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Hydrogen peroxide, the nonradical 2-electron reduction
product of oxygen, is a normal aerobic metabolite occurring at
about 10 nM intracellular concentration. In liver, it is produced
at 50 nmol/min/g of tissue, which is about 2% of total oxygen
uptake at steady state. Metabolically generated H2O2 emerged
from recent research as a central hub in redox signaling and
oxidative stress. Upon generation by major sources, the NADPH
oxidases or Complex III of the mitochondrial respiratory chain,
H2O2 is under sophisticated fine control of peroxiredoxins and
glutathione peroxidases with their backup systems as well as by
catalase. Of note, H2O2 is a second messenger in insulin signal-
ing and in several growth factor-induced signaling cascades.
H2O2 transport across membranes is facilitated by aquaporins,
denoted as peroxiporins. Specialized protein cysteines operate
as redox switches using H2O2 as thiol oxidant, making this reac-
tive oxygen species essential for poising the set point of the
redox proteome. Major processes including proliferation, dif-
ferentiation, tissue repair, inflammation, circadian rhythm, and
aging use this low molecular weight oxygen metabolite as signal-
ing compound.

One of the surprises in redox biology was the relatively recent
appreciation of hydrogen peroxide as a messenger molecule. It
is now widely accepted that this low molecular weight molecule
is utilized in metabolic regulation in ways similar to diffusible
gases such as NO, CO, or H2S. Even more so, H2O2 is recog-
nized as being in the forefront of transcription-independent
signals, in one line with Ca2� and ATP (1). H2O2 diffuses
through tissues to initiate immediate cellular effects, such as
cell shape changes, the formation of functional actomyosin
structures, and the recruitment of immune cells (1). Among the
various reactive oxygen species, H2O2 has been identified as a
suitable second messenger molecule, in part because of its reac-
tions with specific oxidation-prone protein cysteinyl residues in
local environments that lower the pKa to provide specificity in

time and space, required in signaling (2, 3). However, until
recently, assessing the precise amount of hydrogen peroxide in
cellular and subcellular locations under in vivo conditions was
challenging, but promising progress in methodology has
opened a new level of analysis, introducing genetically encoded
fluorescent indicators as H2O2 reporter molecules (4).

Against this background, the present minireview will address
the following questions. 1) How can H2O2 be assayed in the
biological setting? 2) What are the metabolic sources and sinks
of H2O2? 3) What is the role of H2O2 in redox signaling and
oxidative stress?

How Can H2O2 Be Assayed in the Biological Setting?

In his book “On the Catalytic Actions of the Living Sub-
stance,” in 1928 Otto Warburg (5) noted that one should “study
enzymes under the most natural conditions of action, in the
living cell itself. From the standpoint of preparative chemistry
they may be looked upon as being of utmost impurity. However,
if one finds reactants that selectively react with the enzymes,
the rest of the cell interacts as little as the glass wall of a test tube
in which a chemical reaction is carried out.” This is the mindset
behind the current use of proteins selectively sensing and
reporting ligands or reactants such as H2O2.

Organ Spectrophotometry of Catalase Compound I

The first demonstration that H2O2 is present as a normal
attribute of aerobic metabolism in mammalian cells was by
spectrophotometry of catalase Compound I, which is formed in
the reaction of catalase with H2O2 (6). Catalase minus catalase
Compound I (7) has an optical difference spectrum in the near
infrared amenable to specific spectrophotometry in biological
systems because there is negligible interference from other
components and little light scattering. The absorbance differ-
ence between 640 and 660 nm was identified to selectively mon-
itor the steady-state level of catalase Compound I in intact liver
(6), enabling readout of H2O2 by using Compound I as a molec-
ular beacon and proving the existence of H2O2 under normal
metabolic conditions. As illustrated in Fig. 1, the continuous
endogenous production of H2O2 was demonstrated by its reac-
tion with the hydrogen donor, methanol. There is increased
formation of Compound I upon infusion of substrate for
enhanced production of H2O2, e.g. glycolate (8). Methanol can
be used as hydrogen donor for titrations in intact tissues
because unlike ethanol, it reacts specifically with catalase Com-
pound I. From titrations with methanol, the steady-state rate of
H2O2 production was quantified to be 50 nmol/min/g of liver,
which is about 2% of the respiration rate of the liver (9). Supply
of medium-chain fatty acids such as octanoate increased the
rate of H2O2 generation to 170 nmol/min/g of liver (Table 1).
The concentration of H2O2 was estimated to be about 10 nM

(10). Exposed liver of anesthetized rats in situ is amenable to
this H2O2 assay as well (11). These data represent H2O2
detected by catalase in the liver, a tissue rich in peroxisomes
(see Ref. 10). Rates and concentrations of H2O2 in other cell
types may be different. Isolated mitochondria had an upper
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estimate of the proportion of electron flow giving rise to H2O2
with palmitoyl carnitine as substrate of 0.15% (12), an order of
magnitude lower than the 2% mentioned above for the intact
liver. Thus, either there is an artifactually low rate after isolation
of the organelles, or the contribution by extramitochondrial
sources is considerable, or there is an overestimation by the
hydrogen donor titration method. Conversely, in addition to
the H2O2 detected with the catalase Compound I method
(Table 1), additional H2O2 flux occurs through the peroxire-

doxins, thioredoxins, and GSH peroxidases (see below). These
issues need to be addressed in further studies as methodology
advances.

Genetically Encoded Fluorescent Protein Indicators of H2O2

The fluorescent probe HyPer (4) consists of circularly per-
muted yellow fluorescent protein (cpYFP) inserted into the reg-
ulatory domain of the prokaryotic H2O2-sensing protein, OxyR
(hydrogen peroxide-inducible gene regulator). An illustration
of the type of imaging of H2O2 in intact organisms is given in
Fig. 2, where the time course and color intensity ascribed to
H2O2 generation in a model of tissue injury and repair as well as
proliferation are indicated (13). Several types of redox-sensitive
proteins have been developed, as reviewed in Refs. 14 and 15).
Major issues concern specificity and sensitivity. Nonetheless,
progress in the development of these techniques has enormous
potential in noninvasive investigation of physiological and
pathophysiological processes. The use of H2O2-generating
enzymes fused to HyPer is one such example; the HyPer-D-
amino acid oxidase construct enables calibration and intercel-
lular as well as subcellular analysis noninvasively (16).

“Nonredox” Exogenous Probes

Using boronate-based chemistry (17, 18), an exogenous
probe compound is administered to the intact cell or organism
that is then to be transformed in vivo to a diagnostic fluorescent
compound or an ”exomarker,“ which is analyzable by e.g. mass
spectrometry. One such example is the use of the compound,
MitoB ((3-hydroxybenzyl)triphenylphosphonium bromide), to
infer levels of mitochondrial H2O2 (19). Peroxynitrite can also
react with the boronate-based probes. Possibilities and pitfalls
in using available methods to detect hydrogen peroxide in living
cells were examined (20, 21).

What Are the Metabolic Sources and Sinks of H2O2?

Sources

A major source of hydrogen peroxide comes from the dismu-
tation of the superoxide anion radical, formed by 1-electron
reduction of oxygen. Although there is spontaneous dismuta-
tion, superoxide dismutases catalyze the reaction. Among sev-
eral types of superoxide source, NAD(P)H oxidases are promi-
nent, operating under the control of growth factors and
cytokines (22). Activated monocytes or macrophages release
superoxide (23), and neutrophils and eosinophils utilize oxi-
dants in antibacterial defense (oxidative burst). Important for
signaling, other cell types also exhibit controlled release of
superoxide, as shown for human dermal fibroblasts treated
with the proinflammatory cytokines interleukin-1 or tumor
necrosis factor-� (24). Spatial and temporal analysis of NADPH
oxidase-generated H2O2 signaling became amenable using
novel fluorescence resonance energy transfer (FRET)-based
reporter proteins, OxyFRET and PerFRET (25).

Another major cellular source of H2O2 resides in the mito-
chondria (26). Respiratory chain-linked H2O2 production (27)
was attributed to superoxide radicals (28), and the mechanism
of mitochondrial superoxide production by the cytochrome bc1
complex (Complex III) has been elucidated (29). It is notewor-

FIGURE 1. Demonstration of steady-state H2O2 generation in intact liver
by organ spectrophotometry. A, the absorbance difference between 640
and 660 nm is used for monitoring catalase Compound I (top) and oxygen
concentration in effluent perfusate (bottom). Anoxia and reoxygenation
(argon and oxygen, arrows) and methanol (arrow) as hydrogen donor modu-
late, and thereby prove the existence of, H2O2 steady states; from Sies and
Chance (6) with permission. B, catalase minus catalase Compound I difference
spectra. Left, isolated enzyme. Right, organ difference spectrum (trace A) and
cyanide difference spectrum (trace B); from Sies et al. (8) with permission.

TABLE 1
H2O2 production rates in intact organ
Isolated hemoglobin-free perfused liver data were obtained by methanol titration of
catalase Compound I; from Oshino et al. (9). For discussion, see Refs. 10 and 32.

Substrate or inhibitor
H2O2

production rate

nmol of
H2O2/min/g of

liver wet wt
L-Lactate, 2 mM; pyruvate, 0.3 mM 49

� Antimycin, 8 �M 75
� Octanoate, 0.3 mM 170
� Oleate, 0.1 mM 66
� Glycolate, 3 mM 490

MINIREVIEW: Hydrogen Peroxide and Redox Signaling

8736 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 289 • NUMBER 13 • MARCH 28, 2014



thy that Complex I is another major source of mitochondrial
superoxide production and that the release of superoxide is
directed toward the mitochondrial matrix space, whereas Com-
plex III produces it toward the intermembrane space. Transi-
tory reactivation of Complex I is a central pathological feature
in ischemia-reperfusion injury. Prevention of this reactivation
by modification of a cysteine switch (S-nitrosation of Cys-29 in
the ND3 subunit) was shown to be a robust cardioprotective
mechanism (30). Mitochondrial Complex II is a further inde-
pendent source of mitochondrial reactive oxygen species (31).
Direct production of H2O2 by enzymatic sources occurs by a
number of oxidases, many of which operate in specific cell types
and in specific subcellular compartments, such as xanthine oxi-
dase, monoamine oxidases, or D-amino acid oxidase, to name a
few (32).

Sinks

Metabolic sinks of H2O2 include the catalatic reaction, car-
ried out by catalase, as well as the various peroxidatic reactions,
performed as well by catalase, but importantly also by numer-
ous peroxidases. Furthermore, in organs, the diffusion of H2O2
away from its source, even across membranes to the extracel-
lular space or to other cells, is a possibility. The catalatic reac-
tion, i.e. the dismutation of H2O2 to H2O and O2, may be
regarded as a safety valve, occurring at higher ranges of H2O2
concentration, e.g. under toxic conditions. Catalase can also
reduce H2O2 in the presence of metabolic hydrogen donors in
the peroxidatic reaction (33). As shown in Fig. 1, external
hydrogen donors such as methanol can be used to ”titrate“ cat-
alase Compound I (8, 9). Peroxidases reduce H2O2 in usually
highly specialized reactions. Although the flux in these peroxi-
dase reactions may be low, their metabolic significance is con-
siderable, in view of temporal and spatial regulation (see below).

Peroxidases of various nature are susceptible to regulation by
metabolic signals. A foremost example emerged with the dis-
covery of the peroxiredoxins (34), as reviewed (35). The 106-

fold higher rate constant of the reaction of H2O2 with the cys-
teine thiolate (Cp) in peroxiredoxins as compared with most
other deprotonated thiols (36 –38) makes for a special role.
Thus, under normal cellular conditions, eukaryotic peroxire-
doxins were predicted to be responsible for the reduction of
up to 90% of mitochondrial H2O2 and even more than that of
cytosolic H2O2 (39, 40). On the other hand, cysteine residues
in peroxiredoxins can become hyperoxidized to cysteine sul-
finic acid, which results in an inactivation of the peroxidase.
This is crucial for the sensitivity in H2O2 redox signaling. As
a result, there is a subsequent local buildup of H2O2, allowing
the oxidation of specific target proteins, likened to the open-
ing of a “floodgate” (41). The functional loop is closed by
sulfiredoxins, which reduce the hyperoxidized peroxiredox-
ins (Fig. 3) (42, 43).

Glutathione peroxidases in various subcellular compart-
ments and cell types have a major function in the control of
H2O2 and of other hydroperoxides (see Refs. 44 and 45). Gluta-
thione disulfide reductase activity allows for maintenance of
flux, and GSSG efflux from cells is another option. Using exter-
nal H2O2 as challenge, the rate of GSSG efflux from liver, for
example, was 3 nmol of GSSG/min/gram of wet weight at a
steady-state rate of H2O2 infusion of 100 nmol/min/gram of
wet weight (46).

H2O2 Compartmentation

As discussed above, the local concentration of H2O2 is gov-
erned by the control of its generation and of its removal. Con-
cerning removal, the diffusion of this uncharged molecule away
from the site of generation and across biomembranes leads to
H2O2 gradients (47). High capacity of removal, e.g. by catalase
in the peroxisomes, will generate intracellular gradients.
Importantly, the local activity of peroxiredoxins near signaling
sites, e.g. caveolae areas of the plasma membrane, will govern
steady-state concentrations. Use of techniques for cell culture
studies with the glucose oxidase/catalase system (48) yielded

FIGURE 2. Production of H2O2 during tadpole tail regeneration. Images on the bottom show the false color representation of [H2O2] at 2 min post
amputation (mpa) of the tadpole tail and in hours (hpa) or days (dpa) post amputation. From Love et al. (13), with permission.
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the insight that the peroxiredoxin-2 dimer-to-monomer ratio is
suitable to follow the H2O2 steady-state concentration down to
physiological levels (49).

Aquaporins as Peroxiporins

H2O2, a molecule with chemical and physicochemical prop-
erties close to those of H2O, was shown to use water channels,
the aquaporins, to cross the cell membrane more rapidly than
by simple diffusion (50). This discovery opened an exciting field
on membrane transport of hydrogen peroxide (51). Specific
aquaporins facilitate the diffusion of H2O2 across membranes,
which is why they are also referred to as peroxiporins (52).
Mitochondrial aquaporin-8 knockdown in human hepatoma
HepG2 cells caused loss of viability (53). Silencing of aqua-
porin-8 inhibited H2O2 entry into HeLa cells (54). Aquaporin-3
was shown to mediate H2O2 uptake to regulate downstream
signaling (55). There are multiple interactions of aquaporins
and H2O2 in cells, both at the intracellular-extracellular spaces,
but also within subcellular compartments (56). Aquaporin-8 is
able to modulate Nox (NAD(P)H oxidase)-produced H2O2
transport through the plasma membrane in leukemia cells
(57), an interesting aspect for potential therapeutic strategies
addressing H2O2 transport.

What Is the Role of H2O2 in Redox Signaling and
Oxidative Stress?

Mechanism

The oxidative modification of amino acid side chains in pro-
teins by H2O2 involves, in decreasing order of reactivity and
biological reversibility, cysteine, methionine, proline, histidine,
and tryptophan (see Ref. 58). Thiol modification is key in H2O2
sensing and perception in proteins (59). Transmission of a
redox signal to protein thiols initiated by H2O2 can occur in
several ways (see Ref. 37): (i) by direct oxidation of a target

protein, (ii) by oxidation via a highly reactive sensor protein,
(iii) by activation of a target protein upon dissociation of an
oxidized inhibitor, (iv) by oxidation of a target protein via a
secondary product generated through e.g. thioredoxin, (v) by
inactivation of a scavenging protein such as peroxiredoxin to
allow the oxidation of the target protein (floodgate model, see
Ref. 41 above), and (vi) by association of the target protein with
an H2O2-generating protein to allow site-directed oxidation. In
addition to direct oxidation, protein glutathionylation and
other modifications can occur and serve in redox signaling.

Targets

Insulin signaling was probably the first transduction chain in
which H2O2 was invoked as a second messenger (60); H2O2 was
called an “insulinomimetic” (61). Growth factors such as plate-
let-derived growth factor (PDGF) (62), through H2O2 produc-
tion, induce downstream effects on tyrosine phosphorylation,
as do other important growth factors such as epidermal growth
factor (EGF) (63), fibroblast growth factor (FGF) (64), or vascu-
lar endothelial growth factor (VEGF) (65). A major mechanism
is the inactivation of protein phosphatases by H2O2, thereby
increasing the level of protein phosphorylation. Also, direct
modification of the EGF receptor by H2O2 at a critical active site
cysteine (Cys-797) was shown to enhance tyrosine kinase activ-
ity (66).

Regarding nonreceptor kinases, signal-mediated H2O2 pro-
duction increases Akt (also known as protein kinase B (PKB))
activation (67). Another group of serine/threonine kinases, the
MAP kinases, mediate redox modulation of Erk1/2, JNK, and
p38. As comprehensively reviewed in Ref. 68, many studies doc-
umented H2O2-induced activation of MAPK pathways, and the
redox-based inactivation of upstream components also serves
to modulate MAPK signal duration. Critical thiols are centrally
involved in activation of essential switches in defense reactions,
namely in the NF-�B (69) and Nrf2/Keap1 (70) systems, impor-
tant in chemoprevention and cytoprotection (71). The nature
of targets extends from the specific ones mentioned above to
reactive cysteines in general, a wide open field of research on
sulfur switches, governing the set point in the protein-cysteine
redox proteome (72–74).

Processes

The functional consequences of H2O2 signaling concern fun-
damental biological processes. The role of mitochondrial H2O2
was recently discussed (75) for hypoxia, inflammation, apopto-
sis, and autophagy. Concepts of the inflammasome (76) and
redoxosome (77) have evolved. In wound healing, H2O2 signal-
ing has been established as a prominent early feature (1, 78, 79),
shown for the wound healing/proliferation model in Fig. 2.
H2O2 acts as a chemoattractant (78, 80). New horizons have
been opened in understanding the intricate relationships of
reactive oxygen species in immunology (81).

Much has to be learned for better understanding the role of
redox signaling in metabolism, in insulin signaling in particular
(82). Although reactive oxygen species enhance insulin signal-
ing (83), excessive levels may cause diabetic complications, so
that these opposing actions constitute a “peroxide dilemma”
(84, 85).

FIGURE 3. Role of sulfiredoxin (Srx) as a regulator of peroxiredoxin (Prx)
function and regulation of its expression. Relationship to external stimuli is
also shown. From Jeong et al. (43), with permission.
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The current perception of the aging process includes a role of
metabolic alterations such as dysregulated nutrient sensing and
mitochondrial dysfunction, all of which encompass alterations
in H2O2 signaling. Intracellular H2O2 concentration in skeletal
muscle rises by about 100 nM during contractions (86). This
response is weakened in aging, which may contribute to age-
related loss of muscle mass and to frailty (86). An interesting
aspect of redox regulation in aging is the cellular polarity, medi-
ated by the activity of AMP-activated protein kinase (AMPK) in
controlling the cytoskeleton (87). Peroxiredoxins are conserved
markers of circadian rhythm (88), and chronobiological
research has revealed a tight coupling of redox reactions to
circadian rhythmicity (89).

Oxidative Stress

The initial concept of oxidative stress focused on the damage
of biomolecules such as DNA, lipids, and proteins (58). It was
extended to include the emerging role of biologically generated
oxidants in redox signaling (90): “Oxidative stress is an imbal-
ance between oxidants and antioxidants in favor of the oxi-
dants, leading to a disruption of redox signaling and control
and/or molecular damage.” With the recognition of the role of
low level oxidant stimuli for altering the set point of gene
expression for batteries of enzymes, known as hormesis (91),
physiological oxidative stress came into focus on a spatial and
temporal dimension. Tissue-scale gradients and regional spec-
ificity are being identified (78, 92).

Concluding Remarks

Retrospective

The occurrence of H2O2 in normal aerobic metabolism was
heavily contested in the early days of research in bioenergetics,
with the quote from the 1920s in the Warburg-Wieland dispute
“that even after killing a whole dog there was not one drop of
H2O2 detectable.” In addition, Keilin and Hartree in 1945 (33)
stated: “Contrary to the view that H2O2 is generally formed in
cells and tissues during respiratory processes are the following
two facts . . . ” and Britton Chance in 1951 (93) concluded:
“Quantitative evidence for the existence of significant amounts
of . . . H2O2 . . . in tissue is lacking, since catalase, by virtue of its
peculiar capacity for catalatic reactions literally ‘destroys the
evidence’ of free hydrogen peroxide in the cell.” It was not until
the continuous detection of catalase Compound I in intact tis-
sue under steady-state conditions that H2O2 production was
proven in 1970 (6). It might be appropriate to quote the final
sentence in the review on hydroperoxide metabolism in mam-
malian organs from 1979 (10): “Finally, recent understanding of
the beneficial action of H2O2 in phagocytosis and in ethanol
oxidation suggests caution in condemning any metabolite as
useless until its functions in toto are thoroughly understood.”

Prospective

The advent of novel converging techniques from cell biology,
noninvasive imaging for H2O2 detection, and metabolic studies
opened a new vista. Hopefully, there will be real-time spatially
resolved quantitative monitoring of H2O2 as a versatile and
innocuous oxygen metabolite functioning in redox signaling.

Appropriate control is provided by the powerful generators,
scavengers, and switches discussed above. H2O2 serves as a
central hub for information flow in plant cells as well (94), and
there is indication that waves of H2O2 transmit information in
plant cells (95). At present, it still appears puzzling how local
fine-tuning is orchestrated in the simultaneous presence of a
multitude of potential reactants. Shaping the microenviron-
ment for the recruitment of target proteins to the site of H2O2
production, and vice versa, is one of the strategies. A concept
has been proposed (96) of ”redox optimization“ between mito-
chondrial respiration and formation of reactive oxygen species.
More refinement of methodology for noninvasive detection of
H2O2 production by cellular NADPH oxidases is required (97).
The threshold from signaling to excessive toxic levels will be
challenging to further identify. The precise transition points for
these cellular responses may vary due to cell type and metabolic
conditions (see Ref. 2).

Note: This minireview focused on aspects of metabolic H2O2
generation. Xenobiotic and toxicological sources such as in
”redox cycling“ and lipid peroxidation (98) were not considered
here. Further, it should be mentioned that redox signaling
extends to other large and important sectors, only one example
being that of peroxynitrite biology and the field of protein tyro-
sine nitration (99, 100). It will be another challenging area of
research to analyze the cross-talk and interrelationships
between different modalities of redox signaling.
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