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Abstract
Networks are increasingly used to study the impact of drugs at the systems level. From the
algorithmic standpoint, a drug can ‘attack’ nodes or edges of a protein-protein interaction network.
In this work, we propose a new network strategy, “The Interface Attack”, based on protein-protein
interfaces. Similar interface architectures can occur between unrelated proteins. Consequently, in
principle, a drug that binds to one has a certain probability of binding others. The interface attack
strategy simultaneously removes from the network all interactions that consist of similar interface
motifs. This strategy is inspired by network pharmacology and allows inferring potential off-
targets. We introduce a network model which we call “Protein Interface and Interaction Network
(P2IN)”, which is the integration of protein-protein interface structures and protein interaction
networks. This interface-based network organization clarifies which protein pairs have structurally
similar interfaces, and which proteins may compete to bind the same surface region. We built the
P2IN of p53 signaling network and performed network robustness analysis. We show that (1)
‘hitting’ frequent interfaces (a set of edges distributed around the network) might be as destructive
as eleminating high degree proteins (hub nodes); (2) frequent interfaces are not always
topologically critical elements in the network; and (3) interface attack may reveal functional
changes in the system better than attack of single proteins. In the off-target detection case study,
we found that drugs blocking the interface between CDK6 and CDKN2D may also affect the
interaction between CDK4 and CDKN2D.

INTRODUCTION
Currently, the “one drug one target” approach is often considered an exception rather than
the rule 1. With a few exceptions, there is no one-to-one mapping between a gene (and the

*Corresponding Author: Attila Gursoy; agursoy@ku.edu.tr; Center for Computational Biology and Bioinformatics and College of
Engineering, Koc University, Rumelifeneri Yolu, 34450 Sariyer Istanbul, Turkey..
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drugs’ conformations when the pockets of CDK6 (dark blue), CDK4 (red) are superimposed. This material is available free of charge
via the Internet at http://pubs.acs.org.

NIH Public Access
Author Manuscript
J Chem Inf Model. Author manuscript; available in PMC 2014 April 08.

Published in final edited form as:
J Chem Inf Model. 2012 August 27; 52(8): 2273–2286. doi:10.1021/ci300072q.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://pubs.acs.org


protein it encodes) and a disease state, and disease processes often involve crosstalk between
proteins in different pathways. This is mainly because a protein can have many functions,
and many proteins can have a similar function. Drugs are often multi-targeted and a recent
study suggested that the average number of target proteins per drug is 6.3 2. Off-targets are
the proteins that a drug can bind other than its primary target. Cohen et al.3 note that cancer
drug therapy might change the behavior of nearly 1000 different proteins, suggesting that
the disturbance of a signaling network through a single protein may affect other proteins.
Recently, system-wide approaches are increasingly being considered 4.

Polypharmacology is a new concept in drug discovery that seeks drugs acting on multiple
targets. One of the aims of polypharmacology is to discover multi-target drugs that will
disturb disease-associated networks 1, similar to aspirin, Metformin, nonsteroidal anti-
inflammatory drugs (NSAID's), and Gleevec. Combination therapy showed success in
diseases such as AIDS, atherosclerosis, cancer and depression. Although attacking more
than one ‘strategic’ point of the system might be a useful approach, multi-target drugs also
have increased toxicity. Putative off-targets have been found through different
computational methods, such as docking 5,6, pharmacophore mapping 7, ligand structure
similarity 8,9, side effect similarity 10,11, ligand binding site similarity 12-17, text mining 18

and integrated methods 19-21. Proteins with similar binding sites often recognize similar
ligands 21,22. Earlier works suggested that even weak binding to multiple targets may have
profound effects on the biological system23-25. Eventually, all structure-based drug
discovery strategies including those targeting protein-protein interactions (PPIs) 26 should
consider protein flexibility on the atomistic level 27,28.

The interface attack strategy proposed in this work focuses on protein-protein interface
motifs. Currently protein–protein interfaces are increasingly becoming targets in drug
discovery 2930, and it was suggested that the high flexibility of monomers may lead to
overlooking small highly populated pockets that may occur when in the complex form 30.
Finding small-molecule drugs that hit protein–protein interactions is still highly
challenging 31-35. Although generally interfaces of PPIs (~1500 - 3000 Å2) are larger than
protein-small molecule interactions (~300 - 1000 Å2), an optimized small molecule may
bind with an affinity comparable to that of the native partner protein or peptide 32.

Our interface attack is inspired by interface motifs and by multi-target drugs. Since drugs
may disrupt protein interactions which have structurally similar interfaces, we aim to
develop a strategy which may take a first step toward prediction of the outcome of disabling
a set of structurally similar interactions in protein-protein interaction networks (PINs). Our
study is the first to target interfaces in a network attack. A few successful PPI drugs on the
market 34 such as tirofiban targeting the integrins (cardiovascular conditions) 36; and
maraviroc targeting CCR5–gp120 interactions (HIV) 37, and several new drugs entering
Phase II clinical trials 38, suggest that protein interfaces can be druggable.

Biological systems are robust to damage of their components. In the case of the protein-
protein interaction network, the topology of the network appears responsible for its
robustness 39. The scale-free network characteristics make it resilient to accidental failures:
even if 80% of randomly selected proteins fail, the remaining 20% still continue to stay as a
compact cluster 40. However, protein networks are vulnerable to systematic attacks on
highly connected proteins. Experimental studies indicate that these proteins are also
essential41. Integrating structural knowledge can help the abstract protein interaction
networks: knowledge of protein interfaces helps not only in understanding the relations
among proteins and thus function, but also in identifying drug targets, in inhibitor design
and off-targets prediction.
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Beyond the introduction of strategy of interface attack, this article presents a new network
model, which we name “Protein Interface and Interaction Network (P2IN)”. Similar network
models were used by our group previously to analyze interface properties of cancer-related
proteins 42 and topological properties of hubs 43. This new model introduces structural
information into PINs. All network nodes have 3D interface structures. This representation
illustrates which proteins may compete for the same binding site on a protein, and all protein
pairs with structurally similar interface topologies.

Here our goal is not to design drugs; instead, we aim to introduce an interface motif-based
first step in a systems strategy that seeks to identify potential side effects. Eventually, to
more reliably predict drug binding, comprehensive long time scales simulations are
essential. Introducing atomistic flexibility into systems-level studies is a challenging aim,
beyond current computational feasibility. An alternative could be selection of few likely
targets obtained by a strategy such as the one proposed here, and subjecting them to such
detailed analysis.

This paper is organized as follows: the Concepts section provides an overview of the notion
of similar structural motifs in interfaces, the new network model (P2IN) and the interface
attack strategy. The Results and Discussions section consists of four case studies: the first is
the P2IN model applied to the p53 signaling pathway, the second relates to off-target
prediction and the third case study focuses on comparison of node and interface attacks from
a biological standpoint. These case studies are followed by the robustness measures used in
analyzing the response of the p53 P2IN to attack strategies. Lastly, the case study on
comparison of network attack strategies is presented.

CONCEPTS
The novelty of our strategy comes from the concept of similar interfaces. Similar interfaces
can occur between unrelated proteins, and this is a common occurrence44,45. Consequently,
a drug that binds to one has a certain probability of binding others. Our network attack
strategy is inspired by multi-target drugs, and makes use of structurally similar interfaces. In
this section we give a brief overview of this similar-interfaces-different-global-structures
paradigm. We describe how we find similar interfaces on a network of protein interactions;
introduce the structural protein-protein interaction network model; explain what a network
attack is; and define interface attack, which is the focus of this study.

PRISM May Discover Similar interfaces
The 3D structures of the protein-protein complexes and their interfaces are obtained through
the application of the Protein Interactions by Structural Matching (PRISM) method. PRISM
aims to predict protein-protein interactions and protein interfaces by identifying structural
similarities between protein surfaces and known interfaces which are derived from the
Protein Databank (PDB) 46. The algorithm has four steps. First, the surfaces of all target
proteins are extracted. Second, using the MultiProt engine47, the surfaces of the target
proteins are structurally aligned with known interfaces (templates) obtained from the PDB.
In this step PRISM checks whether any surface region of the monomers is structurally
similar to one of the complementary chains of the template interfaces, disregarding the order
of the residues in the protein chain. Third, it places the two chains that are structurally
similar to the template interface onto the template complex. This leads to a putative
complex. The fourth step involves flexible refinement of the putative complexes by
FiberDock 48,49. This resolves steric clashes and ranks the predicted protein complexes by
their energies. Combining geometric complementarity with docking tools makes the
prediction more physical. The prediction performance of PRISM algorithm was recently
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analyzed on standard docking benchmarks, and found to be comparable to other rigid
docking strategies, however considerably more efficient (see Tuncbag et al.50).

PRISM finds the similarity scores between the surface of each target in our datasets and
each side of a PDB template (a template has two sides, i.e. the two complementary surfaces
in the complex, in cyan and magenta, Figure 1, top line). From this output, it predicts the
interface (Figure 1, bottom line). For instance, take the target protein pair in Figure 1,
“TAF1” and “CDK4”, and template interface “1BLXAB”; if “TAF1” has a region on its
surface which is similar to the binding site on one chain of “1BLXAB” and “CDK4” on the
second chain, then they are predicted to interact similar to the interface “1BLX-AB”. This
means that the binding sites of proteins “TAF1” and “CDK4” are similar to those of the
protein chains of interface “1BLX-AB”.

A New Structural PPI Network Model: Protein Interface and Interaction Network (P2IN)
Protein interaction networks (PINs) give binary information relating to whether two proteins
communicate. Being enriched with structural information, P2IN is a more physical and
realistic version of PIN. Unlike the PINs whose nodes are proteins and the interactions are
the connecting edges, P2IN have interface information linked to its edges and each protein
in the network has a 3D structure. Interactions between the proteins are represented by edges
going through the interfaces of the two chains (Figure 2). Similar interfaces may exist
between different protein pairs and the same protein pair may interact through different
interfaces44,51,52.

P2IN is capable of providing structural details that a PIN is not able to describe. Some of
these details are exemplified in Figure 3: different protein pairs interacting via the same
interface (CDK6 – CDKN2D and CDK4 – TAF1 interact via same interface); a protein pair
interacting using different interfaces (CDKN2D and CDK4) and multiple proteins
competing to bind the same region on a protein (RAD51, CCNE1 and HDAC1 going for the
same binding site on CDK6). This additional knowledge may allow identification of
interactions which cannot take place simultaneously. Partners of a protein interacting with
the same binding site cannot coexist. In addition, since ligands tend to bind proteins that
have similar binding sites53-55, locating protein pairs that interact via similar interfaces may
help to predict additional, off-targets of these drugs. Thus, P2IN might be one step closer to
mimicking systems-wise drugs effects 56.

Network Attacks
An attack on a network is executed in order to disrupt the information flow locally or
globally, to disable a pathway or to destroy the network as a whole. An attack implies
deletion or attenuation of an edge or a node of the network25.

i. Node Attack—A node attack on the network removes edges focused at a single node.
We studied two different node attacks: complete knockout (Figure 4a) and partial knockout
(Figure 4b). Complete knockout refers to removing a node with all of its edges; partial
attack involves removing randomly selected half of the edges of a node. Complete node
attacks are commonly used attack strategies. The targets of these attacks vary according to
the network topology. Complex networks were believed to be randomly linked 57 until
Barabasi et al. discovered a common topology58. This discovery introduced scale-free
networks into network theory. While in a random network nodes have roughly the same
number of edges, in a scale-free network there are many nodes with a small number of edges
and a few nodes (hubs) with a large number of connections. Random node attacks may be
destructive to networks that are randomly linked, whereas scale-free networks are highly
robust under these attacks. Scale-free networks are defenseless upon few vital node
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removals 39. Accordingly, targeting hub nodes is a preferred approach in network
attacks59-62. Detaching those nodes, which have many neighbors, will disrupt the
information flow.

Partial knockout was performed by Agoston et al.25 on E. coli and S. cerevisiae networks.
They removed randomly half of the edges of target node or attenuated all the edges of the
node. This study suggested that partial weakening of a small number of nodes (3- 5) might
have a stronger effect than completely removing a selected node; in both cases the most
damaging nodes were selected. Zhang et al. 63 questioned whether this result is a general
concept for complex networks and retested all attack strategies on the Barabasi-Albert (BA)
scale-free network 58 and the Erdös-Renyi (ER) random network 57. They confirmed that
multi target partial attacks may disturb complex networks more than single target complete
attacks and ER random networks are more resistant to multi target partial attacks than the
BA networks.

ii. Edge Attack—An edge attack removes one or multiple edges from the network, where
the edges do not have to be incident to a node. Depending on the network topology,
attacking a high betweenness edge may damage the system more than attacking a hub node
with many edges. Thus, deleting a number of edges scattered in different regions of the
network might be a more efficient attack strategy than targeting a node25. This attack is
a ’distributed attack’ (Figure 4c).

Interface Attack
Here we propose an attackstrategy which is based on the expectation that PPI-targeting
drugs may disrupt a number of protein-protein interactions which have structurally similar
interfaces. Interface attack is the graphical representation of this strategy and removes
interactions with similar interfaces from the network (Figure 5).

Interface attack is a kind of distributed attack, since it targets one or more interactions
between protein pairs. However, instead of selecting random edges or the ones which lead to
the most damage, structurally similar interfaces are targeted. Interface attack is a
knowledge-based distributed attack.

RESULTS AND DISCUSSION
As a first case study, we built the p53 protein interface and interaction network (P2IN),
showing how knowledge of similar interfaces may help to detect drug off-targets. A second
case study compares the consequences of the interface attack and the complete node attack.
To obtain the hypothetical biological impact of interface attack, we built a new network in
which the interactions and nodes without structural knowledge were also present. Lastly the
network attack scenarios are practiced on P53 P2IN and changes in the network robustness
are analysed.

P53 P2IN
The p53 tumor suppressor is a center of a protein interaction network. Under cellular stress,
it is a key factor in the decision between cell cycle progression or apoptosis 61. Stress signals
may be due to failures in DNA replication, chromosome segregation and cell division 64.
Malfunction of p53 causes uncontrolled growth 65. p53 is inactivated in more than 50% of
human cancers 66,67. We constructed the p53 signaling P2IN using the PRISM 68,69

predictions for this signaling pathway. Our network has 251 interactions among 81 proteins
(please refer to Table SI1 for the list of PRISM interaction predictions for p53 network). 46
different types of interface structures are observed for these interactions. 26 out of the 251
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are present in Kohn's molecular interaction map (MIM) 70; 59 are in PPI databases such as
HPRD 71, Mint 72, IntAct 73, Reactome 74, BioGrid 75, Pathway Commons 76 and NCI-
Nature PID 77. 66 interaction predictions are directly experimentally validated and there is
evidence in the STRING 78 database for 90 of the interactions predicted by PRISM. Overall,
104 interactions out of 251 are validated experimentally or via STRING.

Knowledge of Similar Interfaces May Help Off-Target Detection
This section describes a case study for off-target prediction application on the interfaces of
p53 P2IN. CDK6 is a regulator of cell cycle progression and affects the activity of tumor
suppressor protein RB which inhibits it and keeps the cell growing in G1 phase. Inactivation
through phosphorylation by CDK leads to cell cycle progression. Some CDK6 inhibitors
that block the G1/S transition of cell are listed in Table 1. The drugs in this table have 3D
structures in complex with CDK6 46.

CDKN2D is a cyclin dependent kinase inhibitor, which forms a stable complex with CDK6
(Figure 6a). The drugs listed in the table (Aminopurvalanol, PD-0332991, CHEBI: 792519,
CHEBI: 792520 and Fisetin) seem to interfere with CDK6 and CDKN2D interface, when
the CDK6–CDKN2D complex is superimposed on CDK6 and drug complexes present in
PDB (Figure 6b - 6c, Figure SI1). The crystal structure of CDK6 and CDKN2D interface is
available (PDB ID: 1BLX, chains: A, B86. 1BLX is a complex between human CDK6 and
mouse CDKN2D. The same complex is also available for human CDK6 and human
CDKN2D (PDB ID: 1BI8, chains: A, B) 87. We considered the mouse and human CDKN2D
as homologs, with 87% sequence similarity and 0.41 RMSD and used the 1BLX complex in
this study since it has a better X-ray resolution). PRISM predicts an interaction between
CDK4 and CDKN2D, with a structurally similar interface to the CDK6-CDKN2D interface.
The interaction of CDK4 and CDKN2D is detected by in vitro and in vivo assays88, but the
3D structure of their complex is unavailable. The interface attack by the five drugs blocking
the interaction of CDK6-CDKN2D may disturb the CDK4-CDKN2D interaction.

Using the HotPoint server 89, we identified the computational hotspots of CDK4, CDK6 and
CDKN2D. When the interfaces with CDKN2D are superimposed by using Multiprot
engine 47, CDK4 (obtained from PRISM predictions) and CDK6 (obtained from the PDB)
have a number of identical hotspots (Figure 7). CDKN2D interacts with them via the same
surface area. Lastly, we found that the hotspot (CDK6 residue Ile19) that is closest to the
ligand binding region on CDK6, is also present on the binding region of CDK4 (residue
Ile12) (Figures 8-9). These drugs are also close to hotspots Gln98, and Asp97 on CDK4, and
Gln103 (hotspot), Asp102 (non-hotspot) on CDK6 (please refer to Figures SI2 - SI3). These
residues overlap when CDK4 (PDB ID: 2W96, chain: B) and CDK6 (PDB ID: 1BLX, chain:
A) are superimposed with Multiprot engine (RMSD: 1.28 Å). At this point we propose that
CDK4 may be an off-target candidate for drugs targeting CDK6. In order to see how alike
the binding pockets of CDK4 and CDK6 are, we superimposed the ligand binding sites
using VMD90 (Figure SI4). The results revealed that CDK4 has a binding pocket which is
similar to that of CDK6, with RMSD 0.87 Å.

Docking simulations may suggest if a ligand is capable of binding to a protein. AutoDock91

is used to dock these drugs to candidate off-target CDK4 (Figure 8) and primary target
CDK6 (Figure 9). As shown in Table 2, the binding free energies between CDK4 and the
drugs are promising; they are comparable to the binding energies between CDK6 and its
inhibitors. The listed energies are the lowest binding free energies of the most populated
clusters. The RMSD values of superimpositions of the best poses of each drug molecule
docked to CDK4 compared to CDK6 are also provided in Table 2 (Figure SI5). These
findings strengthen our proposition that CDK4 is an off-target for the drugs targeting CDK6.
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Lastly, we searched for the inter-relationship between CDK6 inhibitors and CDK4 in the
literature. We found that PD-0332991 has been designed to turn off both CDK4 and
CDK692. Moreover, SuperTarget states that CDK4 is a target of CHEBI: 792520 93.
Accordingly, we are able to verify two of our off-target predictions. To conclude, we may
now suggest that CDK6 binding drugs that block the interface between CDK6 and
CDKN2D, may also bind to CDK4 and disrupt the interaction between CDK4 and
CDKN2D. Therefore, when CDK6-CDKN2D interaction is hit in the interface attack, we
may also break the interaction between CDK4 and CDKN2D.

Biological Consequences of Interface Attack versus Complete Node Attack
Networks of protein interactions are vital tools for explaining a series of events in the cell
which may be triggered by a drug. A drug which inhibits protein-protein interactions may be
represented in the network by removing the respective edges. To foresee the effects of a
drug designed to inhibit all the interactions of a single protein, one can simply remove this
node from the network and investigate the changes. For making an accurate functional
analysis, we need all known protein interactions in the p53 pathway. We constructed a p53
network which, regardless of the structural availability, contains all known protein
interactions and proteins. We simulated the changes in the network when subject to node
and interface attacks. We partitioned the network using the “Affinity Propagation”
algorithm 94. This clustering algorithm determines the representative examples (examplars)
of the graph and then partitions the network according to these examplars.

We mapped the experimentally validated PRISM interface predictions of the p53 pathway
on Kohn's MIM 70 as the starting point for constructing an experimentally validated network
of protein interactions enriched with interfaces. We obtained a p53 PIN with 109 nodes and
227 edges. We expanded this network with the 66 PRISM predicted interfaces that were
experimentally validated (26 interactions present in Kohn's MIM, 33 additional interactions
from various experimental databases). We gathered a network of 115 nodes and 269 edges.
Recall that there were a number of proteins from databases other than Kohn's MIM in our
PRISM target. As a result the number of nodes also increased (Figure 10). The clusters
generated by the Affinity Propagation algorithm are shown using pie charts (Figure 11 top
row). Clusters are named according to the highest degree node of that partition.

When the 1jsuBC interface (template interface is between the CCNA2 and CDKN1B
proteins) is attacked, 11 edges are removed from the network. Six of these are around the
CDKN1B node. Therefore, this node is completely removed from the network by the
1jsuBC interface attack, in addition to the removal of 5 edges around other nodes. One can
see that this attack causes the cluster, with the RB1 hub node, to get significantly bigger
(please refer to the slices of RB1cluster in the top and middle rows of Figure 11). RB1 now
has a greater influence on the network. MYC is no more the hub node of a cluster (red slice
present in the top row of Figure 11 dissapears in the middle row of Figure 11) and the
cluster of CDK2 enlarges from 9% of the nodes of network to 16% (Figure 11 middle row).
A complete node attack targeting the CDKN1B protein, means breaking all of this node's
interactions detaching it from the network. PRISM predicts that all 6 interactions of
CDKN1B have a similar structure to 1jsuBC interface. Thus, to block all of the interactions
of CDKN1B, a drug has to attack the 1jsuBC interface, which affects 5 more edges in the
network. However, in the case of complete node attack on CDKN1B, only edges of this
node are discarded from the network. We do not observe a significant change in the sizes of
the clusters following complete node attack (see top and bottom rows of Figure 11).

The changes observed after the interface attack appear reasonable. During the 1jsuBC
interface attack, CDKN1B is removed from the network, CDK2 cluster gets bigger and the
influence of this protein on other nodes increases. Since CDKN1B has inhibitory activity on
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some CDK2 complexes95, this change is expected. Once MYC is not a hub in a cluster, the
RB1 cluster expands. In the presence of MYC, the RB1 transcription is suppressed and
MYC activates a set of miRNAs, which in turn inhibit the translation of RB1 96. Finally,
CDKN1B and RB1 are tumor-suppressors. The RB1 cluster gets bigger when CDKN1B
loses all of its interactions, possibly suggesting that RB1 may be involved in an alternative
pathway. (Bottom Row) The clusters after CDKN1B node attack.

Network Attack Scenarios Applied to P53 P2IN and Changes in the Network Robustness
The robustness of a network relates to its ability to withstand the damage caused by attacks.
It can be expressed by topological parameters. The most commonly used robustness
parameters are the average inverse geodesic length (AIGL) 59,97 and the giant component
size 59 (GCS). To monitor the change in the connectedness of the nodes in the system, we
use both.

For the p53 P2IN survivability analysis, several attack types and target selection strategies
are used. These attack scenarios refer to partial or complete knockout of hub nodes and
deletion of multiple edges that are scattered around the network. At each step a new target is
hit and the topological parameters are recalculated until the network is left without
interactions.

i. Hub Node Attack—A hub is the highest degree node of the network; it is the node that
has the largest number of interactions. This attack type targets the largest degree node of the
network. Hitting this element also affects its interacting partners and causes a serious
disturbance in the network communication.

ii. Frequent Interface Attack—In P2IN, the number of occurrences of each interface
type is known. In this strategy the most frequently observed interface is selected as the target
of interface attack.

iii. Maximal Damage Strategy—The maximal damage strategy is a greedy algorithm,
which was studied by Agoston et al. 25. It hits the component that will harm the network the
most in each attack. This tactic may be used in both node and edge attack types. Removing
multiple edges that are selected according to the maximal damage target selection strategy is
a kind of a distributed attack. It targets the node or interface that is expected to cause the
greatest possible harm.

Frequent Interface Attack is as Harmful as Complete Hub Knockout and it is a More
Realistic

Scenario—Breaking an edge can be considered as the graphical representation of a drug
blocking the interaction of two proteins. If we were to map node-targeted attacks (complete
or partial knockout) to a drug mechanism, it would be a “magic bullet”; even if a drug would
specifically bind to one protein, in most of the cases it may not obstruct all of its
interactions. It seems that complete knockout is rarely observed in realistic drug action. The
common “similar binding sites should recognize similar ligands” strategy22, motivated us to
develop the interface attack.

Complete/partial hub node attacks and interface attacks based on their frequencies of
occurrence are performed on the p53 P2IN. In Figure 12 the change in the network
robustness is plotted according to AIGL and GCS. The x-axis stands for the number of
attacks, while the y-axis is the AIGL or GCS values during the attacks. A drop in AIGL or
GCS of the network correlates with the damage caused to the system. The plots show that
attacking the most frequent interface in the p53 signaling network is at least as harmful as
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complete removal of the hub nodes from the network. Thus, rather than targeting a well
connected protein, which is more likely to be essential 60, we may target edges that have
similar interface structures.

The most frequent interface (PDB ID: 1JSU, chains: B, C) is observed 46 times in the p53
network. 21 of these predictions are validated experimentally or present in the STRING
database. If there were a drug designed to disturb one of these 46 interactions, not just that
particular edge, all 46 interactions could be hit. Hence, building the interface and interaction
network of a biological system may be helpful for drug development.

Interface Attack is not as Harmful as Distributed Attack when Maximal Damage Strategy is
Applied

Agoston et al. 25 showed that rather than removing a node completely from the network, one
could inflict similar damage by removing a number of edges distributed around the network.
They chose the most destructive edges.

Interface attack is a kind of distributed attack, but it chooses the target edge set based on
interface similarity. We performed distributed attacks and interface attacks on the p53 P2IN.
In this experiment we followed a maximal damage target selection strategy, by selecting the
most damaging edges (distributed attack) or the most damaging interface in successive
attacks. The comparison of the damage caused by distributed attack and interface attack is
plotted in Figure 13. The x-axis is the number of edges removed during attacks and the y-
axis the change in the network GCS and AIGL. It is clear that distributed attack harms the
network more than interface attack. However, comparison of interface attack and distributed
attack is not straightforward, since distributed attack selects edges one by one, while
interface attack chooses between sets of edges. This is why distributed attack is so harmful
and is nearly the optimal attack strategy for collapsing the network. However, interface
attack seems to be physically more suitable for simulating the impact of multi-target drugs
on the network, since the interactions affected by multi-target drugs are not always the most
harmful.

Frequent Interfaces are not Observed on Topologically Critical Interactions
P53 P2IN is a small sub-network, and it does not have a scale-free architecture. When
random edge attacks are compared with frequent interface attacks (Figure 14) according to
the change in giant component sizes, the most frequent interface attack is less harmful to the
p53 P2IN than random edge attacks.

However, when the attacks are performed on randomly selected interfaces, we observe that
on average they harm the network more than random edge attacks. Consequently, random
interface attacks are more harmful to the network than frequent interface attacks; that is, a
frequent interface is less likely to hit topologically critical elements of the network. This
makes the network more resistant to failures.

CONCLUSIONS
We proposed a new network representation (P2IN), which introduces the structures of
protein interfaces into the protein interaction networks (PINs). In addition to providing the
binary information of whether two proteins interact with each other, the protein interface
and interaction network (P2IN) also provides information on the structure of the complex
that they form. This representation allows us to propose a new attack strategy of hitting
edges between protein pairs that interact via structurally similar interfaces rather than nodes.
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We generated the signaling network of the p53 P2IN and tested its robustness to various
attacks. Both node and edge attacks are performed. The interface attack is found to be as
destructive as hub node attacks; however, it is not as harmful as distributed attack that
targets maximal edges. A drug that disturbs a frequent interface type may be as destructive
as a drug targeting a high degree protein, suggesting the usefulness of considering the
frequency of interface motifs during drug development. We discovered that some drugs
(Aminopurvalanol, PD-0332991, CHEBI:792519, CHEBI:792520 and Fisetin) binding to
CDK6, disrupt its interaction with CDKN2D. We applied our interface attack strategy to this
case and found that drugs blocking this interface may also affect the interaction between
CDK4 and CDKN2D. CDK4 also appears an off-target for drugs binding to CDK6. This
example illustrates the promise in our strategy as a first step in indentifying potential off-
target drug hits. Finally, we provided a case study of a comparison between node and
interface attacks. Challenging next steps are accounting for molecular flexibility. Proteins
are highly dynamic, and structure-based drug discovery requires detailed structural treatment
to uncover transient pockets which are unlikely to be observed in the static crystal snapshots
and rigid docking. Nonetheless, systems-wide outcome involving possible off-targets of a
drug is an important consideration, and eventually would need to be integrated with detailed
structural investigation in attempts to forecast potential side effects. Here, our concept of
interface attack exploits structural motifs. It is inspired by network pharmacology, an
emerging paradigm in drug discovery.

MATERIALS AND METHODS
Constructing Protein Interface and Interaction Network (P2IN)

The first step of building a P2IN is to gather raw data of protein interactions and their 3D
structures. Protein interactions are collected from the literature and databases; the 3D
structure of the interfaces is obtained from application of PRISM 68,69. There may be more
than one possible template interface for one interaction pair; in such a case, there is more
than one possible binding site between two proteins. All possibilities are considered, and
every matching interface template is included in the interface and interaction networks.
Proteins whose interface sites cannot be predicted by the PRISM server are discarded. This
decreases the number of proteins and interactions.

PRISM predicts interfaces for two target proteins, which have 3D structures in the PDB.
However, the interaction data gathered from the literature are UniProt 98 IDs. Thus, target
(UniProt) proteins should be mapped to PDB IDs, and these will constitute the input for
PRISM. The main problem in this phase is that a protein may have multiple PDB IDs or its
3D structure might not be known. To overcome this inconsistency, proteins that do not have
matching PDB chains are discarded and all PDB counterparts of a protein are taken into
account while constructing the network.

P53 P2IN
We studied the interactions between the proteins in the p53 signaling pathway. The list of
proteins that are involved in this pathway was compiled from the literature 70 and databases
by Tuncbag et al.50. Among these proteins, 85 had 3D structures in the PDB. The interaction
and interface data is obtained from PRISM predictions. We used 1037 template interfaces
that were extracted from the PDB 99 for the prediction process. The resulting interface
predictions with energies lower than -10 are accepted.

PRISM predicted 251 interactions among 81 proteins and there are 46 different interface
structures in the network. The number of proteins dropped from 85 to 81, since PRISM did
not infer interactions for some proteins. If we were to link each protein in the network to
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other proteins, we would end up with ~3300 edges. PRISM infers 251 interactions out of
those 3300 possibilities and 41% of those predictions are already known. Furthermore, in the
generated p53 P2IN, there are 15 PPIs, which have PDB structures in complex form. PRISM
was able to predict 13 of those interfaces correctly (Table SI2).

Docking Parameters
For adding polar hydrogens, assigning Gasteiger charges and drawing grid boxes
AutoDockTools 1.5.491 was used. Binding affinities were calculated with AutoGrid version
4. Lamarckian genetic algorithm (trials of 50 dockings, population size of 150, and
maximum number of generations of 27000) was used to do the docking experiments using
AutoDock 4.0 91.

Clustering Algorithm
We partitioned the network according to the “Affinity Propagation” algorithm 94 with the
help of Clustermaker plugin 100 of Cytoscape 101.

Mapping the experimentally validated PRISM interface predictions of p53 pathway on the
Kohn's MIM

Kohn's MIM has some nodes that do not have a protein counterpart, or some nodes
correspond to multiple proteins. Before constructing the PIN, we updated nodes in Kohn's
MIM by removing or expanding some of them (Table SI3). If a node was replaced with
multiple proteins, the number of interactions automatically increased. We searched the
String database for validating the new edges and picked the ones which were coming from
experiments or databases. For example, the “CDK4-6” node corresponds to three proteins
(CDK4 – CDK5 – CDK6). In the original map there was an interaction between “CDK7”
and “CDK4-6”. The “CDK7” interactions with CDK4 and CDK5 are validated, but not with
CDK6. The full list of interactions can be found in Table SI4.

Robustness Measures
AIGL is the sum of the inverses of all shortest paths, divided by the number of possible node
combinations. The definition is given in Equation 1. The notation used is as follows:

ℓ = average geodesic length

n = number of nodes

i, j = proteins

dij = distance between proteins i and j

If there is no path connecting nodes i and j, the distance between them is set to infinity.
Some studies use the average geodesic length but we preferred to use AIGL. Even after
several attacks, AIGL will not be equal to infinity, because if there is no navigable route

between i and j, .

(Eq. 1)

GCS is the number of nodes in the network's largest connected sub-graph and it may give
important clues about the collapsing mechanism of network under attacks.

Engin et al. Page 11

J Chem Inf Model. Author manuscript; available in PMC 2014 April 08.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Interface Structure Prediction for Interacting Target Proteins
Interface information is obtained from the “Protein Interactions by Structural Matching”
(PRISM) server. PRISM searches for spatial motif similarity on target proteins’ surfaces
using geometric complementarity and considers evolutionary conservation of hot spots
based on a non-redundant protein-protein interfaces template dataset derived from the PDB.
Its prediction principle is to compare both sides of a template interface with surface regions
of any given two monomers, and if they are similar these two proteins are predicted to
interact with each other via this interface region. In the above example the CDK6 [PDB:
1BLX-A] and CDKN2D [PDB:1BLX-B] complex is derived from PDB and the target
proteins CDK4 and TAF1 are found to be interacting via an interface structurally similar to
1BLX-AB interface. CDK 4 and TAF1 are predicted to be interacting via 1BLX-AB
interface.
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Figure 2. The P2IN Representation
Interactions between proteins are represented by the edges going through the interfaces
whose two chains represent the binding site regions of the proteins.
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Figure 3. Protein – Protein Interactions and Interface Networks (P2IN) versus Protein-Protein
Interaction Network (PIN)
(a) A subset of PRISM predictions represented with P2IN and (b) its PIN counterpart. In
P2IN the same interface may exist between different protein pairs (CDK6 – CDKN2D;
CDK4 – TAF1 interact via same interface) and the same protein pair may interact using
different interfaces (CDKN2D and CDK4). Moreover many proteins may compete to bind
the same binding on a protein (RAD51, CCNE1 and HDAC1 bind the same site on CDK6).
PIN's are not capable of depicting such structural information of protein interactions.
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Figure 4. Network Attacks
(a) Complete knockout (b) and partial knockout target a hub node. (c) Distributed attack.
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Figure 5. Interface Attack
Interface attack hits the set of edges, which interact via structurally similar interfaces
(marked with red crosses). When the interaction between P1 and P2 is targeted, the
interactions between P4 and P7; P7 and P8 are also hit, since they all interact through
interface 1.
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Figure 6. The CDK6 (green) - CDKN2D (orange) Complex and CHEBI: 792520 (purple)
Interference
(a) The interface of CDKN2D - CDK6 is from PDB ID:1BLX. (b,c) In the PDB, CHEBI:
792520 has a 3D structure in complex with CDK6 (PDB ID: 3NUX). When CDK6 proteins
of 3NUX and 1BLX are superimposed, CHEBI: 792520 interferes with the CDK6 and
CDKN2D interface. These two figures are predicted outcomes; no structural data are
available.
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Figure 7. Hotspots of CDK4-CDKN2D and CDK6-CDKN2D Interfaces
The predicted hotspots of CDK4 (cyan) and CDK6 (orange) proteins are represented with
“Licorice” and the hotspots of CDKN2D are drawn as a (red) surface, using VMD 90. The
red, transparent body in the background is also CDKN2D protein. CDK4 and CDK6 have a
number of identical hotspots, when their interfaces with CDKN2D are superimposed.
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Figure 8. CDK4 Docking Simulations
AutoDock 91 is used to dock the drugs (Aminopurvalanol, PD-0332991, CHEBI: 792519,
CHEBI: 792520 and Fisetin) to candidate off target CDK4. The hotspot (CDK6 residue
Ile19) that is closest to the ligands’ binding region on CDK6, is also present on the binding
region of CDK4 (residue Ile12).
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Figure 9. CDK6 Docking Simulations
AutoDock91 is used to dock the mentioned drugs (Aminopurvalanol, PD-0332991, CHEBI:
792519, CHEBI: 792520 and Fisetin) to primary target CDK6. The hotspot (CDK6 residue
Ile19) that is closest to the ligands’ binding region on CDK6, is also present on the binding
region of CDK4 (residue 12).
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Figure 10. Structurally Enriched MIM Attacked Based on the 1jsuBC Interface
Experimentally validated edges of p53 P2IN mapped on the Kohn's MIM 70. The edges with
interface structures are shown in pink color and the edges with 1jsuBC interface is
highlighted in green. In the close-up figure edges with 1jsuBC interfaces are also can be
seen in green.
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Figure 11. Pie Charts of Clusters Generated with Affinity Propagation Algorithm
In the pie charts each slice represents a cluster and they are named with the clusters’ hub
nodes. Percentages of the slices are the ratio of the node number in the corresponding cluster
to the total number of nodes in the network. (Top row) Clusters of the network generated by
mapping the experimentally validated PRISM predictions of p53 pathway onto Kohn's
MIM. (Middle row) The clusters after 1jsuBC interface attack.
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Figure 12. Hub Node Attack versus Most Frequent Interface Attack
The figure plots of the damage to the network following 15 successive complete hub node
attacks, partial hub node attacks and frequent interface attacks (for AIGL (on the left) and
GCS (on the right) topological parameters). The results suggest that the most frequent
interface attack and complete hub knockout lead to roughly the same damage, while the
effect of the partial hub knockout is to a lesser extent.
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Figure 13. Maximal Successive Damage Strategy on Distributed and Interface Attack
Damage in the network (both according to AIGL (on the left) and GCS (on the right)
topological parameters) is monitored, under successive attacks. Distributed attack and
interface attack are executed using the maximal damage strategy. The number of edges
removed from the network in each attack is parallel to the harm attacks cause on the
network. It is obvious that distributed attack is the most harmful strategy.
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Figure 14. Random Edge Attacks versus Interface Attacks
The most frequent interface attack is relatively less harmful to the p53 P2IN than random
edge attacks (on the left). However, the average of random interface attacks harms the
network more than the average of random edge attacks (on the right). Consequently, random
interface attacks give more harm to the network than frequent interface attacks.
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Table 1

List of CDK6 Inhibitors.

INHIBITOR NAME RESOURCE PUBCHEM ID 79 PDB ID

Aminopurvalanol 80 PDB 6914609 2F2C

PD-0332991 81 TTD82, PDB 5330286 2EUF

CHEBI: 792519 83 PDB 49800099 3NUP

CHEBI: 792520 83 PDB 49800100 3NUX

Fisetin84 Uniprot85 5281614 1XO2
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Table 2

AutoDock91 Results Results given in terms of the lowest binding energy of the largest conformational
clusters are in the first two rows. The RMSD values of superimpositions of the best poses of each drug
molecule docked to CDK4 compared to CDK6 are in the last row.

PD-0332991 Fisetin Aminopurvalanol CHEBI: 792520 CHEBI: 792519

CDK4 −8.22 kcal/mol −7.59 kcal/mol −5.97 kcal/mol −7.55 kcal/mol −6.51 kcal/mol

CDK6 −8.05 kcal/mol −6.75 kcal/mol −7.69 kcal/mol −6.81 kcal/mol −6.18 kcal/mol

RMSD 0.57 Å 0.68 Å 0.89 Å 1.83 Å 1.92 Å
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