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ABSTRACT The origin of the two-phase (cap, no cap)
macroscopic kinetic model of the end of a microtubule is re-
viewed. The model is then applied to a new theoretical prob-
lem, namely, the Mitchison-Kirschner [Mitchison, T. &
Kirschner, M. W. (1984) Nature (London) 312, 237-242] ex-
periment in which aggregated microtubules in solution sponta-
neously decrease in number (shorten to disappearance) while
the surviving microtubules increase in length. The model fits
the experiments without difficulty.

In this paper, the theory of the two-phase model of a micro-
tubule (MT) end is extended to a new experimental problem,
but we begin with a review of the origin of the model.
The previous view ofMT aggregation, originating with the

ideas of Wegner (1) and extended and summarized by Hill
and Kirschner (2), was that hydrolysis of GTP-tubulin to
GDP-tubulin is closely coupled to the aggregation of GTP-
tubulin from solution onto the end of a MT. Thus, a MT
would consist entirely of GDP-tubulin units. Treadmilling (1,
2) is an interesting consequence for a free MT in solution.
However, this picture was upset by Carlier and Pantaloni
(3), who found that the hydrolysis of GTP-tubulin lags be-
hind its aggregation. Hence, there can be a steady-state or
transient cap of GTP-tubulin or mostly GTP-tubulin units at
each end of a MT, though the interior of a MT is all GDP-
tubulin.
When these new kinetic details were incorporated by Hill

and Carlier (4) and by Chen and Hill (5) into a theoretical
analysis of the steady-state aggregation flux Ja(c) of, say, the
a end of a MT, where c is the concentration of free GTP-
tubulin, it was found that the theoretical J,(c) has a disconti-
nuity in slope or a sharp bend at or near the critical concen-
tration c = c, (where Ja = 0). This is a new feature that is a
consequence of the GTP cap: the phase or regime above c =
cat is characterized by a significant mean cap of GTP-tubulin
whereas the phase or regime below c = ca has a mean cap
whose size decreases rapidly as c is decreased. These theo-
retical results led Carlier et al. (6) to carry out dilution ex-
periments on MTs in solution that confirmed the predicted
near-discontinuity in the slope of J(c) at the critical concen-
tration c. (where J = 0). Then transient Monte Carlo calcu-
lations (6), using the same detailed or "microscopic" kinetic
model as above, led to early-time shapes of Ja(c) curves in
agreement with the dilution experiments. It was emphasized
(6) that the GTP cap stabilizes a MT end and that the absence
of a cap leads to instability and fast depolymerization, as
exhibited by the relatively steep slope of J(c) below c = c=.
The next step, in this alternation between experiment and

theory, was the experiments of Mitchison and Kirschner (7,
8) in which MTs formed from centrosomes, axonemes, or
seeds were examined visually and individually to achieve a
deeper level of detail. These experiments could be interpret-

ed only by adding one further qualitative feature to the con-
clusions in refs. 4-6: not only were there two different
phases (cap, stable; no cap, unstable) above and below c =
Ca (for the a end), as described above, but, over a range in c
on either side of c = ca, both phases can exist and intercon-
vert (infrequently) at any given c. The capped phase domi-
nates in these interconversions (phase changes) above c = c,
whereas the uncapped phase dominates below c = ca-in
agreement with the mean flux Ja(c) results already men-
tioned. As a consequence of the Mitchison-Kirschner ex-
periments, previous (and new) Monte Carlo steady-state cas-
es were examined (9) at very short time intervals, to look for
these alternations in phase. At any c not too far from car
such phase changes were indeed found: in the time course of
the steady-state Monte Carlo simulation, a MT end switches
occasionally and cleanly from one phase to the other (cap or
no cap). These Monte Carlo results then made it apparent
that the detailed microscopic kinetic scheme (4-6) for each
MT end, which formed the basis for the simulation, could be
replaced by a much simpler quantitative macroscopic kinetic
model (9) based on the existence of the two phases. The two
schemes are essentially equivalent and relate to the same
system (the end of a MT) but, because of the clean phase
changes seen in the simulation, the relatively simple macro-
scopic model is an excellent approximation to the much
more complex microscopic kinetic scheme. The rate con-
stants in the macroscopic model are of course effective com-
posites of microscopic rate constants. Recent theoretical
work on this subject (10-12), including comparison with the
Mitchison-Kirschner experiments (7, 8), has been based on
the new macroscopic kinetic model (9). This program is con-
tinued here with the examination of another problem.
The objective here is to apply the two-phase macroscopic

kinetic model, for each end of a MT, to the experiment in
figure 4 of ref. 8. In this experiment MTs were grown from
seeds in a solution with an initially high concentration of free
GTP-tubulin. After shearing and then further rapid growth
until the amount of tubulin in polymers became essentially
constant, samples were taken over the next 55 min, from
which were obtained the (decreasing) concentration of sur-
viving MTs, the mean length (which increased) of surviving
MTs, and the length distributions of these MTs (not shown in
ref. 8 but kindly made available to us by the authors).
The model and basic equations that apply to this problem

were introduced in ref. 11. Because the concentration of free
GTP-tubulin varies somewhat with time (see below), there is
no hope of an analytical solution. Also numerical solution of
the set of kinetic master equations (equations 17-21 of ref.
11) is impractical because of the huge number of equations
involved. Therefore we have used a Monte Carlo simulation
on an initial group of 1550 MTs in a suitable small volume V,
treated as a single kinetic system.
The basic kinetic model (9, 10) used for each end is shown

in Fig. 1 for the a end. All of these rate constants are func-

Abbreviation: MT, microtubule.
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FIG. 1. Two-phase macroscopic kinetic model or diagram for the

a end of a MT.

tions of c (see below), the concentration of free GTP-tubulin.
The variable m in this figure counts subunits added to or lost
from the a end. For a complete polymer4 with two ends, the
corresponding kinetic diagram (11) is given in Fig. 2. The Jj
shown in Pig. 2a are composites ofJ1 and J2 (Fig. 1) for the a
and 8 ends (11):

Jll -Ja + J1f, J12 Jla J2-
J21 - J2a - J10, J22 J2a J2,B [1]

The subscripts i and j on J4 (ij = 1, 2) refer to the phases of
ends a and f3, respectively. In cases of interest, all of the JV
are positive. The polymer lengthens in state 11 and shortens
in states 12, 21, and 22 (i.e., if one or both ends have no GTP
cap). The transition from m = 1 in state 22 (both ends short-
ening) is assumed to lead to polymer disappearance. The
transitions from m = 1 in states 12 and 21 correspond to the
loss of the last subunit from the shortening end. This leaves a
polymer (state 0) that consists only of the cap that was at the
other end. This residual cap is essentially a seed that can
now start to grow from either end (J11 transition out of state
0). Alternatively, the residual cap may be too small to be
stable, in which case it would disintegrate (y transition out of
state 0). Homogeneous nucleation of new polymers is as-
simed not to occur. Thus m in Fig. 2a refers to the number
of subunits in the polymer in addition to the number in the
residual cap, which we call m, (a constaht). In the y trahsi-
tion, ml subunits become free in solution. In the last J22 tran-
sition, m, + 1 subunits become free.
The phase change rate constants shown in Fig. 2b apply to

every m > 1. The values of m usually populated are in the
hundreds and thousands. Hence possible m dependence of
rate constants at very small m are ignored. However, all rate
constants are functions of c.

In the Monte Carlo simulation, each of the surviving MTs
does a random walk on its own kinetic diagram (Fig. 2).
However, the whole collection of surviving MTs in V must
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2221 121
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FIG. 2. (a) Two-phase kinetic diagram for a MT in solution with
two free ends, a and P3. Jv and y are defined in the text. (b) Phase
change rate constants for every m a 1.

be treated as a single system because gain or loss of polymer
subunits in the Jij or y transitions alters the concentration of
free subunits (GTP-tubulin), which in turn alters the rate
constants. The volume V of the solution is constant, as is the
total number of subunits (free or in polymers).
We turn now to the actual rate constants used. Analytical

expressions are needed for each of these. Mitchison and
Kirchner (7) found c. = 14 ttM (critical concentration) but
the true c-= 10 tLM, because of inactive tubulin. Therefore
we correct the constants 3.82 and 1.22 in table 1 of ref. 8 by a
factor 14/10 to obtain

la = 5.35c - 0.37, J1 = 1.71c - 1. 1. [2]

The units throughout the paper are s- for all first-order rate
constants and gM for c. At c = 0(8), J2,,, = -340 and J2 =
-212, but there is no experimental information about the c
dependence of these two quantities. We therefore use the
shape of curve found in the five-helix Monte Carlo work (12)
but reduce the amplitude of the c dependence to keep all Jt
positive at c = 20 (needed below). We use the empirical for-
mulas

J2a = -378.7 + 138.1[a/(1 + a)]

J2,0 = -236.1 + 86.1[a/(1 + a)] [3]
a = exp[(c - 3)/3.18].

The four functions in Eqs. 2 and 3 are included in Fig. 3.
We again have to resort to five-helix Monte Carlo results

(12) for the ks. For lack of other information, we assume
both ends have the same k and k'. Empirical equations fitting
the Monte Carlo simulations (12) are as follows:

ka = ke = k = 0.841/C2.474,

kal - ke = k' = 1.6 x 10-c.

The k and k' functions in Fig. 4 are both smaller than those in
Eqs. 4 by a constant factor of 2.5 (as explained below).
Very long (i.e., nondisappearing) polymers with the above

rate constants (Eqs. 2-4) have the steady-state subunit flux
A(c) included in Fig. 3, as calculated from equation 5 of ref.
11. The critical concentration c,,, where J = 0, is c., = 10.08
(consistent with ref. 7). The curve fM(c) at the bottom of the
figure is k'/(k + k'), the steady-state fraction of ends in state

+100 ZEi
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FIG. 3. Steady-state subunit fluxes for a and f3 ends in phase 1
(cap) and 2 (no cap). J is the overall steady-state subunit flux (both
ends) for very long MTs. The fraction of ends in state 1 (cap), at
steady state, is fl.
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FIG. 4. Phase change rate constants (both ends) used in one ex-
ample (Eq. 6). Also included is the curve Pocc(c) for the a end based
on Eqs. 2, 3, and 6 and on equation 11 of ref. 12.

1 (i.e., with a cap). Other properties at c = c., from Eqs. 2-
4, are

Jia = 53.6, J1p = 16.1, J2a, = -254.1, J213 = -158.4

J11 = 69.7, J12 = 104.8, J21 = 237.9, J22 = 412.4

Ja = 9.09, J = -9.09 (ca = 9.75, c13 = 10.87) [5]
k = 0.00277, k' = 0.0164, f1 = 0.8554.

Here Ja and Jo are the steady-state fluxes at the two ends
(note that there is treadmilling), and ca and c13 are the critical
concentrations of the separate ends (where Ja = 0 or J4 = 0).
The J4 are of order 102 s-1 while k and k' are of order 10-2

sol, with a ratio of order 104. Thus each Jj transition in Fig.
2a is more probable than a phase change by a factor of order
104. Because of this, only a very small error (which we have
examined) is made if the JU transitions are assumed to occur
in packages of g transitions, where we usually take g = 100.
Using these g packages, the effective rate constants in the
resulting modified diagram are J4/g and y/g (with no change
in k and k'). Without this compression, the cost of a Monte
Carlo simulation would be prohibitive because of the very
large number of transitions. In two quite different cases,
mentioned below, a simulation with g = 100 was repeated
using g = 50; in both cases, as expected, the change in g had
no noticeable effect on the results.
Another somewhat similar simplification was introduced

to reduce the cost of the computation. The number of free
subunits in the small volume V used in the simulation is more
than 107. Corrections to the free concentration c were made
only after each net gain or loss of 104 free subunits (i.e., a
change in c of less than 0.1%).
The program (with Eqs. 2-4) was tested first on the 5-min

period of very rapid polymer growth after shear (figure 4 of
ref. 8), starting with c = 20 and an approximately equal num-
ber of subunits in the form of polymers. Details are omitted
because no information was available on the initial length
distribution and hence a guess was made that all initial poly-
mers were in state 11, with a flat distribution in length of
reasonable width about the mean length. The value of c de-
creased to c. = 10.08 in 4.25 min and then began to oscillate

slightly just below c.. After 5 min, polymers were in approx-
imately the c. steady-state distribution among state 11, 12,
21, and 22-i.e., in relative amounts fl, f1(1 - fi), etc., with
f, = 0.8554 (Eq. 5). The length distribution was similar in all
four states. One of the g = 50 versus g = 100 tests (see
above) was made on this period of rapid growth.
The main Monte Carlo calculations begin (we call this t =

0) after the above 5-min period of rapid growth. We use the
experimental (8) starting (t = 0) distribution in length (Fig.
SA), smoothed out above 18 ,um. The connection adopted
between subunit number and length is 5000 subunits = 3 Aum.
In view of our results in the rapid growth period (above), we
assume that c = c. = 10.08 at t = 0 and that there is a
steady-state distribution among states 11, 12, 21, and 22, all
with length distribution of the same shape (Fig. SA). We
start, for convenience, with 1550 polymers. The initial poly-
mer concentration (figure 4 of ref. 8) is 6.84 x 1011 ml-'.
Hence V = 2.26 x 10-9 ml. The initial number of subunits in
polymers (Fig. 5A) is 3.74 x 107; the initial number of free
subunits is 1.37 x 107. The total number of subunits is held
fixed.
The initial parameters chosen were Eqs. 2-4, g = 100, m,

= 30, and y = 104. Because J11 is about 70 (see Eqs. 5), this y
implies that almost every residual cap disintegrates. This
case gave somewhat too slow of a decrease in MT number
and too slow an increase in mean MT size. However, merely
by dividing both k and k' by 2.5-i.e., on using

k = 0.3364/c2 474, k' = 6.4 x 10-6C, [6]

good agreement was obtained with the experimental results
(Fig. 6). The functions in Eqs. 6 are those shown in Fig. 4.
This change in k and k' does not affect J(c), c.,o and f1(c) in
Fig. 3; also, Eqs. 5 are unaltered except for the k and k'
values.

In the Eqs. 6 case, almost 2 x 106 transitions (g packages,
k, k') were needed to reach t = 55 min. At that time 337
polymers remained, distributed as 237 (state 11), 49 (state
12), 41 (state 21), and 10 (state 22). The final c = 10.11. The
c steady-state distribution of 337 polymers would be 246,
42, 42, 7. The initial steady-state distribution is soon distort-
ed because state 21 polymers disappear faster than state 12
polymers (see Eqs. 5). But the steady-state distribution is
approached again as the surviving polymers become longer.
During the simulation c dips below c. (minimum c = 8.59 at
3.0 min) and performs damped oscillations primarily just be-
low c.. This type of behavior was observed in every simula-
tion. Correspondingly, the number of subunits in polymers is
not quite constant with time. The values every 6 min are
shown in Table 1.
The same case (Eqs. 6) was run with g = 50; no effect

other than apparently normal fluctuations was noted. Al-
most 4 x 106 transitions were required. The combined length
distributions for these two cases (g = 100, g = 50), suitably
renormalized, at t = 5, 15, 25, 40, and 55 min are compared
with experiment (8) in Fig. 5. The agreement appears to be
within normal fluctuations. The experimental numbers of
polymers in a sample range between 525 and 560; the Monte
Carlo numbers of surviving polymers are 2228, 1399, 1071,
791, and 669, at the respective times. Of course the separate
Monte Carlo 11, 12, 21, and 22 length distributions are also
available, but there are no experiments for comparison.

It should be emphasized that the adjustment to k, k' (Eq.
6) was made solely to fit Fig. 6. The agreement between the-
ory and experiment in Fig. 5 then followed automatically
with no further adjustment of rate constants.
The above case (Eq. 6) is by no means unique, although it

represents the simplest alteration of the original information
that produces agreement with experiment. Two other cases
that agree with experiment (Figs. 5 and 6) essentially as well
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FIG. 5. Solid lines: experimental length distributions at t = 0 (A), t = 5 min (B), t = 15 min (C), t = 25 min (D), t = 40 min (E), and t = 55 min

(F). Dashed lines: normalized Monte Carlo length distributions for the Eq. 6 case.

were found easily. In the first case k and k' in Eq. 4 are
divided by the constant 5.0 and, in addition, y is reduced
from 104 to 60 (the probability that a residual cap disinte-
grates, at c = c., is then 60/129.7 = 0.46, from Eqs. 5). A
much smaller y, e.g., 'y = 10, leads to unsatisfactory bimodal
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FIG. 6. Comparison of Mitchison-Kirschner experimental
points (o, *) with Monte Carlo points (o, *) in the Eq. 6 case. The
curves are for the Monte Carlo data. o and n, mean length; e and *,
concentration.

length distributions because of the many new additions to
state 11 at small m. For the second case, we start with

y = 104, J2, = -340 = constant, J2, = -212 = constant

k = 0.6285/C2.474, [71

leaving k' as in Eq. 4. The coefficient in k(c) was adjusted to
give c. = 10.08. In this case fl(c) and J(c) are changed
somewhat (results not shown). As with Eqs. 2-4, the de-
crease in MT number and the increase in MT size are found
to be too slow. However, this is easily corrected by dividing
k and k' by the constant 1.725 to yield

k = 0.3643/c2.474, k' = 9.275 x 10-6c3. 18]

Table 1. Number of subunits in polymers (Eq. 6)
No. No. No.

t, min x 10-7 t, min X 1O-7 t, miin x 1o-7
0 3.742 18 3.802 42 3.796
3 3.945 24 3.816 48 3.760
6 3.872 30 3.755 54 3.762

12 3.828 36 3.751
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The value of c. is still 10.08. This last case, with J2a and J2,p
constant (Eqs. 7), is a limiting, actually unrealistic, example.
It is not possible for J2a and J2p to be strictly constant for this
would mean that a MT without a cap (state 2) could never
form a cap. A small amount of exchange of GTP for GDP at
the MT end, or of attachment of GTP-tubulin to GDP-tubulin
at the MT end, would allow a cap to form (12) and would
alter J2a and J2p, as for example in Fig. 3.

In summary, the two-phase macroscopic kinetic model
seems able to account very well for the experiments summa-
rized in figure 4 of ref. 8.
As an appendix, the curve P,,c(c) was calculated, using

the rate constants for the a end in Eqs. 2, 3, and 6, and is
included in Fig. 4. Pocc is the probability at steady state that
a nucleated site on a centrosome will be occupied by an ob-
servable MT (of more than 500 subunits). The calculation
was made using equation 11 of ref. 12. The corresponding
experimental curve is figure 4 of ref. 7. The theoretical curve
(Fig. 4) starts up at the same c as the experimental curve
(corrected for inactive tubulin) but the theoretical curve rises
faster. In particular, Pcc (theoretical) = 1 at the critical con-
centration ca = 9.75 /iM. The discrepancy is to be expected
because the theoretical curve refers to steady state but the
experiments never reached steady state.

We are indebted to Tim Mitchison and Marc Kirschner for provid-
ing the MT length distributions from the experiment in figure 4 of
ref. 8.
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