
compared to ad-hoc strategies, as they are implemented in todays defibrillation devices.
Since our cost functionals use reference trajectories depending on physiological parameters
we also successfully tested the efficiency of the proposed approach under perturbations of
these parameters.

While we have found a promising approach for an optimal control treatment of defibrillation
problems, the question of appropriate venues of applying control and optimal control
strategies for such problems remains a most challenging one. Alternatives, as for instance
time optimal formulations suggest themselves, but appear to be computationally very
demanding.

This study demonstrates the feasibility of achieving defibrillation by applying optimal
control strategies which drive fibrillating cardiac tissue into a desired state, vd, with a
minimum of energy. While this is a first important step towards using optimal control for
designing optimized defibrillation protocols, the prescription of a given state vd, in this case
the post-shock state of a standard defibrillation protocol, is a drastic simplification of the
problem. Optimal control applications in which vd is not prescribed, pose a significantly
more challenging problem, but the increase in overall degrees of freedom may allow to
compute post-shock states which lead to defibrillation success with significantly less energy
requirements. Currently, a severe limitation is still constituted by the fact that the entire
tissue is used as an observation domain with v being the observed quantity. Experimentally,
it is challenging to measure v accurately at the tissue and organ scale with suffcient spatio-
temporal resolution. In 2D tissue preparations, as modelled in this computational study,
absolute measurements of v are not feasible, only optical signals, vopt can be recorded using
optical mapping techniques which are proportional to v, i.e. vopt ∝ v holds. This problem is
further exacerbated at the organ scale in 3D, where recordings of vopt are typically confined
to a rather limited field of view at the epicardial surfaces. Panoramic imaging modalities
which would allow the observation of the entire epicardial surface are still in its infancy
[33], which is also true for 3D recording techniques which would allow to gather signals
from the depth of the tissue [15]. Further, recorded optical signals vopt are biased by volume
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scattering effects [6] which is why for determining the distribution of vopt throughout the
tissue would necessitate the solution of an inverse problem [43].

In the context of clinical applications, optical recordings of vopt are not feasible due to i) the
photo-toxicity of the dyes required for acquiring fluorescence signals, ii) the use of electro-
mechanical uncouplers which suppress the vital mechanical activity of the heart, and iii)
difficulties related to exposing cardiac surfaces to excitation lights. Clinically, only
recordings of the extracellular potential u are feasible, a quantity which has not been
considered as an observation variable in this study. Although extracellular potentials u are
directly proportional to v in those cases where tissue is exposed to an insulator such as air, as
it is the case in this study, this is no longer true in most in-vitro or in-vivo scenarios, where
tissue is immersed in a conducting fluid. Under such conditions u is not directly proportional
to v, it is rather a distance weighted sum over sources within the entire domain, requiring to
solve an inverse problem first to determine v from recordings of u. Further, recordings of u
are spatially sparse and limited to the epicardial surfaces, since three-dimensional
recordings, as used in in-vitro experiments, rely on plunge electrodes [16] which cannot be
used clinically due to damages secondary to the penetration of the myocardium with needle
electrodes.

A serious limitation with regard to practical applicability are the involved costs. Even the
direct problem, despite major methodological advances and the steady increase in available
compute power, lags real-time by orders of magnitude [24]. Therefore, the use of optimal
control in a real-time scenario is currently not feasible, however, the structure of optimal
solutions computed off-line may give useful insight in practice in the mid-range future.
Moreover, substantial e orts are made in the optimal control community towards
computational speedup.

Finally, the model used in this study to describe cellular dynamics is simplified, capturing
only the basic physiological properties of excitability and refractoriness. Other known
physiological membrane properties relevant to the defibrillation process such as the
asymmetry of shock-induced polarizations as a function of polarity of the virtual electrodes
have not been accounted for [10].
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A. Proof of theorem 2.3
Proof. Let {Ie,n} be a minimizing sequence with an associated sequence of solutions denoted
by {(un, vn, wn)}. By Theorem 2.2 the sequence is bounded in

Hence there exists a subsequence, denoted by the same symbols, and

 such that
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where ⇀ denotes weak convergence. Moreover, since V embeds compactly into L6–ε(Ω) for
any ε > 0, we have by the Dubinskij-Aubin lemma [3],

(47)

In passing, we note that due to the extension by Dubinskij, this convergence holds not only
in L2(0, T; Lq(Ω)), but in fact in Lq(Q) as stated above.

By weak lower semi-continuity of norms we deduce that

where v(Ie) denotes the v-component of a solution to the bidomain equation with control Ie.
Moreover, since Ie,n ∈ U for each n, it follows that . It remains to argue that

 satisfies the bidomain equations. Clearly the boundary and initial conditions
are satisfied. We need to pass to the limit in (12)-(14). For this purpose we choose ϕ ∈ L6(V)
arbitrarily, integrate all equations in (12)-(14) with respect to t over (0, T) and pass to the
limit with respect to n. This will conclude the proof. Passing to the limit is straightforward
for all terms except for

(48)

Concerning the first term in (48) we have

since  in L6/5(Q) and ϕ ∈ L6(Q). Turning to the second term, we have  in
L3/2(Q) by (48). Since ϕ ∈ L6(Q) ⊂ L3(Q), this implies

Finally, since wn ⇀ w in L2(Q), vn → v in L5(Q) by (47), and ϕ ∈ L6(Q) ⊂ L10/3, we obtain

The remaining terms in Iion are of lower order and hence they can be treated analogously.
Taking test-functions of the form ϕ(x, t) = φ(x) ψ(t) with φ ∈ V, ψ ∈ L6(0, T; ℝ) these facts
imply that  satisfy (12)-(14). ∎
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Figure 1.
Phase plane portrait of a modified FitzHugh-Nagumo model.
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Figure 2.
Computational domain with stimulation domains (left panel) and the initial state of v at the
onset of the shock (right panel). Selected observation sites are located at p0 = (0.078125,
1.20312) near near to anode, p1 = (1.078125, 1.20312) in the middle of the domain, and p2 =
(1.92188, 1.20312) near the cathode.
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Figure 3.
different time horizons considered in the computations.
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Figure 4.
Non-uniform distribution drawn from random number generator.
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Figure 5.
Solution of transmembrane voltage during shock administration at the observation sites p0,
p1 and p2.
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Figure 6.
Post-shock evolution of transmembrane voltage at the observation sites p0, p1 and p2.
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Figure 7.
Optimized extracellular potential solution profiles at three different locations during the
shock period.
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Figure 8.
Optimized transmembrane voltage solution profiles at three different locations during the
shock period.
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Figure 9.
Optimized extracellular potential solution profiles at three different locations during the post
shock period.
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Figure 10.
Optimized transmembrane voltage solution profiles at three different locations during the
post shock period.
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Figure 11.
2D visualization of uncontrolled solution (v) at different times of simulation.
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Figure 12.
2D visualization of optimal state solution (v) at different times of simulation.
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Figure 13.
The minimum value of the cost functional and the optimal control values are shown on the
left and right respectively for different desired state solutions.
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Figure 14.
The optimal controls for the reduced shock durations.
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Figure 15.
The minimum value of the cost functional and the optimal control are shown on the left and
right respectively using modified physiological parameters.
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Figure 16.
2D visualization of uncontrolled solution (v) at different times of simulation for changing
specific simulation parameters.
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Figure 17.
2D visualization of optimal state solution (v) at different times of simulation for changing
specific simulation parameters.
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