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Abstract
Background—When two treatment approaches are available, there are likely to be unmeasured
confounders that influence choice of procedure, which complicates estimation of the causal effect
of treatment on outcomes using observational data.

Objective—To estimate the effect of endovascular (endo) versus open surgical (open) repair,
including possible modification by institutional volume, on survival following treatment for AAA,
accounting for observed and unobserved confounding variables.

Research Design—Observational study of data from the Medicare program using a joint model
of treatment selection and survival given treatment to estimate the effects of type of surgery and
institutional volume on survival.

Subjects—We studied 61,414 eligible repairs of intact AAAs during 2001–2004.

Measures—The outcome, perioperative death, is defined as in-hospital death or death within 30
days of operation. The key predictors are use of endo, transformed endo and open volume, and
endo-volume interactions.

Results—There is strong evidence of non-random selection of treatment with potential
confounding variables including institutional volume and procedure date, variables not typically
adjusted for in clinical trials. The best fitting model included heterogeneous transformations of
endo volume for endo cases and open volume for open cases as predictors. Consistent with our
hypothesis, accounting for unmeasured selection reduced the mortality benefit of endo.
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Conclusion—The effect of endovascular versus open surgery varies nonlinearly with endo and
open volume. Accounting for institutional experience and unmeasured selection enables better
decision-making by physicians making treatment referrals, investigators evaluating treatments,
and policy-makers.

Keywords
Abdominal aortic aneurysm; bivariate probit; endovascular and open surgery; selection; volume-
outcome relationship

Background and Introduction
Ruptured AAA is the 10th leading cause of death in men ≥ 55 in the US with mortality
exceeding 80%.1,2 Up until recently, to prevent ruptures, elective open surgical repair (open)
of AAA was typically performed with mortality of approximately 5%. Endovascular AAA
repair (endo) was introduced in 1999 as a less invasive alternative to open repair with lower
perioperative mortality and morbidity.3–5 Adoption of endo repair has been rapid,
comprising over 70% of elective repairs in recent years.6

It is generally agreed that higher volume operators and institutions generally achieve better
results.7,8 Thus, organizations such as the Leapfrog group have developed criteria for
evidence based referrals for AAA repair based on institutional volume.9 Such guidelines,
however, fail to account for potential differences in institution and operator experience with
the two different approaches. The final decision on a patient’s treatment is the vascular
surgeon’s, and the chosen approach will not be determined until after the surgeon assesses
the patient. This decision might be influenced by several factors including institutional and
operator experience, comfort with the competing approaches, and patient preferences. In
some cases, anatomic considerations might require one approach instead of the other. Thus,
there are likely to be unmeasured confounders that influence choice of procedure (some
unknown to even the referring physician), which complicates estimation of the causal effect
of treatment on outcomes of AAA repairs using observational data.

The scenario faced here is common in analysis of observational studies: treatment (endo) is
suspected of interacting with other key predictors (e.g., institutional volume and
unobservable variables) leading to potential selection bias. Recently, we showed that at the
institutional level, the volume outcome relationships for endovascular and open repair differ,
with relatively little improvements in outcomes seen for endovascular repair after a
relatively low volume of approximately 10 procedures per year.10 That analysis, however,
was limited by not explicitly modeling the unobserved selection effects noted above.

In this paper, we use the bivariate probit model11–15 to account for selection bias while
modeling the effects of treatment (endo versus open), institutional-volume and other
observed predictors of perioperative mortality. This model is defined by a simultaneous
equation system wherein an equation for treatment selection is linked to an equation for the
outcome from treatment through the endogeneous treatment and a “selection parameter” that
reflects the sign and magnitude of correlation between the error terms of the two equations.
A priori, in a correctly specified model, we expect the selection parameter to be negative in
sign, reflecting the fact that unobserved anatomical or other features that make endovascular
repair inappropriate for a patient are associated with higher mortality. We use this
hypothesis as an indicator of whether a specified model is appropriate in terms of
representing observed confounders and, therefore, the true unmeasured selection effect.
Furthermore, we embed nonlinear transformations of institutional volume as predictors,
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thereby only requiring that the assumption of bivariate normality hold for the transformation
most supported by the data.

Methods
We used data from the Medicare program to identify all open and endovascular repairs of
intact AAAs that occurred during the time period 2001–2004.5 We required that patients be
enrolled in both Medicare Part A and Part B, have at least two years of prior Medicare
experience in order to identify comorbidities that might influence the choice of approach and
outcomes of AAA repair, and be eligible for either procedure based on their diagnosis.
Because having a broader range of patient types is helpful for fitting selection models and
estimating selection effects,15 we analyzed the full sample as opposed to using propensity
scores or alternative matching method to achieve covariate balance. If we applied the
bivariate probit to the matched sample, it would still need to satisfy the same assumptions as
on the full sample. Therefore, if the model is correctly specified, there is no benefit to
restricting the dataset. Although matching as a precursor to model fitting may make results
more robust to misspecification of terms involving observed predictors, the distributions of
unobserved confounders may be less well balanced following matching, rendering results
more sensitive to how the model accounts for the effects of unmeasured confounders.
Analyzing the full sample also has the benefit of ensuring that estimates correspond to the
population of interest, in our case all aged Medicare beneficiaries with repairs of intact
AAAs.

Outcomes and Covariate Assessment
Perioperative mortality was defined as death within the index hospitalization, including
contiguous transfers to other acute care facilities, or within thirty days of when the
procedure was performed. Mortality was assessed using the Medicare enrollment data. For
each case we examined specific procedure codes to identify either endovascular or open
repair. To improve the coding accuracy of repair type we also identified physician claims
corresponding to the time period of the hospitalization.10 In cases where the hospital and
physician codes were in conflict (<5.5% of the sample), we assigned cases based on
physician claims as we thought it more likely that physicians would accurately identify and
bill for the procedure they performed.

Each AAA case was assigned to a hospital using the administrative data. We computed the
open and endovascular AAA repair volumes for the assigned hospital over the 365 days
prior to the case. Using only past cases to define volume obviates concerns about reverse
causality. We ascertained demographic information from the Medicare denominator file.
From the index admission, we determined whether the patient was transferred and if the case
was urgent (defined as emergency department charges of $50 or more). We also identified
comorbidities from hospital and physician claims during the two-year period prior to the
index admission including chronic renal insufficiency, coronary bypass surgery, coronary
artery disease, congestive heart failure, COPD, vascular disease, and prior AAA diagnosis.
Finally, to account for potential improvements over the time period of the study, we adjusted
for date (in months since January 1, 2001) for each procedure.

Statistical Analyses
We use a bivariate probit model to jointly model treatment selection and perioperative death.
Let yi, endoi =1 − open and xi denote the binary indicator of perioperative mortality, the
binary indicator of endo and a vector of other patient demographic and clinical
characteristics respectively, for the ith case. Denote the endo and open-volume
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corresponding to case i by evi and ovi, respectively, and let voli =(evi, ovi). The model is
then given by

(1)

(2)

where

and f (endoi, voli; βe, βv) and g(voli; β̃v) are expressions involving volume (and also endo in
the case of f). The role of the endo (or selection) equation is to account for unobserved
endogenous factors influencing the error terms (εi, ε̃i). To complete model specification we
assume (εi, ε̃i) has a bivariate normal distribution with means 0, variances 1, and correlation
ρ (the selection effect). (The rationale for setting var(εi) =1 is that only the ratio β/stdev(εi),
where β denotes a regression coefficient, is identified; an analogous justification supports
setting var(ε̃i) =1.) A negative value of the selection effect (ρ <0) indicates endo-favorable
selection in that uncontrolled factors that make patients less likely to receive endo are
positively associated with perioperative mortality.

Because endo is binary, the direct effect of endo on perioperative mortality conditional on
endo and open volume and other covariates is given by the risk difference

(3)

where Φ(x) denotes the cumulative density function of the standard normal distribution
evaluated at x.

Model specifications
Finding the most appropriate specifications of volume in the perioperative mortality and the
selection equations was the primary goal of the model building process. However, we were
also interested in the impact of the other non-clinical adjusters (procedure date, urgent
admission, transfer). We restrict attention to linear specifications with the exception that the
components of voli (or functions thereof) may undergo Box-Cox transformations (Table 2,
footnote). Because there are two different approaches to repair of AAA (i.e., endo and
open), there are a number of ways that volume effects can be conceptualized, the volume of
the procedure being performed (within-volume), the spillover effect related to the volume of
the other procedure (cross-volume), and the total of both procedures. We therefore estimated
a series of bivariate probit models containing various specifications. For ease of
presentation, however, we present results for four key model specifications (Table 2).
Models 1 and 2 do not include volume (f (endoi, voli; βe, βv) = βeendoi) and differ in the
specification of the other non-clinical adjusters. The within-volume model (Model 3)
confines the effects of volume to patients undergoing that procedure while the within- and
cross-volume model (Model 4) also allows spillover effects of institutional experience
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between the procedures (as would be the case if the required skills are transferrable between
procedures). That is, under Model 3

(4)

while Model 4 is the right-hand-side of (4) augmented with the sum of the cross-volume
terms, βv3openi evi and βv4endoi ovi. By embedding the Box-Cox transformations of volume
predictors in the model (to simplify notation, the volume transformations are not explicitly
depicted in (4)), the uncertainty in the transformation parameters is incorporated in model
estimation.

In modeling the likelihood of endo we adjusted for a facility’s historical propensity to
perform endo repairs by including the proportion of endo cases over the 365 days prior to
individual i’s index admission, pei =evi / tvi where the total tvi =evi + ovi is an indication of
the size of the facilities vascular surgery program, in g(voli; β̃v). In Table 2, pei and tvi are
only included in the endo equation when volume variables are included in the perioperative
mortality equation (models 3 and 4).

Although we fitted models with various other combinations of the predictors (e.g., allowing
volume effects to be shared across procedures), none improved upon the optimal model
found herein. We confirmed using Huber-White robust standard errors16 that the effect of
residual clustering of observations in hospitals had virtually no additional impact on the
results.

We quantified the level of overall fit in terms of the Bayesian information criterion (BIC),
originally developed as the Schwarz criterion.17 We also look for the model to cohere with
our hypothesis that, due to unmeasured anatomic and other variables, the selection effect is
negative.

Results
Between 2001 and 2004 there were a total of 155,402 repairs of either an intact or ruptured
AAA for Medicare beneficiaries. After excluding ruptures and procedures that would not be
eligible for endovascular repair (e.g., suprarenal or thoracic aneurysms), a total of 61,414
cases met the criteria for the outcomes analyses, yielding 29,518 and 31,896 patients who
underwent endovascular repair and open repair respectively.

For endovascular repair, average perioperative mortality was 1.7%, whereas for open repair
average mortality was 5.4% (Table 1). More recent procedure, non-urgent admission, not
transferred, older age, ESRD, and prior AAA diagnosis were all predictive of endo repair.
These same variables tended to be highly predictive of perioperative mortality and thus are
potential confounders; prior AAA diagnosis was the lone exception.

Endo patients were treated at hospitals with higher average endo volume but similar open
volume compared to institutions where open patients were treated, suggesting that endo
patients tend to be treated in hospitals with high volumes of both procedures (e.g., academic
medical centers and tertiary care facilities). Patients who were older, male, and with any of
the comorbidities besides prior coronary bypass surgery received care at higher endo volume
institutions on average while black patients were less likely to be treated at higher open
volume institutions. Thus, these predictors may also be confounders with respect to volume.

The unadjusted mortality rates for endo and open patients were plotted against the previous
12-months endo and open patient-volumes at the institution where they underwent the
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surgery, yielding a panel of four plots to which smooth curves were fitted (Figure 1).
Comparing the plots across each row, the gradients of the within volume curves clearly
exceed their cross-volume counterparts, especially over the most concentrated region of
data. Despite the large groups of data contributing to each plotted point, substantial variation
remains suggesting that covariate adjustment may have substantial impact.

Model Building and Determination of the Optimal Model
Model 1 included only the predictors that would typically be available in a randomized trial
where adjustments for the potential confounders noted above are of less concern. The
estimated selection effect (.104) has a very large standard error (.181) giving little clarity on
the direction of potential bias from unmeasured selection. The addition of the non-clinical
adjusters besides volume (Model 2) yields a substantial improvement in model fit, although
the endo coefficient is minimally affected. The estimated selection effect (.193) is bigger
than in Model 1 but still not significant (95% confidence interval (−.112,.497)).

The addition of proportion endo (pei) and total volume (tvi) in the endo equation and of
within procedure volume (endoi × evi and openi × ovi) in the mortality equation (Model 3)
yielded more improvement in model fit. In contrast to models 1 and 2, the selection effect
was negative −.123 (−.189, −.057) and significant, providing strong evidence that this model
satisfies our selection effect hypothesis. In line with the earlier descriptive results, the effects
of within procedure volume were highly significant.

Extending the within-volume model through the addition of cross-volume to the outcome
equation (Model 4) results in a small improvement in model fit that is outweighed by the
increased BIC penalty for model complexity (Table 2). The sizable difference in the
coefficients of endo and the within-volume effects between models 3 and 4 is a consequence
of collinearity between the volume predictors. Therefore, the more parsimonious within-
volume model (Model 3) is preferred.

Optimal Outcome Equation
In the perioperative mortality equation of Model 3, the estimated transformation parameter
of within-procedure endo volume is −.153, suggesting rapid change over low volumes and
smaller change thereafter, whereas the estimated transformation parameter for within-
procedure open volume is .136, suggesting more gradual but consistent changes. The
estimated effects, −.130 (−.178, −.082) for endo-volume on endo cases and −.066 (−.082, −.
049) for open-volume effect on open cases, are highly significant.

Due to the fact that different transformations have different degrees of curvature, the relative
strength of endo and open volume is best seen pictorially. The predicted perioperative
mortality curves (upper plot) and the risk-difference (lower plot) in Figure 2 correspond to
an institution with equal endo and open volume and a hypothetical patient having the sample
mean values for the other covariates. The fitted curves show that the mortality benefit of a
unit increase in volume is initially greater and ultimately less for endo than for open;
consequently, the endo effect decreases with volume (lower plot).

To evaluate the impact of accounting for unobserved selection, the model was refit as a
single equation outcome model. Comparing the resulting trajectories (dashed lines) to those
for the bivariate probit (solid lines), it appears that ignoring unmeasured selection leads to
under-prediction of endo mortality, over-prediction of open mortality, and thus over-
estimation of the effect of endo (Figure 2). A rigorous test to determine whether unmeasured
selection leads to a reduction in the effect of endo entails jointly fitting the models with and
without the selection effect would require specially written code.
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The significant effects of date (endo −.006 (−.009, −.003) ; open −.003 (−.005, −.001)),
suggest that while outcomes from both procedures have improved over time, the rate of
improvement was more rapid for endo. Urgent cases and being transferred were both risk
factors. Results for the clinical predictors, of less interest here, are given in the
supplementary appendix.

Optimal Selection Equation
The large positive estimated coefficient of tvi (1.408 (1.309,1.507)) indicates that endo is
more likely at higher volume institutions, while its estimated transformation parameter (−.
671) shows that propensity to receive endo is more sensitive to volume in smaller
institutions than in larger ones. The positive effect of date on endo (.002 (.001, .003)) is
consistent with the increasing market share of endo over time. Yet, while highly significant,
the effect is much smaller than under Model 2, suggesting that the increased uptake of endo
is partly due to higher likelihood of endo at larger institutions.

The negative effect of transfer indicates that (net of other factors) transferred patients are
less likely to receive endo, likely due to a lack of advance planning at the receiving hospital.
For the receiving hospital, transfer patients may often be urgent admissions because the first
hospital was not able to provide the needed care (e.g., a difficulty arose during the procedure
or the case was more serious than anticipated). Urgent admissions had an independent
negative effect.

Discussion
We used outcomes from endovascular and open repair of abdominal aortic aneurysms, to
estimate the effect of type of AAA repair and the effect of volume while adjusting for trends
over time, other non-clinical adjusters, and patient covariates. We used an innovative
approach to estimating the effects that has implications for similar comparative effectiveness
research using observational data. Because it has the capability to yield unbiased estimates
even in the presence of unmeasured confounding, the bivariate probit model is appealing for
an analysis such as this. To offset concerns about model identifiability relying on an
untestable bivariate normality assumption (the primary limitation of the bivariate probit
model), we used a modeling strategy that maximized the likelihood of this assumption. This
included (1) using nonlinear transformations of key predictors to relax the assumption of
bivariate normality to hold only for the transformation most supported by the data, and (2)
careful monitoring of model fitting criteria together with an assessment of external
validation based on the hypothesis that, because unobserved anatomical features that make
endovascular repair less appropriate for a patient are likely to be associated with higher
mortality under either procedure, the unmeasured selection effect would be negative. The
second condition was strongly met for the within-volume model, implying that volume is
optimally represented by an endo volume variable for endo cases and an open volume
variable for open cases.

We preferred use of the Box-Cox transformation to alternative departures from linearity
such as splines or other semi-parametric predictors because it supports a monotonic
relationship to the outcome and its effect is easy to interpret (e.g., in relation to a linear,
logarithmic, or inverse relationship). In addition, the Box-Cox transformation is supported in
Proc QLIM in SAS (version 9.2) making it more accessible to potential users.

A major finding of this work is that the non-clinical adjusters, a compilation of variables not
typically of concern in the analysis of randomized trials but which may have a large bearing
on treatment selection in observational settings, particularly institutional volume, are highly
predictive of treatment selection and subsequent outcomes. Therefore, restricting the
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analysis to the same variables used in a clinical trial would be problematic. Furthermore,
there is evidence that ignoring unmeasured selection results in an over-estimate of the effect
of endo, thereby providing policy-makers and other decision-makers suboptimal
information.

Several findings hold important substantive implications for policy. First, the trajectory of
endo volume for endo cases and open volume for open cases on perioperative mortality
differ. Experience with endo has a large incremental benefit to around 20 cases annually (a
larger number than previously estimated10) after which additional experience is much less
valuable. In contrast, incremental benefits of open volume decay more slowly and extend to
larger volumes. Therefore, to benefit the most from institutional experience under either
procedure (as is the appropriate mindset if there is uncertainty about the treatment they will
receive), a patient should seek an institution that performs at least two endo procedures per
month and a larger number of open procedures. Furthermore, in support of our earlier
findings based on a different approach,10 there is minimal spillover of experience across
procedures.

Second, considering other non-clinical adjusters, the results for date indicate that the
adoption and uptake of endo has steadily increased and operator expertise with both
procedures has improved, especially with endo. Transfer and urgent cases had the opposite
effect with endo less likely but mortality more likely. These findings suggest that the use of
endo on riskier unplanned cases offers substantial potential for improving outcomes and that
the development of improved endo training for such cases has a potentially large payoff.

Our study is subject to several limitations. First, we did not account for unobserved selection
of patients to hospitals. To account for a hospital selection effect acting through volume
requires adding equations with endo- and open-volume as left-hand-side variables to the
system of equations. Although appealing, joint estimation of a hospital-level selection effect
would require specialized software. Second, data on surgeon volume was not available for
these analyses. Availability of these data would have allowed surgeon and institutional
volume effects to be separated and more specific recommendations to be made about where
and from whom to seek treatment. Such a study is important follow-up work.

If more detailed covariate information was available, as would be the case with a
prospectively collected clinical registry, one might expect that accounting for unmeasured
confounding is less necessary. However, there is no guarantee that the net effect of the
unmeasured confounders would not be greater than in a less well-designed study, implying
that use of the bivariate probit may be warranted in such studies.

In conclusion, observational studies are widely criticized for their inability to account for
unobservable selection effects that may bias estimated treatment effects. The bivariate probit
model is useful for detecting and accounting for selection bias but is reliant on an untestable
assumption of bivariate normality. We sought to increase the rigor of our results by using
optimal transformations of predictors and choosing a model for which the estimated
selection effect cohered with external knowledge. In the process, several clinically and
policy relevant findings that might have otherwise been overlooked were discovered. We
recommend using methods that relax model assumptions and, where possible, using external
validation to inform model choice.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

O’Malley et al. Page 8

Med Care. Author manuscript; available in PMC 2014 April 08.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Acknowledgments
Sources of support: This work was supported by NIH grants 1RC4MH092717-01 and 1R01-HL105453 for
comparative effectiveness research.

References
1. Gillum RF. Epidemiology of aortic aneurysm in the United States. Journal of Clinical

Epidemiology. 1995; 48:1289–1298. [PubMed: 7490591]

2. Bengtsson H, Bergqvist D. Ruptured abdominal aortic aneurysm: a population-based study. Journal
of Vascular Surgery. 1993; 18:74–80. [PubMed: 8326662]

3. Greenhalgh RM, Brown LC, Kwong GP, et al. Comparison of endovascular aneurysm repair with
open repair in patients with abdominal aortic aneurysm (EVAR trial 1), 30-day operative mortality
results: randomised controlled trial. Lancet. 2004; 364:843–848. [PubMed: 15351191]

4. Prinssen M, Verhoeven EL, Buth J, et al. A randomized trial comparing conventional and
endovascular repair of abdominal aortic aneurysms. New England Journal of Medicine. 2005;
351:1607–1618. [PubMed: 15483279]

5. Schermerhorn ML, O’Malley AJ, Jhaveri A, et al. Endovascular vs. open repair of abdominal aortic
aneurysms in the Medicare population. New England Journal of Medicine. 2008; 358:464–474.
[PubMed: 18234751]

6. Schermerhorn ML, Giles KA, Cotterill P, et al. 30-Day Mortality and Late Survival with
Reinterventions and Readmissions After Open and Endovascular Aortic Aneurysm Repair in
Medicare Beneficiaries. Journal of Vascular Surgery. 2011 To appear.

7. Halm EA, Lee C, Chassin MR. Is volume related to outcome in health care? A systematic review
and methodologic critique of the literature. Annals of Internal Medicine. 2002; 137:511–520.
[PubMed: 12230353]

8. Luft HS, Bunker JP, Enthoven AC. Should operations be regionalized? The empirical relation
between surgical volume and mortality. New England Journal of Medicine. 1979; 301:1364–1369.
[PubMed: 503167]

9. TheLeapFrogGroup. Factsheet: Evidence-Based Hospital Referral. 2009. http://
www.leapfroggroup.org/media/file/FactSheet_EBHR.pdf

10. Landon BE, O’Malley AJ, Giles KA, et al. Volume Outcomes Relationships and AAA Repair.
Circulation. 2010; 122:1290–1297. [PubMed: 20837892]

11. Amemiya T. Bivariate probit analysis: Minimum chi-square methods. Journal of the American
Statistical Association. 1974; 69:940–944.

12. Gitto L. Dialysis modality selection according to the medical care provided at dialysis units: An
econometric analysis. Health Services and Outcomes Research Methodology. 2004; 5:227–241.

13. Zeng F, O’Leary JF, Sloss EM, et al. The Effect of Medicare Health Maintenance Organizations on
Hospitalization Rates for Ambulatory Care-Sensitivity Conditions. Medical Care. 2006; 44:900–
907. [PubMed: 17001260]

14. Bhattacharya J, Goldman D, McCaffrey D. Estimating probit models with self-selected treatments.
Statistics in Medicine. 2006; 25:389–413. [PubMed: 16382420]

15. Freedman DA, Sekhom JS. Endogeneity in Probit Response Models. Political Analysis. 2010;
18:138–150.

16. White H. A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for
Heteroskedasticity. Econometrica. 1980; 48:817–838.

17. Schwarz G. Estimating the dimension of a model. Annals of Statistics. 1978; 6:461–464.

18. Box GEP, Cox DR. An analysis of transformations. Journal of the Royal Statistical Society, Series
B. 1964; 26:211–252.

O’Malley et al. Page 9

Med Care. Author manuscript; available in PMC 2014 April 08.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.leapfroggroup.org/media/file/FactSheet_EBHR.pdf
http://www.leapfroggroup.org/media/file/FactSheet_EBHR.pdf


Figure 1. Plots of Endo and Open Mortality Outcomes by Endo and Open Volume
The raw proportions, displayed as open circles, are evaluated by binning the data with at
least 1000 observations per bin. A smooth curve is superimposed on the plot to give a sense
of the strength of the unadjusted relationships between volume and perioperative death.
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Figure 2. Plots of Predicted Probabilities of Mortality by Institutional Volume for an Average
Risk Patient
An average risk patient is a hypothetical patient having the sample average values of the
covariates. The endo effect presented in the lower plot maps the curves in the upper plot
onto the lines where endo and open volume are equal; a different trajectory would be
obtained if (e.g.) open volume was twice endo volume or was constant. On most occasions,
a patient attends a hospital where open volume exceeds endo volume and the institutional
volume over the past year is less than 100 for both procedures.
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Table 2

Parameter estimates of important terms in key models fit during the model building process

Model 1: No non-
clinical adjusters

Model 2: Add reason,
source, date of

admission
Model 3: Add within

procedure volume
Model 4: Add cross

procedure volume

Term Estimate 95% Conf Int Estimate 95% Conf Int Estimate 95% Conf Int Estimate 95% Conf Int

Bayesian Information

 Criterion* 99215 97065 83706 83716

Selection parameter

 Estimate 0.104 (−0.252, 0.459) 0.193 (−0.112, 0.497) −0.123 (−0.189, −0.057) −0.086 (−0.354, 0.181)

 Standard error 0.181 0.156 0.034 0.137

Key predictors of perioperative mortality

 Endovascular repair −0.710 (−1.275, −0.144) −0.707 (−1.186, −0.229) −0.242 (−0.465, −0.020) −0.315 (−1.076, 0.446)

 Urgent Admission 0.293 (0.167, 0.419) 0.364 (0.290, 0.438) 0.358 (0.273, 0.443)

 Transfer 0.760 (0.572, 0.949) 0.815 (0.629, 1.001) 0.805 (0.615, 0.994)

 Procedure date (Endo
pats)

−0.004 (−0.008, −0.001) −0.006 (−0.009, −0.003) −0.006 (−0.009, −0.003)

 Procedure date (Open
pats)

0.001 (−0.003, 0.004) −0.003 (−0.005, −0.001) −0.003 (−0.005, −0.001)

 BC(Endo volume,
Endo pats)#

−0.130 (−0.178, −0.082) −0.112 (−0.204, −0.020)

 BC(Open volume,
Open pats)#

−0.066 (−0.082, −0.049) −0.072 (−0.131, −0.012)

 BC(Endo volume,
Open pats)#

0.003 (−0.057, 0.064)

 BC(Open volume,
Endo pats)#

−0.003 (−0.018, 0.012)

 λ(Endo Volume, Endo
pats)&

−0.153 (−0.516, 0.209) −0.153 (−0.516, 0.209)

 λ(Open volume, Open
pats)&

0.136 (−0.229, 0.501) 0.136 (−0.229, 0.501)

 λ(Endo volume, Open
pats)

0.647 (−3.473, 4.768)

 λ(Open volume, Endo
pats)

0.436 (−1.678, 2.550)

Key predictors of endo

 Urgent Admission −0.504 (−0.558, −0.451) −0.443 (−0.502, −0.384) −0.442 (−0.501, −0.384)

 Transfer −0.059 (−0.215, 0.096) −0.162 (−0.326, 0.003) −0.162 (−0.326, 0.003)

 Procedure date 0.015 (0.014, 0.016) 0.002 (0.001, 0.003) 0.002 (0.001, 0.003)

 Proportion Endo 3.004 (2.942, 3.065) 3.004 (2.943, 3.064)

 BC(Total volume)# 1.408 (1.309, 1.507) 1.409 (1.310, 1.508)

 λ(Total Volume) −0.671 (−0.764, −0.579) −0.671 (−0.764, −0.579)

The perioperative mortality equation of Model 1 contains only clinical adjuster variables while Model 2 includes non-clinical adjusters other than
volume. Models 3 and 4 include all non-clinical adjusters with volume represented using optimal transformations. Model 4 extends Model 3 by
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allowing for cross-procedure spillover effects through the inclusion of the cross-volume variables as additional predictors. The Box-Cox

transformation18 with parameter λ of x is given by x(λ) = (xλ −1) / λ if λ ≠ 0 or otherwise x(λ) = log(x).

*
The number of observations used in each analysis is 61,414. BIC=plog(n)−2LL, where p and n are the number of estimated parameters and the

sample size respectively.

#
To simplify interpretation, confidence intervals for the transformed volume predictors are conditioned on the value of the estimated

transformation coefficient.

&
To help with identification of Model 4, the Box-Cox transformation parameters of the within procedure volume variables are fixed at their

estimates under Model 3.
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