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Abstract

A proper response against stressors is critical for survival. In mammals, the stress response is

primarily mediated by secretion of glucocorticoids via the hypothalamic-pituitaryadrenocortical

(HPA) axis and release of catecholamines through adrenergic neurotransmission. Activation of

these pathways results in a quick physical response to the stress and, in adaptive conditions,

mediates long-term changes in the brain that lead to the formation of long-term memories of the

experience. These long-term memories are an essential adaptive mechanism that allows an animal

to effectively face similar demands again. Indeed, a moderate stress level has a strong positive

effect on memory and cognition, as a single arousing or moderately stressful event can be

remembered for up to a lifetime. Conversely, exposure to extreme, traumatic, or chronic stress can

have the opposite effect and cause memory loss, cognitive impairments, and stress-related

psychopathologies such as anxiety disorders, depression and post-traumatic stress disorder

(PTSD). While more effort has been devoted to the understanding of the effects of the negative

effects of chronic stress, much less has been done thus far on the identification of the mechanisms

engaged in the brain when stress promotes long-term memory formation. Understanding these

mechanisms will provide critical information for use in ameliorating memory processes in both

normal and pathological conditions. Here, we will review the role of glucocorticoids and

glucocorticoid receptors (GRs) in memory formation and modulation. Furthermore, we will

discuss recent findings on the molecular cascade of events underlying the effect of GR activation

in adaptive levels of stress that leads to strong, long-lasting memories. Our recent data indicate

that the positive effects of GR activation on memory consolidation critically engage the brain-

derived neurotrophic factor (BDNF) pathway. We propose and will discuss the hypothesis that

stress promotes the formation of strong long-term memories because the activation of

hippocampal GRs after learning is coupled to the recruitment of the growth and pro-survival

BDNF/cAMP response element-binding protein (CREB) pathway, which is well-know to be a

general mechanism required for long-term memory formation. We will then speculate about how
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these results may explain the negative effects of traumatic or chronic stress on memory and

cognitive functions.
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1. Introduction

Stress triggers physiological responses that are necessary for organisms to adapt to a

changing environment and respond to immediate perturbation, threat, or danger. Animals’

survival not only depends on their immediate response to a stressor, but also relies on their

ability to memorize and integrate the information learned about the stressor in order to

effectively respond to similar demands in the future.

In addition to the rapid physiological responses that include increases in blood pressure,

heart rate, and pulmonary ventilation and a hypervigilance state, stress produces long-lasting

changes in the central nervous system (CNS) that are responsible for memorization of the

event. These reactions are governed by acute adrenergic neurotransmission in the

sympathetic nervous system and, following activation of the hypothalamic-pituitary-adrenal

(HPA) axis, the release of glucocorticoids from the adrenal glands. As a result, adrenergic

neurotransmission and glucocorticoid secretion activate specific brain regions that include

the hippocampus, amygdala, and prefrontal cortex. These regions are enriched in adrenergic

and glucocorticoid receptors (GRs), which, in rodents as in humans are known to play

critical roles in encoding, processing, and retaining the information of emotional events (de

Kloet, Joels & Holsboer, 2005; Lupien, Maheu, Tu, Fiocco & Schramek, 2007; McIntyre,

McGaugh & Williams, 2012; Roozendaal, Okuda, de Quervain & McGaugh, 2006).

The various parameters that characterize emotional experiences, such as arousal or stress

intensity, duration, chronicity, predictability, and controllability are known to critically

affect memory and cognition (Lupien, Maheu, Tu, Fiocco & Schramek, 2007). Whereas

optimal levels of stress or arousal stimulate cognitive performance and the formation of a

strong long-term memory by mediating and modulating consolidation, the process whereby

an experience becomes a strong and long-lasting memory, exposure to severe or chronic

stress can lead to cognitive impairments and the development of psychopathologies such as

anxiety disorders, depression, and post-traumatic stress disorders (PTSD) (de Kloet, Joels &

Holsboer, 2005; McEwen, 2000b). In this review, we will discuss the mechanisms by which

one of the major pathways activated by stress, the release of glucocorticoids and activation

of GRs, promotes long-term memory formation when stress and/or arousal are adaptive.

Based on our recent data, we will propose the hypothesis that the activation of GRs

promotes memory consolidation and strengthening because it critically and directly engages

the activation of the brain-derived neurotrophic factor (BDNF)/cAMP response element-

binding protein (CREB)-dependent pro-survival/growth pathway as a response to stress. We

propose that this survival response to stress has been selected by evolution in brain cells as a

fundamental mechanism that mediates memory storage. We will then summarize the
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knowledge of how high levels of stress and/or glucocorticoids may lead to memory

impairments. We will conclude with speculations about how the knowledge of the molecular

mechanisms activated by GRs in adaptive conditions may also explain the negative effects

of stress on cognition, which lead to cognitive impairments and psychopathologies.

2. Stress, glucocorticoids and activation of GRs

2.1 Glucocorticoids and their receptors

Glucocorticoids are steroid hormones synthesized from cholesterol in the adrenal cortex.

The predominant glucocorticoid in humans is cortisol and, in rodents, corticosterone. Their

release fluctuates with circadian and ultradian rhythms made up of pulses at approximately

hourly intervals. Cortisol and corticosterone are also the primary hormones responsible for

the stress response because their release is regulated by the HPA axis activated in response

to stress. In particular, glucocorticoids play a key role in restoring homeostasis following

exposure to stress, and they also modulate important physiological responses such as ion

transport, glycogenolysis, immune response, and memory.

Because of their lipophilic properties, glucocorticoids can cross plasma membranes and

activate two different intracellular receptors, mineralocorticoid receptors, (MRs) and GRs,

also known, respectively, as Type I and Type II receptors. MRs and GRs are homologous in

their structural domains, which consist of the N-terminal transactivation domain (TAD), the

DNA binding domain (DBD), and the C-terminal ligand binding domain (LBD) (Lu,

Wardell, Burnstein, Defranco, Fuller et al., 2006). In the absence of ligand, cytoplasmic

MRs and GRs are bound to chaperone protein complexes, including heat shock protein 70

(hsp70), heat shock protein 90 (hsp90), and FK506 binding protein 5 (FKBP5) (Grad &

Picard, 2007). On ligand binding, the receptors undergo conformational changes that lead to

their dissociation from the chaperone complexes, their homodimerization and nuclear

translocation, or their binding to other cytoplasmic proteins. In the nucleus, both MRs and

GRs can bind to specific sequences of 15 nucleotides in the promoter of target genes, known

as the glucocorticoid response elements (GREs) and directly activate transcription of target

genes (Zalachoras, Houtman & Meijer, 2013). Nuclear MRs and GRs can also interact with

other transcription factors to control gene expression (Sandi, 2004). In addition, MRs and

GRs can control rapid cellular responses by mechanisms that are independent of nuclear

translocation and gene expression regulation, but instead occur through genomic-

independent actions (Groeneweg, Karst, de Kloet & Joels, 2011; Prager & Johnson, 2009).

We will further discuss the genomic and non-genomic mechanisms of GR below.

2.2 Stress-mediated secretion of glucocorticoids and activation of GRs in the brain

A stressful experience triggers the acute release of catecholamines (adrenaline and

noradrenaline) from the sympathetic nervous system, as well as activation of the HPA axis

by first engaging secretion of corticotropin-releasing hormone (CRH) from the

paraventricular nucleus of the hypothalamus, then adrenocorticotropic hormone (ACTH)

from the anterior lobe of the pituitary gland, and finally glucocorticoids from the adrenal

cortex into the blood circulation. Once the stress ends, hormonal levels return to homeostasis

by the negative feedback action of glucocorticoids on the HPA axis. In addition to the
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immediate reaction to the stressor by catecholamines and glucocorticoids, which evoke rapid

physical responses (e.g., “fight or flight” response in the case of a threat), the release of

glucocorticoids activate MRs and GRs in the brain. MRs and GRs are ubiquitously

expressed throughout the brain in both glial cells and neurons, with highest levels in the

hippocampus and amygdala, two areas that play critical roles in memories of fear, threat,

and stressful experiences (de Kloet, Joels & Holsboer, 2005; Lupien, Maheu, Tu, Fiocco &

Schramek, 2007). Importantly, MRs have a tenfold higher affinity for glucocorticoids than

GRs and are largely occupied by the ligand in basal conditions, whereas GRs occupation

highly depends on increases in glucocorticoid levels following stress response (de Kloet,

Joels & Holsboer, 2005; Lupien, Maheu, Tu, Fiocco & Schramek, 2007). In this review, we

will mainly discuss the mechanisms mediated by GRs.

For many years, the effects of glucocorticoids on synaptic plasticity and memory were

believed to result exclusively from the classical genomic-dependent pathway of GR

activation. However, it has recently been shown that many effects of GRs are also mediated

by rapid, genomic-independent mechanisms (Groeneweg, Karst, de Kloet & Joels, 2011;

Prager & Johnson, 2009).

As mentioned earlier, the genomic action of GRs occurs in the nucleus, where these

receptors can directly activate transcription by binding to the GREs in the promoter of target

genes (Karst, Karten, Reichardt, de Kloet, Schutz et al., 2000; Prager & Johnson, 2009).

However, GRs can control gene expression also by interacting with other transcription

factors, including activator protein 1 (AP1), nuclear factor κB (NF-κB), transcription factor

IID (TFIID), signal transducer and activator of transcription 5 (STAT5), and CREB (Sandi,

2004). Studies using DNA microarray or serial analysis of gene expression (SAGE) in

cultured hippocampal neurons or the hippocampus in vivo demonstrated that activation of

GRs leads to the transcription of various genes, including calcium binding proteins,

synaptosomal-associated proteins (SNAPs), neuronal cell-adhesion molecules (NCAMs),

dynein, neurofilaments, β-actin, LIM domain kinase 1 (LIMK1) and profilin. These genes

have key functions in intracellular signal transduction, metabolism, neuronal structure,

synaptic plasticity, and memory, suggesting that, indeed, they may be target genes regulated

by GR in long-term memory formation (Datson, Morsink, Meijer & de Kloet, 2008; Datson,

van der Perk, de Kloet & Vreugdenhil, 2001; Morsink, Steenbergen, Vos, Karst, Joels et al.,

2006; Sandi, 2004).

Although GR-mediated transcriptional activation is necessary for long-term synaptic

changes in the hippocampus, studies have shown that genomic-independent actions of GRs

rapidly control glutamate release and modulate synaptic transmission and plasticity

(Groeneweg, Karst, de Kloet & Joels, 2011; Haller, Mikics & Makara, 2008; Prager &

Johnson, 2009; Tasker, Di & Malcher-Lopes, 2006). In addition, several investigations

provided evidence of genomic-independent action of GRs in modulation of the

endocannabinoid system (Atsak, Roozendaal & Campolongo, 2012). While glucocorticoid-

mediated release of endocannabinoids in the hypothalamus regulates activation and

termination of the HPA axis (Di, Malcher-Lopes, Halmos & Tasker, 2003),

endocannabinoid signaling in both the basolateral amygdala (BLA) and hippocampus appear

to control cognitive processes such as emotional memory encoding (Atsak, Roozendaal &
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Campolongo, 2012; Hill, Patel, Campolongo, Tasker, Wotjak et al., 2010). In particular, it

has been shown that genomic-independent mechanisms of GRs lead to activation of the

endocannabinoid system in the BLA and hippocampus, which, in turn, enhances the

consolidation of emotional memories (Bucherelli, Baldi, Mariottini, Passani & Blandina,

2006; Campolongo, Roozendaal, Trezza, Hauer, Schelling et al., 2009; de Oliveira Alvares,

de Oliveira, Camboim, Diehl, Genro et al., 2005).

2.3 Non-genomic and genomic effects of GRs on glutamate transmission

Glucocorticoids are critical in modulating glutamatergic neurotransmission in several brain

regions, including the hippocampus, amygdala, and medial prefrontal cortex (mPFC).

Glucocorticoid-mediated regulation of the glutamatergic system engages rapid non-genomic

action, as well as long-lasting genomic mechanisms controlled by GRs and directly affects

synaptic transmission, plasticity, learning, and memory (Popoli, Yan, McEwen & Sanacora,

2012; Sandi, 2011).

First, glucocorticoids regulate glutamate transmission by non-genomic actions. Specifically,

glucocorticoids rapidly enhance presynaptic glutamate release in the hippocampus,

amygdala, and mPFC (Lowy, Gault & Yamamoto, 1993; Moghaddam, 1993; Venero &

Borrell, 1999) via rapid non-genomic action of GRs (Musazzi, Milanese, Farisello,

Zappettini, Tardito et al., 2010) as well as MRs (Karst, Berger, Turiault, Tronche, Schutz et

al., 2005; Olijslagers, de Kloet, Elgersma, van Woerden, Joels et al., 2008). Glucocorticoids

also rapidly modulate the trafficking of postsynaptic AMPA receptor subunits via genomic-

independent mechanisms. Further, activation of MRs leads to lateral diffusion of GLUA1

and GLUA2 subunits to postsynaptic sites, thus increasing the frequency of hippocampal

AMPA receptor-mediated current in CA1 neurons (Groc, Choquet & Chaouloff, 2008;

Krugers, Hoogenraad & Groc, 2010). As a consequence, the rapid non-genomic effects of

glucocorticoids on glutamate neurotransmission increase the frequency of miniature

excitatory postsynaptic currents (mEPSCs) in hippocampal and amygdala neurons (Karst,

Berger, Erdmann, Schutz & Joels, 2010; Olijslagers, de Kloet, Elgersma, van Woerden,

Joels et al., 2008), thereby promoting long-term memory formation (Yuen, Liu, Karatsoreos,

Feng, McEwen et al., 2009; Yuen, Liu, Karatsoreos, Ren, Feng et al., 2011).

Second, glucocorticoids affect glutamate neurotransmission via genomic-dependent

mechanisms (Yuen, Liu, Karatsoreos, Feng, McEwen et al., 2009; Yuen, Liu, Karatsoreos,

Ren, Feng et al., 2011). For example, in cultured hippocampal neurons, glucocorticoids

regulate surface expression of GLUA2 subunits by a genomic-mediated process that results

in increased GLUA2-containing AMPA receptors at the synapse (Martin, Henley, Holman,

Zhou, Wiegert et al., 2009). Although there is no evidence that this effect is due to direct

genomic regulation of GRs on AMPA receptor subunits (Martin, Henley, Holman, Zhou,

Wiegert et al., 2009), indirect mechanisms have been suggested. Specifically, GRs enhance

transcription of the immediate early gene serum-glucocorticoid-inducible kinase 1 (SGK1),

which in turn leads to activation of the Rab4-GDI complex that facilitates AMPA receptors

recycling at the synapse (Liu, Yuen & Yan, 2010; Yuen, Liu, Karatsoreos, Ren, Feng et al.,

2011). Increased synaptic expression of GLUA2-containing AMPA receptors then leads to

lasting enhancement of hippocampal synaptic transmission, spine formation, and long-term
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memory (Conboy & Sandi, 2010; Passafaro, Nakagawa, Sala & Sheng, 2003; Saglietti,

Dequidt, Kamieniarz, Rousset, Valnegri et al., 2007). In line with these findings, genomic-

mediated effects of GRs also regulate calcium signaling in hippocampal neurons, thus

contributing to stronger firing accommodation and high frequency long-term potentiation

(LTP) (Joels & Karst, 2012). GR-mediated increases in intracellular calcium levels were

found to be dependent on the activation of NMDA receptors (Takahashi, Kimoto, Tanabe,

Hattori, Yasumatsu et al., 2002) and L-type voltage-gated calcium channels (VGCCs)

(Chameau, Qin, Spijker, Smit & Joels, 2007).

Conversely, in conditions of high or prolonged stress, activation of GRs can have a negative

effect on glutamatergic transmission through the activation of NMDA receptors (Coussens,

Kerr & Abraham, 1997; Shors & Servatius, 1995). In particular, high glucocorticoid

concentrations in the hippocampus lead to GR-mediated activation of extrasynaptic NR2B-

containing NMDA receptors (Yang, Huang & Hsu, 2005). This mechanism, which also

results in endocytosis of GLUA2-containing AMPA receptors, increases hippocampal long-

term depression (LTD) and impairs spatial memory retrieval (Howland & Cazakoff, 2010).

3. Glucocorticoids and memory consolidation

As mentioned earlier, a long-lasting memory is formed through a process known as

consolidation, which, over time, converts a new labile memory trace into a stronger one that

is resilient to disruption (Dudai, 2012; McGaugh, 2000; Squire, Stark & Clark, 2004).

Memory consolidation requires an initial phase of de novo gene expression and protein

synthesis, which leads to long-term synaptic plasticity and morphological changes (Alberini,

2008; 2009; Kandel, 2001; Lamprecht, Farb, Rodrigues & LeDoux, 2006). Arousal and

moderate levels of stress facilitate memory consolidation and, consistent with this,

emotionally arousing experiences are better remembered than neutral ones (Phelps, 2006;

Roozendaal & McGaugh, 2011). Extensive evidence indicates that the release of

glucocorticoids induced by arousal or stress and the consequent activation of GRs in specific

brain regions critically mediates memory consolidation and modulates memory retention

(McGaugh & Roozendaal, 2002).

3.1 Glucocorticoids, GRs, and their effect on memory

The contribution of glucocorticoids to the regulation of memory was first found in

adrenalectomized rats, which showed impaired corticosterone expression, as well as spatial

and contextual fear memory deficits (Pugh, Tremblay, Fleshner & Rudy, 1997; Roozendaal,

Portillo- Marquez & McGaugh, 1996). In line with these results, systemic inhibition of

glucocorticoid synthesis by administration of metyrapone impairs contextual fear

conditioning, as well as spatial and inhibitory avoidance (IA) memories (Cordero, Kruyt,

Merino & Sandi, 2002; Roozendaal, Bohus & McGaugh, 1996). Moreover, contextual and

auditory fear conditioning, spatial and novel-object recognition, and IA memories are all

enhanced by posttraining administration of corticosterone or the synthetic glucocorticoid

dexamethasone (Akirav, Kozenicky, Tal, Sandi, Venero et al., 2004; Pugh, Tremblay,

Fleshner & Rudy, 1997; Roozendaal & McGaugh, 1996; Roozendaal, Okuda, Van der Zee

& McGaugh, 2006). In humans, oral administration of cortisol during learning or within one

hour of stimulus presentation strengthens declarative memory for neutral and emotionally
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arousing information (Abercrombie, Kalin, Thurow, Rosenkranz & Davidson, 2003;

Buchanan & Lovallo, 2001), whereas inhibition of glucocorticoid synthesis reduces long-

term declarative memory (Maheu, Joober, Beaulieu & Lupien, 2004).

As described earlier, glucocorticoid-mediated effects engage both MRs and GRs, which,

however, seem to have different roles in the acquisition, storage, consolidation, and retrieval

of arousing information. Activation of MRs regulates the initial phase of memory encoding,

including the response to novelty, whereas GRs are important in memory consolidation (de

Kloet, Oitzl & Joels, 1999; ter Horst, van der Mark, Arp, Berger, de Kloet et al., 2012).

Indeed, systemic inhibition of GRs with antagonists, much like targeted disruption of GR in

transgenic mice, suppresses long-term spatial and contextual fear memories (Conrad, Lupien

& McEwen, 1999; Cordero & Sandi, 1998; Oitzl & de Kloet, 1992; Oitzl, Reichardt, Joels &

de Kloet, 2001; Pugh, Fleshner & Rudy, 1997; Revest, Di Blasi, Kitchener, Rouge-Pont,

Desmedt et al., 2005). The degree of GRs activation in addition to that of MRs is critical for

the effect of stress on cognitive performance, with memory facilitation occurring when high

affinity MRs are fully occupied and low affinity GRs only partially activated. Whereas

intermediate activation of GRs is necessary for memory consolidation, saturation of GRs has

been shown to lead to memory impairments (de Kloet, Oitzl & Joels, 1999; Lupien, Maheu,

Tu, Fiocco & Schramek, 2007). These studies indicate that while a relatively limited amount

of glucocorticoids leads to positive effects on cognition, high concentration and/or

prolonged exposure to glucocorticoids produce impairing effects.

In line with these observations, several studies have investigated the role of both MRs and

GRs in glucocorticoid-mediated synaptic transmission and hippocampal LTP (Diamond,

Bennett, Fleshner & Rose, 1992; Joels & Krugers, 2007). In particular, activation of MRs

was found to enhance synaptic potentiation and hippocampal LTP, whereas saturation of

GRs after treatment with high doses of glucocorticoids attenuated LTP and enhanced LTD

(McEwen & Sapolsky, 1995; Pavlides, Ogawa, Kimura & McEwen, 1996). Other evidence

indicates that enhanced activation of GRs dampens the ability of hippocampal neurons to

induce LTP and elevates the threshold for synaptic strengthening, suggesting that activation

of GRs may play a role in reducing the accessibility of novel information to the same neural

network (Diamond, Park & Woodson, 2004; Joels, Pu, Wiegert, Oitzl & Krugers, 2006;

Wiegert, Pu, Shor, Joels & Krugers, 2005).

3.2 Spatial and temporal activation of GRs in memory formation and retrieval

Memory is encoded by the concerted interplay of several brain areas and networks that

interact for proper memory acquisition, consolidation, and expression (McIntyre, McGaugh

& Williams, 2012; Schwabe & Wolf, 2013). Glucocorticoids are critical regulators in the

activation and cooperation of these areas (Roozendaal, 2003). For example, stress-mediated

secretion of glucocorticoids and/or activation of GRs directly affects hippocampal functions,

thus modulating the consolidation of several types of hippocampal-dependent memories,

including spatial and contextual memories in rodents and declarative memory in humans

(Donley, Schulkin & Rosen, 2005; Eichenbaum, 2000; Gabrieli, 1998; Kim & Diamond,

2002; Lupien & Lepage, 2001; Roozendaal & McGaugh, 1997a; Roozendaal, Nguyen,

Power & McGaugh, 1999; Squire, 2004).
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Stress-induced secretion of glucocorticoids also targets the amygdala (Kim, Lee, Han &

Packard, 2001; Roozendaal & McGaugh, 1997a; Roozendaal, Nguyen, Power & McGaugh,

1999). In particular, activation of GRs in the amygdala is important for fear memory

encoding and hippocampal modulation. Inhibition of GRs in the BLA impairs long-term

spatial and contextual fear memories, whereas infusion of GR agonist into the BLA

enhances IA-mediated memory (Donley, Schulkin & Rosen, 2005; Roozendaal & McGaugh,

1997b; Roozendaal, Quirarte & McGaugh, 2002). Here we should remind that in addition to

glucocorticoids, adrenergic neurotransmission in the amygdala is key element in modulating

fear memories, as shown by contextual and spatial memory enhancements after amygdala

infusion of norepinephrine or β-adrenergic receptors agonists (Ferry, Roozendaal &

McGaugh, 1999; Hatfield & McGaugh, 1999). In contrast, inhibition of adrenergic receptors

in the amygdala blocks memory enhancement induced by systemic or intrahippocampal

corticosterone injections (Quirarte, Roozendaal & McGaugh, 1997; Roozendaal, Okuda,

Van der Zee & McGaugh, 2006). Hence, a concerted action of adrenalin/noradrenalin and

glucocorticoid is critical for memory formation and modulation. Cortical areas such as the

entorhinal, parietal, perirhinal, insular, and prefrontal cortices are modulated by BLA

activity, and all contribute to fear memory consolidation (McGaugh, 2002). Recent evidence

indicates that glucocorticoids have a direct effect in these regions, as activation of GRs in

the insular cortex and mPFC enhances long-term memory consolidation (Barsegyan,

Mackenzie, Kurose, McGaugh & Roozendaal, 2010; Fornari, Wichmann, Atucha, Desprez,

Eggens-Meijer et al., 2012; Roozendaal, McReynolds, Van der Zee, Lee, McGaugh et al.,

2009).

Notably, the influence of stress on memory retention largely depends on the phase of

memory processing the arousing or stressful event is presented with. Thus, exposure to mild

stress during or immediately after learning has a positive effect on the consolidation of long-

term memory, typically when the stressor is part of the learning event (Roozendaal, 2000).

However, in both humans and rodents, if stress is presented shortly before retrieval,

impairments in memory retention can occur (Cahill, Gorski & Le, 2003; McGaugh &

Roozendaal, 2002; Roozendaal, 2002). In particular, stress is known to have an inhibitory

effect on memory retrieval, as shown, for example, in rodents that exhibit retrograde

amnesia when exposed to a stressor before a spatial memory retention test (de Quervain,

Roozendaal & McGaugh, 1998; Diamond, Park, Heman & Rose, 1999). Activation of

glucocorticoid and noradrenergic pathways in the hippocampus and BLA are important in

the impairing effects of stress on memory retrieval (de Quervain, Roozendaal & McGaugh,

1998; Roozendaal, Hahn, Nathan, de Quervain & McGaugh, 2004). Also, the severity of

memory impairments has been correlated with the concentration of circulating plasma

corticosterone at the time of testing (de Quervain, Roozendaal & McGaugh, 1998; Diamond,

Park, Heman & Rose, 1999).

In humans, the results of many studies support the importance of stressor’s timing with

regard to memory retention. Increases in cortisol levels during acquisition positively

correlate with the strength of memory consolidation (Abercrombie, Kalin, Thurow,

Rosenkranz & Davidson, 2003; Abercrombie, Speck & Monticelli, 2006; Smeets,

Sijstermans, Gijsen, Peters, Jelicic et al., 2008; Zorawski, Blanding, Kuhn & LaBar, 2006),

whereas stress exposure or administration of synthetic glucocorticoids before memory
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testing significantly impairs retrieval of declarative memories, particularly when they are

associated with emotionally arousing information (de Quervain, Roozendaal, Nitsch,

McGaugh & Hock, 2000; Kuhlmann, Piel & Wolf, 2005). Hence, the effect of stress on

memory performance largely depends on the timing, context, and convergence of stress

hormones in the brain (Joels, Fernandez & Roozendaal, 2011; Roozendaal, 2002).

4. GR-dependent molecular mechanisms critical for long-term memory

consolidation

As we discussed earlier, in adaptive conditions, the release of glucocorticoids and activation

of GRs mediate and modulate memory consolidation and the storage of strong and long-

lasting memories of salient events. Which are the molecular mechanisms underlying the

effect of glucocorticoids and GR activation on memory consolidation? Do GRs interact with

the identified transcriptional, translation and post-translational mechanisms required for

memory consolidation? The understanding of the molecular mechanisms mediated by GRs

in promoting memory consolidation is still partial, possibly because of the complexity of

GR-mediated responses and the multiple cell types and brain regions targeted. The

identification of these mechanisms will provide important information for developing new

strategies for memory strengthening or weakening, hence treating memory and cognitive

disorders.

Mechanisms found to be activated by GR stimulation in cell culture or by pharmacological

treatments do not necessarily inform about the identity and regulation of the mechanisms

occurring in vivo after an adaptive stressful/arousing experience that will be consolidated

into a long-term memory. It is in fact well known that GR activation is involved in many

different stress conditions and is a highly regulated mechanism that can lead to many

different types of responses depending on the stress levels, duration and type. Hence, it is

important to identify which mechanisms occur physiologically in vivo after learning as a

consequence of GR activation, and also characterize their temporal and spatial progression

as well as regulation.

A few studies, including a recent one from our laboratory (Chen, Bambah-Mukku, Pollonini

& Alberini, 2012) have demonstrated that, after learning, GRs regulate several intracellular

signaling pathways known to be required for memory consolidation. These include the

pathways activated by CREB, mitogen-activated protein kinase (MAPK), calcium/

calmodulin-dependent protein kinase II (CamK II), and BDNF. In addition, GRs control

epigenetic modifications that influence long-term memory. Specifically, activation of GRs

by different types of psychological stress such as forced swimming or predator exposure

increase the phosphorylation and acetylation of histone H3 in dentate gyrus granule neurons

(Bilang- Bleuel, Ulbricht, Chandramohan, De Carli, Droste et al., 2005; Chandramohan,

Droste, Arthur & Reul, 2008). The concomitant activation of GRs, NMDA receptors, and

MAPK signaling pathway is required for phospho-acetylation of histone H3 in the dentate

gyrus (Bilang-Bleuel, Ulbricht, Chandramohan, De Carli, Droste et al., 2005;

Chandramohan, Droste, Arthur & Reul, 2008). Phospho-acetylation of histone H3 in turn

modulates stress-induced behavioral responses such as immobility after forced swimming

(Bilang-Bleuel, Ulbricht, Chandramohan, De Carli, Droste et al., 2005) and object
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recognition memory (Stefanko, Barrett, Ly, Reolon & Wood, 2009). In the insular cortex,

activation of GRs enhances the interaction between phospho-CREB and CREB-binding

protein (CBP), leading to the histone deacetylase (HDAC)-mediated chromatin modification

necessary for memory consolidation for novel object recognition and object location

(Roozendaal, Hernandez, Cabrera, Hagewoud, Malvaez et al., 2010).

Using fear conditioning in mice, two studies demonstrated the critical role of GRs in the

induction of MAPK phosphorylation, expression of early growth response protein 1 (Egr-1),

and phosphorylation of Synapsin-Ia/Ib during fear memory consolidation (Revest, Di Blasi,

Kitchener, Rouge-Pont, Desmedt et al., 2005; Revest, Kaouane, Mondin, Le Roux, Rouge-

Pont et al., 2010). More specifically, activation of hippocampal GRs recruits the MAPK

signaling pathway, which in turn leads to induction of the downstream immediate early gene

Egr-1 (also known as Zif268), which is a key transcription factor in memory consolidation

(Jones, Errington, French, Fine, Bliss et al., 2001; Kelleher, Govindarajan, Jung, Kang &

Tonegawa, 2004). In agreement, exogenous administration of glucocorticoids or constitutive

activation of GR in transgenic mice results in activation of MAPK and induction of Egr-1

expression in the hippocampus. In line with these findings, inhibition of the MAPK pathway

in the hippocampus abolishes the increase in contextual fear conditioning induced by

glucocorticoids (Revest, Di Blasi, Kitchener, Rouge-Pont, Desmedt et al., 2005). GR-

mediated activation of MAPK and Egr-1 then leads to the increased expression and

phosphorylation of Synapsin-Ia/Ib necessary for contextual memory consolidation (Revest,

Kaouane, Mondin, Le Roux, Rouge-Pont et al., 2010). Phosphorylation of Synapsin Ia/Ib

has been shown to facilitate activity-dependent release of glutamate from presynaptic

vesicles of pyramidal neurons (Chi, Greengard & Ryan, 2003; Jovanovic, Czernik, Fienberg,

Greengard & Sihra, 2000). Collectively, these studies have identified the MAPK-activated

pathway, with subsequent regulation of Egr-1 expression and phosphorylation of Synapsin-

Ia/Ib, as a sequence of events targeted by activation of GRs that leads to fear memory

consolidation.

Our laboratory has recently identified several critical molecular mechanisms underlying

glucocorticoid-mediated long-term memory consolidation in the rat hippocampus using an

IA learning paradigm. We found that recruitment of hippocampal GRs after training controls

the activation of several intracellular pathways that are critical for memory consolidation

(Chen, Bambah-Mukku, Pollonini & Alberini, 2012). Specifically, GRs control the rapid

learning-dependent hippocampal increase of CREB phosphorylation and expression of the

immediate early gene-activity-regulated cytoskeleton-associated protein (Arc), as well as the

increase in synaptic phospho-CAMKIIα, phospho-Synapsin-1, and GluA1 expression. All of

these rapid changes, except Arc induction, result from non-genomic actions of GRs (Chen,

Bambah-Mukku, Pollonini & Alberini, 2012). These results extend previous findings that

expression of Arc increases in hippocampal synapses following memory-enhancing

administration of corticosterone (McReynolds, Donowho, Abdi, McGaugh, Roozendaal et

al., 2010); that stress-dependent Arc expression is impaired in the hippocampus of GR-

deficient (GR+/−) mice (Molteni, Calabrese, Chourbaji, Brandwein, Racagni et al., 2010);

and that corticosterone increases AMPA receptor trafficking in pyramidal neuronal cultures

from prefrontal cortex (Liu, Yuen & Yan, 2010). We also found that inhibition of GRs in rat

hippocampus significantly reduces phosphorylation of the tropomysosin receptor kinase B
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(TrkB), extracellular-signal regulated kinase 1/2 (ERK1/2), Akt, and phospholipase C γ

(PLCγ) (Chen, Bambah-Mukku, Pollonini & Alberini, 2012). Because these pathways are

all canonical activation pathways downstream of BDNF, these findings suggest that the

BDNF-dependent pathway is a key downstream effector of GR activation during memory

consolidation.

In addition, we established that the long-lasting molecular modifications induced by training

that are required for memory consolidation, including the persistent phosphorylation of

CREB, CamKIIα, and Synapsyn1a, are all dependent on GR activation, most likely because

they require the early and rapid molecular activation described just above. In fact, memory

consolidation appears to be mediated by a BDNF-dependent autoregulatory loop that

activates the CREB/CCAAT enhancer-binding protein (C/EBP)-dependent gene cascade,

which in turn regulates BDNF expression. This BDNF-dependent autoregulatory loop is

required to complete the consolidation necessary for long-term memory persistence

(unpublished observations). Notably, we then found that intrahippocampal injections of

BDNF, but not of other neurotrophins, such as nerve growth factor (NGF) and neurotrophin

3 (NT3), rescue both the molecular impairments and the amnesia caused by GR inhibition

(Chen, Bambah-Mukku, Pollonini & Alberini, 2012). The effect is selective for GRs

because BDNF does not rescue behavioral deficits caused by the inhibition of β-adrenergic

receptors (Chen, Bambah-Mukku, Pollonini & Alberini, 2012), underscoring the critical and

specific role of the BDNF-mediated signaling pathway in the GR-dependent molecular

activations required for memory consolidation. Our findings extended to memory formation

previous observations byJeanneteau et al. (2008) who reported that administration of

dexamethasone in the hippocampus of rats or in hippocampal or cortical cell cultures

induces TrkB phosphorylation (Jeanneteau, Garabedian & Chao, 2008). However, in these

studies, TrkB transactivation was found to require a genomic effect mediated by GR,

contrasting with the non-genomic effect of GRs on TrkB phosphorylation observed in our

study (Chen, Bambah-Mukku, Pollonini & Alberini, 2012. See also discussion of this

manuscript).

If hippocampal GR activation upon learning takes place upstream of the BDNF-dependent

activation required for long-term memory, how does that occur? Although a direct

interaction between GRs and TrkB has been reported in cortical neurons in vitro

(Numakawa, Kumamaru, Adachi, Yagasaki, Izumi et al., 2009), our attempts do not yet

indicate any direct interaction between GRs and TrkB in rat dorsal hippocampi in vivo.

Hence, we speculate that the non-genomic effect of GRs on TrkB phosphorylation may

target the regulation of BDNF release and/or TrkB membrane trafficking. GRs may also

regulate BDNF-mediated signaling pathways by mechanisms that depend on cAMP-

mediated trafficking and activation of TrkB (Ji, Pang, Feng & Lu, 2005). Moreover, it

appears that the persistence of the long lasting molecular changes necessary for memory

consolidation recruit additional genomic-dependent mechanisms such as BDNF

transcription. Although there is no classical GRE sequence in the BDNF promoter, in situ

hybridization demonstrated that BDNF mRNA expression is enhanced after

intrahippocampal injection of corticosterone, presumably by the indirect transcriptional

effects of GRs (Chao & McEwen, 1994; Hansson, Sommer, Rimondini, Andbjer, Stromberg
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et al., 2003). In contrast, expression of BDNF is altered in the hippocampus of GR-deficient

mice (Alboni, Tascedda, Corsini, Benatti, Caggia et al., 2011; Ridder, Chourbaji, Hellweg,

Urani, Zacher et al., 2005).

In view of all these data, we propose a model that explains, at least in part, the nature of the

biological mechanisms involved in the formation of long-term memories elicited by stressful

or arousing experiences: we suggest that evolution has selected mechanisms of growth and

pro-survival response to stress as the fundamental molecular pathways activated by learning

and recruited in brain cells to form long-term memories. In other words, as in any other cell,

in the brain, adaptive levels of stress (via glucocorticoids) trigger cellular events that are

responsible to restore homeostasis, hence adaptation to the new environment. To do so,

these cellular events must produce persistent changes in the state of the cell, which lead to a

new homoestatic state. Thus, the new homeostatic state, by means of its underlying long-

lasting cellular and molecular changes, is the result of long-term changes, in other words

result in the formation and persistence of a cellular long-term memory of the salient

stimulus. Indeed, glucocorticoids, like hypoxia, metabolic or thermal stresses are cellular

stressors and apoptotic promoters. Furthermore, whereas, as described earlier, in animal and

humans, adaptive responses to environmental stressors depend on the activation of the HPA

axis, in less differentiated organisms and cultured cells it induce the "stress response"

(Pagliacci, Migliorati, Smacchia, Grignani, Riccardi et al., 1993). This cellular stress

response generally comprises a pro-survival response that promotes growth and survival and

protects cells from death. In neurons, the pro-survival response to stress consists of

activation of growth pathways, which actually leads, in addition to the pro-survival

response, to synaptic growth. Synaptic growth is known to underlie the formation and

persistence of memory. Hence, it is plausible that evolution has indeed chosen the cellular

response to stress as the fundamental mechanisms that in brain cells promote long-term

memory formation.

Based on our data, we suggest that the pro-survival response to stress, which mediates long-

term memory formation, occurs in the brain through sequential events: exposure to a salient

event leads to the release of glucocorticoids that activate GRs in brain regions such as the

hippocampus, which are critical for memory consolidation. GR activation recruits the

BDNF/CREB-dependent pathways, which through their downstream as well as additional

parallel events lead to cellular growth and promote survival. This activation of survival and

growth pathways results in synaptic changes that underlie long-term maintenance of the

information (Fig. 1). Our findings experimentally support and are in line with numerous

evidence obtained in studies of chronic stress and glucocorticoid treatments indicating that

glucocorticoids and BDNF critically influence each other (Bath, Schilit & Lee, 2013; Gray,

Milner & McEwen, 2013; Jeanneteau & Chao, 2013; Numakawa, Adachi, Richards, Chiba

& Kunugi, 2013; Rothman & Mattson, 2013; Suri & Vaidya, 2013).

Although the GR/BDNF pathway recruitment is critical for proper memory consolidation in

conditions at which the stress levels are controllable, evidence indicates that chronic stress

and elevated glucocorticoids levels in pathological situations negatively regulate the BDNF

pathway (Allen & Dawbarn, 2006). In agreement, chronic exposures to corticosterone or

dexamethasone suppress BDNF-mediated release of glutamate in cultured cortical neurons,
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providing a possible mechanism for the negative impact of chronic stress on cognitive

functions (Numakawa, Kumamaru, Adachi, Yagasaki, Izumi et al., 2009). In depression, the

negative impact of chronic stress on spine density, synaptic plasticity, and neuronal survival

in the hippocampus and prefrontal cortex is mediated, at least in part, by glucocorticoid-

dependent downregulation of BDNF expression (Duman, Heninger & Nestler, 1997; Duman

& Monteggia, 2006). Our results and working model, together with the literature on chronic

stress, suggest that the convergence between GR and BDNF pathways may be an important

node of dysfunction in stress-related cognitive impairments and affective disorders.

5. Glucocorticoids, cognitive impairments, and psychopathologies

5.1. Stress and memory: an inverted U-shaped relationship

Chronic stress or even single severely traumatic experiences can have a negative impact on

cognitive functions and lead to the development of several psychopathologies (de Kloet,

Joels & Holsboer, 2005; de Quervain, Aerni, Schelling & Roozendaal, 2009). The effect of

stress on cognitive functions is largely dependent on the characteristics of the stressor. Stress

intensity, duration, chronicity, controllability, and predictability are major characteristics

that affect cognition and memory (Lupien, Maheu, Tu, Fiocco & Schramek, 2007).

Many studies have established that the intensity of a stressor is a critical factor that

modulates cognitive performance. Specifically, in both humans and rodents, stress intensity

and memory are known to follow an inverted U-shaped relationship, with maximal memory

strength at an intermediate level of stress. In the early 20th century, this relationship was

originally described by Yerkes and Dodson in a paradigm that measured the cognitive

performance of mice in a discrimination task after exposure to electrical shocks of different

intensities (Calabrese, 2008). The so-called Yerkes-Dodson law postulates that an optimal

level of stress or arousal leads to maximal performance of a specific cognitive task.

Importantly, this law also emphasizes that the inverted U effect shifts to a linear relationship

as the task becomes simple. An important component of this theory therefore relies on the

complexity of the task and brain structures involved in memory processing (Diamond,

Campbell, Park, Halonen & Zoladz, 2007; Sandi & Pinelo-Nava, 2007).

Following the seminal observation of Yerkes and Dodson, various studies have

characterized the nonlinear relationship between stress intensity and cognitive performance

in rodent models and humans. For example, variation of the intensity of a stress intrinsic to

the learning paradigm, such as water temperature in a radial arm maze, demonstrated the

inverted U effect of stress on learning and memory performance in rats (Salehi, Cordero &

Sandi, 2010). Similarly, systemic administration of corticosterone shortly after training

modulates long-term object-recognition memory with an inverted U effect (Okuda,

Roozendaal & McGaugh, 2004), while exposure to electrical footshocks of different

intensities accompanied by intrahippocampal administration of corticosterone leads to a

similar effect on contextual fear memories (Kaouane, Porte, Vallee, Brayda-Bruno, Mons et

al., 2012). Notably, memory-impairing effects of high stress on spatial tasks are largely

mediated by the action of glucocorticoids and GRs in the hippocampus and BLA

(Roozendaal, Griffith, Buranday, De Quervain & McGaugh, 2003; Roozendaal, Hahn,

Nathan, de Quervain & McGaugh, 2004), and become more pronounced as cognitive task
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gains complexity (Celerier, Pierard, Rachbauer, Sarrieau & Beracochea, 2004; Diamond,

Park, Heman & Rose, 1999). In contrast, increasing stressor intensity leads to enhanced fear

memory strength for simpler cognitive tasks, as shown in studies using classical Pavlovian

contextual and cued fear conditioning (Cordero, Kruyt, Merino & Sandi, 2002; Rau, DeCola

& Fanselow, 2005).

In humans, studies also support the conclusion of an inverted U-shaped relationship between

stress intensity and performance of complex cognitive tasks (Diamond, Campbell, Park,

Halonen & Zoladz, 2007; Lupien, Maheu, Tu, Fiocco & Schramek, 2007). Consolidation of

declarative memories follows a bell-shaped curve associated with levels of cortisol secreted

after stress exposure, with peak memory performance occurring at an intermediate cortisol

level (Andreano & Cahill, 2006). Similarly, injections of increasing doses of cortisol rapidly

modulate declarative memory retrieval with a dose-dependent effect that follows an inverted

U profile (Abercrombie, Kalin, Thurow, Rosenkranz & Davidson, 2003; Domes,

Rothfischer, Reichwald & Hautzinger, 2005; Schilling, Kolsch, Larra, Zech, Blumenthal et

al., 2013). In addition, psychological stressors or administration of high doses of cortisol

lead to impairment in spatial cognitive tasks and declarative memory, particularly when

associated with emotionally laden material (Kirschbaum, Wolf, May, Wippich &

Hellhammer, 1996; Kuhlmann, Piel & Wolf, 2005; Newcomer, Selke, Melson, Hershey,

Craft et al., 1999). In contrast to the impairing effect of severe stress on complex memories

and cognitive functions, it is known that exposure to traumatic events can lead to the

development of pathological memories referred as “hypermnesia” or “flashbulb memories”

during which subjects experience a particularly strong and vivid autobiographical memory

for a specific highly arousing experience (Berntsen & Thomsen, 2005; Tekcan &

Peynircioglu, 2002).

Together, studies on animal models and humans have shown that, in line with Yerkes and

Dodson’s original observation, memory performance associated with complex cognitive

tasks is sensitive to stress in an inverted U fashion, whereas simple forms of fear memory

induced by traumatic experiences can be strong and persistent (Fig 2).

5.2. Glucocorticoid-mediated mechanisms of memory impairments

Exposure to an acute strong stress triggers the secretion of high levels of glucocorticoids and

leads to memory impairment (de Kloet, Joels & Holsboer, 2005; Kim & Diamond, 2002;

Sandi, 2004). For example, impairments of spatial memory have been observed in rats

exposed to acute stress, social stress, following administration of corticosterone and in

transgenic mice with endogenous elevated corticosterone levels (de Quervain, Roozendaal &

McGaugh, 1998; Diamond, Park, Heman & Rose, 1999; Heinrichs, Stenzel-Poore, Gold,

Battenberg, Bloom et al., 1996; Luine, Spencer & McEwen, 1993).

Chronic stress also leads to impairment in hippocampal-dependent learning and memory

tasks. Chronic immobilization, unpredictable randomized stressors, repetitive social

stressors, or chronic injections of corticosterone have all been found to provoke deficits in

hippocampal-dependent forms of memory (Liu, Betzenhauser, Reiken, Meli, Xie et al.,

2012; Luine, Villegas, Martinez & McEwen, 1994; Luine, Spencer & McEwen, 1993; Yuen,

Wei, Liu, Zhong, Li et al., 2012). Interestingly, chronically stressed rats did not exhibit any
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deficits in certain memory paradigms such as cued and contextual fear conditioning,

presumably because of the predominant role of the amygdala in these tasks (Conrad,

LeDoux, Magarinos & McEwen, 1999; Sandi, Merino, Cordero, Touyarot & Venero, 2001).

Together, these studies indicate that chronic stress mostly impairs hippocampal-dependent

mechanisms and functions.

Exposure to severe acute or chronic stress can have dramatic consequences on neuronal

morphology in the hippocampus. Chronic stress or corticosterone administration leads to

dendritic atrophy in the CA1, CA3, and dentate gyrus (Magarinos & McEwen, 1995;

McEwen, 2000a; Vyas, Mitra, Shankaranarayana Rao & Chattarji, 2002), as well as loss of

excitatory synapses in the CA3 area (Sousa, Lukoyanov, Madeira, Almeida & Paula-

Barbosa, 2000). Acute stress and social defeat stress also lead to neurodegeneration and

inhibition of neurogenesis in the adult dentate gyrus (Gould & Tanapat, 1999; Lehmann,

Brachman, Martinowich, Schloesser & Herkenham, 2013; Sapolsky, 2000). In particular,

binding of glucocorticoids to GRs has been shown to mediate the negative effect of severe

or chronic stress on hippocampal morphology and function, therefore likely contributing to

the negative effect of stress on hippocampal-dependent memories (Conrad, Lupien &

McEwen, 1999; Kirschbaum, Wolf, May, Wippich & Hellhammer, 1996; McEwen, 2000a).

In contrast to what is observed in the hippocampus, severe and chronic stresses enhance

neuronal activity, synaptic transmission, spine formation, and dendritic growth in the

amygdala (Roozendaal, McEwen & Chattarji, 2009). Stress-mediated neuronal activity and

morphological changes in the amygdala in turn lead to increased anxiety-like behavior

(Roozendaal, McEwen & Chattarji, 2009). The release of glucocorticoids on exposure to

severe stress therefore has contrasting physiological and morphological effects in different

brain regions that in turn control specific behavioral responses.

5.3. Glucocorticoids, GRs, and traumatic memories in PTSD: potential clinical applications

Improper regulation of the stress response and subsequent abnormal secretion of cortisol are

often associated with stress-related psychopathologies such as anxiety disorders, depression,

and PTSD (de Kloet, Joels & Holsboer, 2005; de Quervain, Aerni, Schelling & Roozendaal,

2009). Chronic hypercortisolemia in depression, advanced aging, or Cushing’s disease have

been associated with declarative memory impairments (Lupien, de Leon, de Santi, Convit,

Tarshish et al., 1998; Parker, Schatzberg & Lyons, 2003; Starkman, Gebarski, Berent &

Schteingart, 1992). In PTSD, most studies have found reduced levels of circulating cortisol

levels (Anisman, Griffiths, Matheson, Ravindran & Merali, 2001; Delahanty, Raimonde,

Spoonster & Cullado, 2003; Neylan, Brunet, Pole, Best, Metzler et al., 2005; Yehuda, 2004;

Yehuda, McFarlane & Shalev, 1998), although others did not find such correlation

(Lindauer, Olff, van Meijel, Carlier & Gersons, 2006; Meewisse, Reitsma, de Vries, Gersons

& Olff, 2007; Muhtz, Wester, Yassouridis, Wiedemann & Kellner, 2008; Pfeffer, Altemus,

Heo & Jiang, 2007). In particular, individuals with PTSD exhibit enhanced suppression of

cortisol release after administration of low doses of dexamethasone, indicating that chronic

hypocortisolemia is caused by excessive negative feedback in the HPA axis (Grossman,

Yehuda, New, Schmeidler, Silverman et al., 2003; Newport, Heim, Bonsall, Miller &

Nemeroff, 2004; Yehuda, Halligan, Golier, Grossman & Bierer, 2004).
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The action of GRs in PTSD has also been shown by human genetic studies (DeRijk & de

Kloet, 2005). The BclI polymorphism of the GR gene that leads to glucocorticoid

hypersensitivity has notably been associated with the development of PTSD symptoms after

cardiac surgery (Hauer, Weis, Papassotiropoulos, Schmoeckel, Beiras-Fernandez et al.,

2011; van Rossum, Koper, van den Beld, Uitterlinden, Arp et al., 2003) and at the onset of

major depression (van Rossum, Binder, Majer, Koper, Ising et al., 2006). In healthy

subjects, the BclI polymorphism is associated with increased memory performance for

emotional pictures, suggesting its contribution to interindividual differences in emotional

memory formation in nonpathological situations (Ackermann, Heck, Rasch,

Papassotiropoulos & de Quervain, 2013). In line with these findings, a polymorphism in the

gene encoding the GR chaperone FKBP5 has also been correlated with increased sensitivity

of GR to cortisol and risk of PTSD (Mehta, Gonik, Klengel, Rex-Haffner, Menke et al.,

2011). Identification of polymorphisms in the GR gene and associations with genetic

variability of other regulators of the stress response is particularly important to better

characterize the genetic bases underlying trauma-related psychopathologies such as PTSD.

Because glucocorticoids and GRs have key roles in the formation of traumatic memories,

potential clinical application of steroid-based therapies for the treatment of stress-related

psychopathologies has been investigated. Promising findings have shown that exogenous

administration of low doses of cortisol dampens the strength of traumatic memories

developed in PTSD, presumably via the inhibitory effect of glucocorticoids on memory

retrieval or expression (Aerni, Traber, Hock, Roozendaal, Schelling et al., 2004; Bentz,

Michael, de Quervain & Wilhelm, 2010; de Quervain & Margraf, 2008). Other evidence

suggests the potential use of cortisol to treat phobic disorders. Cortisol administration in

patients with different types of phobias reduces their fear response during the anticipation,

exposure, and recovery phases after phobic cue presentation (Soravia, Heinrichs, Aerni,

Maroni, Schelling et al., 2006). In addition to inhibiting the fear response, low doses of

cortisol may facilitate extinction of a traumatic memory by enhancing the consolidation of a

novel corrective experience dissociated from the original memory trace (de Quervain &

Margraf, 2008). In mice, administration of glucocorticoids after memory reactivation

impairs retrieval of an established fear memory (Cai, Blundell, Han, Greene & Powell,

2006), whereas inhibition of glucocorticoid synthesis during memory reactivation enhances

retrieval and inhibits extinction of fear memory in mice (Blundell, Blaiss, Lagace, Eisch &

Powell, 2011).

Memory reconsolidation, the process whereby a retrieved memory returns to a fragile state

and becomes reconsolidated (Alberini, 2011), can be targeted to weaken traumatic

memories. Studies from our laboratory have shown that in rats postretrieval inhibition of

amygdalar GRs with the antagonist RU38486 (mifepristone) persistently weakens IA

memory (Tronel & Alberini, 2007). Similarly, postretrieval inhibition of GRs by systemic

treatment with RU38486 disrupts reconsolidation of an IA traumatic memory in rats,

suggesting the importance of GR inhibitors in combination with trauma reactivation as

potential novel therapeutic approach (Taubenfeld, Riceberg, New & Alberini, 2009). In

agreement with this idea, a recent pilot study reported significant benefit with mifepristone

in combat-related PTSD (Golier, Caramanica, Demaria & Yehuda, 2012). Hence, the

combination of glucocorticoid-targeting treatments with behavioral or psychological therapy
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aimed at reactivating the old memory trace and disrupting its reconsolidation or evoking a

new memory in a safe context may represent promising leads for novel therapeutic strategies

against stress-related psychopathologies. A better understanding of the cascade of molecular

events occurring in the brain after activation of GRs in high stress or traumatic conditions

will be key to the design of novel selective interventions against these psychopathologies.

6. Conclusion

Stress modulates memory consolidation by orchestrated activation of neuroendocrine

pathways in a specific spatial and temporal manner. Consolidating a strong memory after a

salient or stressful event is an adaptive response that is necessary for appropriate reactions to

similar demands in the future. In part, the molecular changes elicited by glucocorticoids,

which are released in response to stress and play a critical role in mediating and modulating

long-term memory formation and retention have been elucidated. These changes include

rapid nongenomic synaptic modifications as well as long-term genomic changes triggered by

GRs. Activation of GRs in adaptive conditions engages multiple intracellular signaling

pathways, possibly because GRs target multiple brain areas, cell populations and memory

phases. The GR-dependent mechanisms interact with fundamental process of neural

transmission and plasticity such as glutamate neurotransmission and neurotrophic factor-

mediated long-term responses.

Importantly, in adaptive response to stress, activation of GRs recruits the BDNF/CREB

pathways, which in turn mediate and control memory consolidation. We propose that

evolution has selected growth and pro-survival mechanisms in response to stress, and

particularly those mediated by the BDNF/CREB pathways, as general mechanisms

underlying memory consolidation. In contrast, although it is known that glucocorticoids and

GRs also play a critical role in memory impairments following chronic stress or traumatic

experience, the underlying molecular mechanisms have not yet been identified. Given the

negative correlations between BDNF expression and chronic stress or cognitive

impairments, our studies agree with the hypothesis proposed by previous authors (Duman,

Heninger & Nestler, 1997; Nestler, Barrot, DiLeone, Eisch, Gold et al., 2002) indicating that

dysregulation of the GR-mediated pathway may lead to depletion or disruption of BDNF

expression and signaling. Such depletion would explain the associated memory and trauma-

or stress-induced cognitive impairments. Characterization of the molecular pathways

engaged by glucocorticoids in conditions of chronic or maladaptive stress that lead to

cognitive impairments will be of particular importance in pursuit of the development for

novel specific therapeutic strategies against stress-related psychopathologies.
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Fig. 1. The GR/TrkB model of memory consolidation
Exposure to a stress triggers release of glucocorticoids through activation of the HPA axis

(1). Glucocorticoids released in the circulation cross the blood-brain barrier and activate

glucocorticoid receptors (GRs) at the synapse of hippocampal neurons (2). In presynaptic

neurons, GRs regulate release of glutamate by genomic-dependent and -independent

mechanisms (3). Postsynaptically, GRs stimulate rapid non-genomic increases in synaptic

GluA1 expression (4) and phosphorylation of CamKII (5), CREB (6), and TrkB (7), as well

as genomic-dependent increases in Arc expression (8). TrkB-mediated signaling pathways

activated by BDNF converge on CREB phosphorylation (9). Activation of presynaptic and

postsynaptic GRs in hippocampal neurons, together with recruitment of the BDNF-mediated

signaling pathways, is necessary for stress-mediated memory consolidation. These data are

adapted from Chen, Bambah-Mukku, Pollonini, and Alberini (2012).
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Fig. 2. Effect of arousal or stress intensity on cognitive performances and steroid receptor
occupancy
The intensity of a stressor is a critical parameter that modulates cognitive and memory

performance. Exposure to an intermediate level of stress that leads to optimal cognitive

performance triggers secretion of glucocorticoids in a range that fully activates the high

affinity MRs and partially activates the low affinity GRs. An inverted U-shaped relationship

between stress level and cognitive performance is observed in rodents and humans for

complex tasks (e.g., decision making process, declarative and spatial memories), whereas

high stress leads to an asymptotic effect on memory performance for simpler cognitive tasks

(e.g., flashbulb memories, fear memories).
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