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Abstract

We implemented and optimized seven finite-difference solvers for the full nonlinear Poisson-
Boltzmann equation in biomolecular applications, including four relaxation methods, one
conjugate gradient method, and two inexact Newton methods. The performance of the seven
solvers was extensively evaluated with a large number of nucleic acids and proteins. Worth noting
is the inexact Newton method in our analysis. We investigated the role of linear solvers in its
performance by incorporating the incomplete Cholesky conjugate gradient and the geometric
multigrid into its inner linear loop. We tailored and optimized both linear solvers for faster
convergence rate. In addition, we explored strategies to optimize the successive over-relaxation
method to reduce its convergence failures without too much sacrifice in its convergence rate.
Specifically we attempted to adaptively change the relaxation parameter and to utilize the damping
strategy from the inexact Newton method to improve the successive over-relaxation method. Our
analysis shows that the nonlinear methods accompanied with a functional-assisted strategy, such
as the conjugate gradient method and the inexact Newton method, can guarantee convergence in
the tested molecules. Especially the inexact Newton method exhibits impressive performance
when it is combined with highly efficient linear solvers that are tailored for its special
requirement.

Introduction

Electrostatic interaction plays a key role in determining the structure and function of
biomolecules.1-14 However, modeling of the electrostatic interaction in biomolecules
remains a serious computational challenge. The difficulty in modeling a biomolecular
system resides in its high dimensionality, especially when explicit solvents are used. Explicit
solvents can provide a realistic description of the solution system but require expensive
computational resources. In contrast, implicit solvent representation reduces the system
degrees of freedom by capturing the average or continuum behavior of the solvent. To
model the electrostatic interaction in the salt water solution, the Poisson-Boltzmann equation
(PBE) has been widely used:

V.e(7)Ve(7)=—4dnpy — 477)\Zeziciemp (—ezi0 (7)) [k, T), )

where £ (7) is the dielectric constant, ¢ (7) is the electrostatic potential, oy is the solute
charge density, A is the ion-exclusion function with values of 0 within the Stern layer and the
molecular interior and 1 outside the Stern layer, eis the unit charge, z is the valence of ion
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type i, ¢; is the number density of ion type i, kg is the Boltzmann constant, and T is the
absolute temperature. For a solution with symmetric 1:1 salt, egn. (1) can be simplified to

2
Eoutk

C

V.e(7)Ve(7)=— dmpo+A sinh [Co (7T)], @)

2 8me?] O ez
where " eoutk, T and ~ k,T- Here “out” denotes the outside solvent, | represents the
ionic strength of the solution and | = Z2c. If the electrostatic potential is weak and the ionic

strength is low, the nonlinear PBE can be simplified to the linearized form1®
V.e(T)Ve(7)=— AT po+-Ae ot 20 (7). @3

The linearized PBE is easier to solve but it is not very accurate in modeling highly charged
biomolecules, such as nucleic acids, while the nonlinear PBE predictions have been shown
to yield good agreement with experiments and explicit ion simulations.18-20 Splution of the
nonlinear PBE has attracted much attention in the past. Just as linear PBE solvers, these
methods can also be grouped into three categories according to how the PBE is discretized,
that is, the finite difference method (FDM),17:19.21-27 the finite element method (FEM),28-34
and the boundary element method (BEM).35-37 A combination of the FDM and BEM38 was
also reported. Some of these methods have been incorporated into the widely used PB
programs, including Delphi, 2426 UHBD,23 PBEQ,24 and APBS.28:31 This study intends to
evaluate the existing nonlinear FDM solvers and explore strategies to improve their
performance.

After the nonlinear PBE is discretized with the FDM, a nonlinear system is generated as
follows

e 1k [Bigk — Girgkl e [Digk — Git1,j]
el ik lbijr — bijarl el n [dijk — bl
& k1 [Bigk — Pig—1] Tei 0 [Digk — Gijitl
At i (C o i i) =47qi 1o/ Py

where i, j, and k are the grid indexes along x, y and z axes, respectively. 7 ; « is the dielectric

constant between grids (i, j, k) and (i+1, j, k). E?J-JG and €7 ;  are defined similarly. h is the
grid spacing in each dimension. ¢ « is the potential at (i, j, K). dj j k is the total charge within
the cubic volume centered at (i, j, K). The nonlinear system can then be denoted as

Ap+N (¢) =b, (5)

where A is the coefficient matrix for the linear part of the PBE, which is a positive-definite
matrix, ¢ is the potential vector, b is the free charge vector, and N (:) denotes the nonlinear
term in the PBE. The discretized form of PBE can be solved by several numerical methods,
such as the nonlinear relaxation methods as implemented in Delphi and
PBEQ,1719.21,22,24.26.27 2the nonlinear conjugate gradient method implemented in UHBD,23
the nonlinear multigrid method, 2 and the inexact Newton method implemented in APBS,16
The relaxation methods, extended from classical linear methods such as Gauss-Seidel and
successive over-relaxation, were first attempted to solve the FDM version of the nonlinear
PBE.17:24 However, the convergence of such methods cannot be guaranteed.1® The
multigrid method was also attempted, 2 but it may diverge on certain applications.1® More
robust approaches, such as the conjugate gradient method?3 and the inexact Newton
method’8 were also reported for biomolecular applications. The conjugate gradient method
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is very slow due to considerable evaluations of the nonlinear term. The inexact Newton
method is very attractive and is proven to converge.16:3% More importantly, the inexact
Newton method can be combined with highly efficient linear FDM solvers to yield highly
efficient methods.

Despite the early introduction of various nonlinear PBE solvers to biomolecular
applications, a comparative and extensive analysis of these solvers is still in need. Such an
analysis can guide future development and application of nonlinear PBE solvers. In this
study we implemented, evaluated, and improved when possible seven nonlinear PBE solvers
in the FDM scheme. In the following, the tested algorithms of the nonlinear PBE solvers are
first summarized. This is followed by a comprehensive analysis of their convergence and
performance with a large number of high-quality crystal structures of DNAs, RNAs, and
proteins.

The discretized nonlinear PBE, egn. (5), cannot be solved directly for typical biomolecular
systems. Even for a linear equation system, the cost to compute the inverse of the coefficient
matrix A is prohibitively high. In practice, the discretized PBE is often solved iteratively in
the following form

¢ =¢'+d¢', (6)

where &gt is an update of ¢' at the t-th iteration. The conjugate gradient method follows a
minimization strategy. It first intends to find an update 5¢, which is A-conjugate to all
previous updates if the nonlinear term is eliminated. 8¢t is then scaled to minimize a pre-
defined functional. In contrast, the inexact Newton method and the relaxation method are
both derivatives of the root-finding Newton method for nonlinear functions, which uses the
first-order Taylor expansion of the residual of eqn. (5), g(¢) = Ap+N(¢)—b, to obtain an
appropriate update 8ot. The inexact Newton method also requires 8¢! to be scaled to descend
a functional that is closely related to that used in the conjugate gradient method.

Conjugate Gradient Algorithm

Luty et al. first explored to use the nonlinear conjugate gradient (CG) method to solve the
nonlinear PBE.23 The nonlinear conjugate gradient method is derived from the linear
conjugate gradient method in a straightforward fashion. The CG method always tries to
solve a minimization problem. The pre-defined functional G(¢) to be minimized is the
integral form of g(¢):

1
mdz'n {G (0):G () :§¢>A¢)—|—AH — bgi)} )

Here AH:ZM’JN (¢1,5,%) dij b, Therefore, the stationary point of G(¢) is also the
solution of g(¢) = 0. It is difficult to build conjugacy between subsequent updates, 8!, for a
nonlinear equation system. Instead, the Fletcher-Reeves algorithm for the corresponding
linear problem is used as an approximation, which was proven to converge.*? Thus, 5¢t is
computed in the following way:41

5¢t:_g(¢t) +ﬁt5¢t—1 ®
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si=_ 9 (¢").9(¢") o _
where © — (g (6t 1), g (ot 1)) which is used to enforce the A-conjugacy between ¢t and

all previous updates in the linear case. Here (a, b) denotes the dot product of two vectors a
and b. Note that 5¢* is scaled so that eqn. (6) becomes

¢t+1:¢t—|—at5¢t (9)

where al is the scaling factor. By tuning o, the functional G(¢) is minimized. The pseudo-
code for the nonlinear CG algorithm is given as follows

For i,j,k from 1 to xm,ym,zm

L T Y z T Y z
€ig k=€ 1,5k T -1k T k10 kT Tk

0o ___ . 0 _ T 0 _ _ oz 0 _ T 0 _ Y 0 _ oz 0 _ .
Q@Lk—fuwk??ﬁk €1,k Pi1,j,k ELj—Lk¢Ljka €5 i k1% k-1~ €0 kPit1,jk 5@$k¢@j+Lk €7 kP k1 Amq;jr/h
00; k=~ Jijk

End for 1i,j,k

Do until convergence

For i,j,k from 1 to xm,ym,zm
=g Ot —eT 6B . —eY too e, t o eT S, —eY R S Y
Ul,_],k_gl,],ké(bz,j,k Elfl,j,k5¢lfl,j,k‘ 6i,j—17k5¢z,jfl,k El,],k*laqb’b,j,k‘fl Ez,],k5¢z+1,J,k Eiyj,k6¢z,j+1,k 61,]}k5¢z,],k+1

End for i,j,k

Do until convergence
Solve (&;st, gt) + (&pt, N (¢t+at5¢f) - N (¢t)) +af (5¢t, a) -0

for ot using Newton’s root-finding method

End do

For i,j,k from 1 to xm,ym,zm

t+1 _ it ts it
i k=Pt OP; j k

41 _ ot 141 + t
gi’j’k_gi’j’k+N ((Z)i»jvk) -N (¢i7jvk) ta o-lﬂyk

End for i,j,k
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ﬂt+1: (gt+1’gt+1) / (gt’gt)
For i,j,k from 1 to xm,ym,zm
5¢Z§,1k: - gf;r'}c"‘ﬁt“‘séf’f,j,k

End for i,j,k
t=t+1
End do
where the superscript 0 represents the initial value and the superscript t represents the value
at the t-th iteration. Here the inner Newton iterations are employed to find the scaling factor

at that minimizes G(¢). Luty et al. showed that the nonlinear CG solver was about four
times slower than the linear CG solver with otherwise identical conditions.23

Inexact Newton Method

The inexact Newton (NT) method starts from the standard Newton method.*2 The first-order
Taylor expansion of g(¢) at ¢ = ¢ gives

9(¢'+66') =g (¢') + |9 (&) || 66'=g (¢') + [a+N' (¢')] 56", (10)

where N'(¢) is the Jacobian matrix of the vector N(¢), and a diagonal matrix in this case.
The ideal 5¢* would make the new ¢t the root of g(¢)=0. Thus we have

(44N (¢)] 00'=—g(¢') .

In eqn. (11), the inverse of [A + N(¢h] is difficult to compute and the corresponding 5¢*
cannot be obtained within a few iterations, but it is actually unnecessary to solve eqgn. (11)
precisely for 5¢t . Eqn. (11) is solved iteratively to the extent that a pre-defined functional
(¢) is ensured to decrease in the update direction 5¢', or in other words, a descent direction
of f(5¢") is found. Although the integral of g(¢) in the above nonlinear CG algorithm is a
natural choice for the functional 23 a simpler form is also effective,16

1
min{f(9):f (@) =396 9(0)} @
It has been proven that if the following condition is satisfied
| [A+N" (¢")] 86" +g (') lI<llg (') [l: @3)

a descent direction of f(¢) can always be obtained,16 and the inexact Newton method can
converge locally.#2 Next a line search along the descent direction is conducted to assure
f(¢™1) < f(¢h), which can guarantee the global convergence of the inexact Newton method.16
There are various ways to solve eqn. (11) inexactly, such as the multigrid (MG) method, the
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incomplete Cholesky conjugate gradient (ICCG) method, and the successive over-relaxation
(SOR) method. In summary, the NT algorithm can be written as follows.

Do until convergence
Calculate the nonlinear PB residual g(@t).
Calculate the Jacobian matrix N'(@t).
Let AL(pD=AGHN (Y.

Iteratively solve a linear problem AL(@t)é@t = —g(@t) for 5@t

until 1AL (0B 50t + geDI < 11 g DI
Conduct line search along the direction 5@t, i.e. looking for
o, to satisfy |IF(et + ot 50O < 11 FeDII

t=t+1
End do

The two NT solvers tested in this study are combined with ICCG (NT-ICCG) and MG (NT-
MG), respectively, which are employed to solve the inner linear problem for updating the
potentials. The ICCG method is an optimized version by Luo et al.*3 In the MG method, we
applied a four-level v-cycle implementation, where the restriction and prolongation were
realized with a three-dimensional, seven-banded version of Alcouffe’s algorithm.** We
employed the SOR method for the MG pre-smoothing and post-smoothing on fine grids, and
also for solving the linear problem on the coarsest grid. The relaxation parameter was set as
1.5 on fine grids and 1.9 on the coarsest grid. Both the pre-smoothing and post-smoothing
use five SOR steps. Because eqn. (11) is solved inexactly, we adopted this simple and fast
algorithm, which would be otherwise unstable and unsuitable to solve a normal linear
problem with tight convergence criterion.#> Specifically the convergence criterion for the
NT-MG method was set as [|[[A + N'(¢)]5¢* + g(¢M|| < |lg (Y|, and the convergence
criterion for the NT-ICCG method was set as ||[A + N'(¢)]5¢" + 9(oh)|| < 0.1%||g (D).

Relaxation Algorithms

Unlike the inexact Newton method, a nonlinear relaxation method uses a matrix B that is
approximate to [A+ N’ (¢)]71 in eqn. (11). Specifically, for the nonlinear SOR method,

B=w [D+wL+N’ (qst)} e
For the nonlinear Jacobi method,
B= [D+N’ (¢t)} s
For the nonlinear Gauss-Seidel (GS) method,

B:[D+L+N’ (qbt)] . (1)
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In egn. (14)-(16), D is a diagonal matrix, L is a strictly lower triangular matrix, so that A= D
+ L + LT, where LT denotes the transpose of L. Each of the above approximate matrices can
be easily inversed and the update (5¢") can be obtained by forward substitutions.

The nonlinear relaxation algorithms are similar to their linear counterparts. The unknowns
are updated iteratively in a main loop. At each step, however, a nonlinear term, either a sinh/
cosh function?2:24.26.27 or a polynomial,1”19:21 has to be evaluated on every grid point. A
typical nonlinear relaxation algorithm for the PBE can be summarized as the following
pseudo-code.

Do until convergence

For i,j,k from 1 to xm,ym,zm

T t+1 Yy t+1 z t+1 T 1 Y t z t
0= 1,k Pi 150181 T k—19i g k—11E0 kD1, e T80 i1,k T8k Pi g 1
A

Cp=eT v, z T Y.
€ij,k gl*1,j,k+€l7j71,k+€1,j,k71+E’L,j,k+€l,j,k‘+gl,j,k

1 (1 ) ot (oA h)
ZA w)¢“$k+ﬁJk+N% Lik)

End for i,j,k
t=t+1
End do

Here w is the relaxation parameter, = 1 corresponds to the nonlinear GS method, and 1 <

< 2 corresponds to the nonlinear SOR method. N (¢f,jk> is a diagonal element of the
matrix N’.(¢)22 or a corresponding approximate expression.17:19.21.24 The above procedure
works well for the nonlinear PBE in many situations but there are cases where the iteration
diverges.24 The convergence failures can be reduced by optimizing the relaxation parameter
w and adding the nonlinearity gradually. For example, in the Delphi program, the nonlinear
term is added to the PBE by 5% each time and the optimal @ is estimated adaptively based
on the average nonlinearity across the whole space.26

In this study, the nonlinear SOR solver uses a constant high-value , i.e., ®=1.9 . Our
previous analysis shows that the optimal relaxation parameter for the linear SOR method is
between 1.9 and 1.95, depending on the structures.*> We chose @ = 1.9 because it gives a
reasonable balance between convergence rate and convergence failure among tested
molecules. Reducing @ further can lead to fewer convergence failures but much lower
convergence rate. For example, w=1.8 reduces convergence failures by 24% but
simultaneously reduces the convergence rate by 49%. Instead of optimizing w, we
implemented two different strategies to reduce the convergence failures of SOR. In the first
revised SOR, termed the adaptive SOR (ASOR) method, we initially use a high-value @ and
then gradually lower it if the norm of the residual starts to increase. As will be shown below,
ASOR can reduce the convergence failures of the original SOR method and retains its
overall convergence rate. The second modified SOR method combines SOR with the same
line search used in the two NT methods after 5¢t is calculated. The “damped” SOR (DSOR)
method can also improve the convergence efficiently, though neither can guarantee
convergence as will be shown below.
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Simulation Details

We implemented seven nonlinear PBE solvers in the PBSA program of the AMBER 10
package,*6 including one implementation of GS, three implementations of SOR, one
implementation of CG, and two implementations of NT. The relaxation solvers and the
conjugate gradient solver all solve the corresponding linear PBE first, and utilize the
solution as the initial guess of the solution of the nonlinear PBE.

The dielectric constant was set to 1 within the molecular interior and it was set to 80 within
the solvent. The solvent probe was set to be 1.5 A to compute the solvent excluded surface
that was used as the solute/solvent dielectric boundary. The ion probe was set to be 2.0 A to
compute the ion accessible surface that was used as the interface between the Stern layer and
the bulk ion accessible solvent region. The finite-difference grid spacing was set as 0.5 A.
The ratio between the longest dimension of the finite-difference grid and that of the solute
was set as 1.5. The convergence criterion for the nonlinear system was set to be 1076 and the
ionic strength was set to 150 mM if they are not mentioned otherwise. All floating point data
were set in double precision to be consistent with the rest of the Amber 10 package.

We initially collected 588 high-resolution (at least 2 A) nucleic-acid structures with
sequence diversity more than 30% from the Protein Data Bank. We first removed all ligand
molecules and those structures with non-natural nucleotides unsupported by the Amber force
field. Often the unsupported nucleotides are located in the terminal regions, so that the
remaining structures can still be used if the terminal regions are deleted. Finally the test set
includes 364 nucleic acids. Hydrogen atoms were added in LEAP of the Amber 10
package.*6 These molecules were assigned the charges of Cornell et al.4” and the radii of
Tan et al.#8 The atom numbers of the nucleic acids range from 250 to 5,569, and the
numbers of grid points of the nucleic acids range from 313,551 to 15,218,175. The PDB
codes of the nucleic acids are given in the Appendix.

The performance statistics of the seven solvers was collected on a computer cluster of 80
nodes with 1GB memory of 3.0GHz P4 CPUs. For some methods, calculations on the ten
largest molecules in the test of 364 nucleic acids require more than 1GB memory, so they
were left out in the overall analysis. Next, we tested the two NT solvers with the 22 largest
nucleic acids (>2,000 atoms) in the test set, with the ten largest nucleic acids included, on a
server node with 8GB memory. We also tested the two NT solvers with the 26 largest
proteins (>4,000 atoms) from the Amber test set.#6 Finally, we analyzed the effects of
different salt properties on the performance of the two NT solvers.

Results and Discussion

Idealized System Test

We first tested the nonlinear solvers with an idealized system, i.e., a single ion with radius of
1 A and multiple charges in the salt-water solution. In this simple system, the grid spacing
was set to be 0.25 A. We compared the numerical solutions of the seven solvers with the
solutions obtained from the predictor-corrector Adams method in Mathematica 6.0 under
different conditions. Here different charges for the single ion and different ion
concentrations were used. Figure 1 shows the results with different charges for the single ion
while the ion concentration is 500 mM, and Figure 2 shows the results under different ion
concentrations while the charge of the single ion is 2e. Note that the solutions of all seven
tested numerical solvers are represented by the same symbol due to their virtually identical
numerical values. Both figures demonstrate excellent agreements between the seven
implemented solvers and the standard numerical method packaged in Mathematica for the
tested systems.

J Chem Theory Comput. Author manuscript; available in PMC 2014 April 08.
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Solver Convergence Statistics

We studied the convergence of all the solvers for the 364-nucleic-acid test set, excluding the
ten largest molecules due to the memory limitation of the computer cluster. The
convergence statistics are shown in Table 1. Three out of the seven solvers can converge
within 10,000 steps in all test cases, i.e., the CG method and the two NT methods, each of
which makes use of a functional-assisted strategy. The original SOR method fails in most
cases but is noticeably improved if @ is adaptively modified: 76% failed cases in the original
SOR method converge with the ASOR method. After a damped step size is applied in the
DSOR method, 88% failed cases in the original SOR method converge.

Since we first solve the corresponding linear problem in the nonlinear SOR solvers, the
nonlinearity is weakened. This strategy was found to improve the convergence. Moreover,
lower-value @, or even under-relaxation, can obtain better convergence than high-value
2426 For example, in our test, the GS method converges in more test cases than the
original SOR method in spite of its much lower convergence rate. The minimal @ in the
ASOR method is equal to 1, so it is expected that the ASOR method has the same number of
convergence failures as the GS method, but it converges much faster because over-
relaxation is initially used. The DSOR method conducts a line search to descend f(¢) in eqgn.
(12) but still cannot guarantee convergence because the direction is not necessarily a descent
direction. Note that for those test cases that the original SOR method cannot converge, the
DSOR method shows better convergence rate than the ASOR method.

There is one way to improve the inexact Newton method, which is to use an appropriate
convergence criterion to inexactly solve the inner linear equation at each step. This requires
that each convergence criterion be different and deliberately designed to prevent under-
solving or over-solving eqn. (11). Over-solving the equation means the convergence
criterion is too tight. This is because the descent direction 5¢* no longer changes much when
the appropriate convergence criterion is reached. That is to say, the extra computation in
reaching the tighter convergence criterion does not results in noticeable improvement.
Under-solving the equation means the convergence criterion is so loose that 5¢* is no longer
a good descent direction, along which the functional can decrease little. This will lead to a
significant increase in the Newton iteration steps. The set of convergence criteria is called
the forcing terms. A study on local convergence of different sets of forcing terms was
conducted in the literature.4® However, it is still hard to design appropriate forcing terms if
the initial guess is far away from the solution. Note that NT-MG and NT-ICCG are in
different situations. One linear MG cycle can substantially reduce the residual and probably
over-solve the equation, while multiple ICCG cycles are necessary to reduce the residual to
the same level. Therefore, we used a tighter inner convergence criterion for NT-ICCG (the
average relative performance is 53.12 if the same inner convergence criterion as for NT-MG
is used), and for the same reason, NT-ICCG is more likely to be improved by optimizing the
forcing terms.

Finally, the convergence performance of SOR might be improved if a hybrid method is
employed. For example, one would start with SOR and later switch to NT-MG when SOR
becomes ineffective. The memory requirement is the same as in the more demanding
method, i.e., NT-MG. This hybrid method can definitely guarantee convergence. However,
it is useful only if SOR is superior to NT-MG during the initial iteration steps, which is
actually not the case. Thus more effort is definitely needed if a hybrid method is to be
pursued.
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Timing and Memory Requirement of Inexact Newton Methods

In the following we focus on the two NT methods because of their significantly higher
efficiency and robustness. First, we examined the timing and memory requirement of the
two NT methods in solving the PB equations for the test set of 364 nucleic acids, excluding
the ten largest ones. We utilized the APBS finite-difference solver as a reference in this
round. All three solvers were compiled and tested under conditions as identical as possible
though it should be pointed out that the APBS solver has been adapted for parallel platforms
which may impact its single-CPU performance. Specifically the exactly same discretized
nonlinear problems were solved. Figure 3 shows that the memory requirement and solver
time of the three solvers are similar for smaller molecules, but their difference becomes
obvious when the number of grid points increases. Both the memory and the timing trends
for NT-MG are linear over the number of grid points. The memory trend for NG-ICCG is
linear, but its timing trend remains linear only for smaller test cases and becomes nonlinear
for larger test cases. On average, the APBS solver requires the most memory, the NT-ICCG
consumes the most time, and the NT-MG needs less memory and less time than both the
NT-1ICCG and the APBS solver. Although our simple implementation of MG is superior
under current circumstances, a more robust MG solver will probably bring more benefit if
the convergence criterion for the nonlinear equation is tighter. In this case, the linear
equation should be solved exactly in the last few Newton steps because the linear equation is
a very good approximation. Finally it should be noted that the memory usages and the CPU
times among the three solvers differ at most by a factor of two. The difference may be
overwhelmed by a higher grid resolution and by a different testing condition, such as in
molecular dynamics, as our latest analysis has shown.>0

Table 2 and Table 3 list the solver time of the two NT methods for the 22 largest molecules
in the test set of 364 nucleic acids and the 26 largest proteins in the Amber test set,
respectively. Since tested proteins are more compact than tested nucleic acids, the average
number of grid points is similar for the two sets of molecules. It is apparent that the solver
times are also comparable between the two sets of molecules, i.e., the solver efficiency
mostly depends on the number of grid points. More importantly, for these largest tested
molecules, NT-MG uses only a third of the time of NT-ICCG. Note that it uses about a half
of the time of NT-ICCG in the overall test. This observation is consistent with the intrinsic
advantage of the MG method on large systems.

Performance of Inexact Newton Methods versus Convergence Criterion

Next the performance of the two NT methods under a variety of convergence criteria
ranging from 1071 to 1072 was examined. Five nucleic acids of different sizes were selected
as test cases in this round, which are 1SGS (1074 atoms), 1JRN (1564 atoms), 1U8D (2145
atoms), 1EHZ (2509 atoms) and 2GWQ (3128 atoms). Figure 4 shows that both methods
can improve convergence without any steep jump in the solver time, indicating a constantly
smooth convergence behavior. Specifically a linear relationship exists between the solver
time and the logarithm of the convergence criterion. The slope, however, increases with the
complexity and size of tested molecules.

Performance of Inexact Newton Methods versus lon Concentration

Finally, the effect of the ion concentration was studied and the results are shown in Figure 5.
The sample in this test consists five large nucleic acids, which are 1EHZ (2509 atoms),
3BNN (2696 atoms), INUV (3112 atoms), 2GWQ (3128 atoms), 3D2V (4970 atoms). Three
different ion concentrations were tested, including 150 mM, 500 mM, and 1000 mM.
Regardless of ion concentration, the average solver time of NT-MG for the five molecules is
more or less constant. On the contrary, the average solver time of NT-ICCG depends on the
ion concentration: the solver uses about one-quarter less solver time when the ion

J Chem Theory Comput. Author manuscript; available in PMC 2014 April 08.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Caietal.

Page 11

concentration is high (= 500 mM). This observation indicates that NT-MG is probably more
stable than NT-ICCG under different salt conditions in biomolecular applications.

We also tested the performance of the two NT methods when the ion valence is changed.
However, no clear trend was observed. The average solver times of both the NT-MG
method and the NT-ICCG method only increase slightly with the ion valence. This behavior
is different from the observation in the analytical test case with MATHEMATICA, where
higher ion valence was found to cause convergence difficulty at some testing conditions.

Conclusion

We implemented and optimized seven finite-difference solvers for the nonlinear Poisson-
Boltzmann equation, including four relaxation methods, one CG method and two NT
methods. We tested the performance of the seven solvers with a large number of nucleic
acids and proteins, with special attentions given to the robust NT algorithm. We investigated
the role of linear solvers in its performance by incorporating ICCG and MG into the
algorithm. Specifically, a four-level v-cycle was applied in the MG method, where the
restriction and prolongation were realized with a three-dimensional seven-band version of
Alcouffe’s algorithm. In addition, the SOR method was applied for the multigrid pre-
smoothing and post-smoothing on fine grids, and also for solving the linear problem on the
coarsest grids. We adopted this simple and fast algorithm because the inner linear problem
of an NT method does not need to be solved exactly. On the contrary, to accelerate the
convergence of our implementation of NT-ICCG, we tightened the convergence criterion of
the inner linear solver loop, which would cause our implementation of NT-MG to be
unstable. In addition, we explored strategies to optimize the SOR method to reduce its
convergence failures without too much sacrifice in its convergence rate. In the ASOR
method, @ was designed to decrease when the norm of the residual starts to increase. This
method reduces the convergence failures by 76% and retains much of the overall
convergence rate of the original SOR method with a high-value w. In the DSOR method, the
damping strategy from the NT method was utilized to optimize the search step length, and
was found to reduce the convergence failures by 88%.

Our results show that only the nonlinear methods accompanied with a functional-assisted
strategy can guarantee convergence, such as the CG method and the NT method, while the
relaxation methods cannot. Especially the NT method exhibits impressive performance
when it is combined with highly efficient linear solvers. Therefore our analysis suggests that
the functional-assisted strategies be used in existing numerical solvers for biomolecular
applications if they intend to solve the nonlinear PBE for biomolecules.

Finally it is instructive to discuss future directions in the optimization of nonlinear solvers
for biomolecular applications. First point charges are widely used to represent atomic charge
density distributions in current biomolecular models. Unfortunately this practice introduces
singularity into the right hand side of PBE. The presence of charge singularity results in
discontinuity in the electrostatic potential with large error when the finite-difference method
is used. We have developed a new formulation to remove the charge singularity in the linear
finite-difference solvers.>! Given the current implementations of the nonlinear solvers, we
are in a position to investigate the effect of charge singularity on the performance of the
nonlinear finite-difference solvers. In addition, we plan to extend our analysis and
optimization of the nonlinear finite-difference solvers in the context of molecular dynamics
simulations. It is expected that the efficiency of the nonlinear solvers can be improved in
molecular dynamics simulations just as in our prior analysis of the linear solvers.4°
However, further development is necessary to fully take advantage of the potential update
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nature in molecular dynamics to achieve computational efficiency high enough for routine
biomolecular applications.
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Test Set of 364 Nucleic Acids

The following molecular structures, in both the Amber format and the pgr format, can be
downloaded from http://rayl0.bio.uci.edu/rayl/#Database.

100D, 109D, 110D, 118D, 126D, 127D, 131D, 137D, 138D, 151D, 152D, 157D, 158D,
160D, 161D, 165D, 181D, 182D, 184D, 190D, 191D, 192D, 196D, 198D, 1A2E, 1BD1,
1BNA, 1CSL, 1D10, 1D11, 1D12, 1D13, 1D15, 1D23, 1D32, 1D36, 1D37, 1D38, 1D39,
1D43, 1D44, 1D45, 1D46, 1D48, 1D49, 1D54, 1D56, 1D57, 1D58, 1D63, 1D67, 1D78,
1D79, 1D88, 1D8G, 1D8X, 1D96, 1DAO, 1DA9, 1DCO, 1DCG, 1DJ6, 1DL8, 1DNS,
1DNO, 1DNS, 1DNT, 1DNX, 1DNZ, 1DOU, 1DQH, 1EHV, 1EHZ, 1EN3, 1ENS, 1ENY,
1ENE, 1ENN, 1EVP, 1IEVV, 1F27, 1FD5, 1IFDG, 1FMQ, 1FMS, 1FN2, 1FQ2, 1FTD,
1G4Q, 110T, 111P, 112Y, 117J, 1ICG, 1ICK, 11D9, 1IDW, 1IH1, 1IHA, 1IKK, 1IMR, 1IMS,
1JGR, 1J02, 1JRN, 1JTL, 1K9G, 1KCI, 1KD3, 1KD4, 1KD5, 1L1H, 1L2X, 1L4J, 1LJX,
1M69, 1IM6F, 1M6G, 1M6R, 1M77, IMF5, IMSY, INLC, INQS, INT8, 1NUJ, INUV,
INVN, INVY, 100K, 10FX, 10SU, 1P20, 1P4Y, 1P4Z, 1P79, 1PFE, 1PJG, 1PJO, 1Q96,
1Q9A, 1QCU, 1QYK, 1QYL, 1R68, 1IRQY, 1RXB, 1523, 1S2R, 1SGS, 1SK5, 1TOE,
1U8D, 1UBS, 1UE4, 1V9G, 1VAQ, 1VJ4, 1VS2, 1VZK, IWOE, IWQY, 1XA2, 1XCS,
IXCU, 1XJX, 1XJY, 1XPE, 1XVK, 1XVN, 1XVR, 1Z3F, 18V, 1ZCl, 1ZEV, 1ZEX,
1ZEY, 1ZEZ, 1ZF0, 1ZF1, 1ZF2, 1ZF3, 1ZF4, 1ZF5, 1ZF6, 1ZF7, 1ZF8, 1ZF9, 1ZFA,
1ZFB, 1ZFC, 1ZFF, 1ZFG, 1ZNA, 1ZPH, 1ZPI, 200D, 212D, 215D, 220D, 221D, 222D,
224D, 232D, 234D, 235D, 236D, 240D, 241D, 243D, 244D, 245D, 248D, 251D, 255D,
258D, 259D, 260D, 272D, 276D, 279D, 284D, 288D, 292D, 293D, 295D, 2A43, 2ATE,
2ADW, 2AVH, 2B0K, 2B1B, 2B2B, 2B3E, 2D47, 2D94, 2D95, 2DCG, 2DES, 2DYW,
2DZ7, 2EES, 2EET, 2EEU, 2EEV, 2F8W, 2G32, 2G3S, 2GIC, 2GB9, 2GPM, 2GQ4,
2GQ5, 2GQ6, 2GQ7, 2GVR, 2GW0, 2GWA, 2GWQ, 2GYX, 2HBN, 2HTO, 212I, 2I5A,
21E1, 2011, 204F, 20E5, 20E8, 201Y, 20KS, 2PKV, 2PL4, 2PL8, 2PLB, 2PLO, 2PWT,
2Q1R, 2QEK, 2R22, 2V6W, 2V7R, 2VAL, 2275, 307D, 308D, 310D, 312D, 314D, 315D,
317D, 331D, 332D, 334D, 336D, 348D, 349D, 351D, 352D, 354D, 355D, 360D, 362D,
368D, 369D, 370D, 371D, 377D, 385D, 386D, 393D, 394D, 395D, 396D, 397D, 398D,
399D, 3BNN, 3C2J, 3C44, 3CGP, 3CGS, 3CJZ, 3CZW, 3DOM, 3D2V, 3DIL, 3DNB,
3ERU, 3EUM, 413D, 414D, 420D, 423D, 428D, 431D, 432D, 434D, 435D, 437D, 439D,
440D, 441D, 442D, 443D, 452D, 453D, 455D, 463D, 465D, 466D, 472D, 473D, 476D,
477D, 479D, 480D, 482D, 483D, 485D, 5SDNB, 7BNA, 9BNA, 9DNA.
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Figure 1.

Comparison between the numerical solutions from PBSA and Mathematica for the idealized
system under different charges of the single ion. PBSA: numerical solutions in the PBSA
program. MATHEMATICA: numerical solutions from the Mathematica program. The
charge of the single ion is setas 1 e, 2 e, and 4 e, respectively. lon concentration is 500mM
and ion valence is 1. Only potential in the ion accessible region is plotted.
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Comparison between the numerical solutions from PBSA and Mathematica for the idealized

system under different ion concentrations. Linear: solutions to the linearized PBE.

Nonlinear: solutions to the full nonlinear PBE. lon concentrations are set as 100 mM and

1000 mM, respectively. The charge of the single ion is 2 e and ion valence is 1. Only

potential in the ion accessible region is plotted.
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Figure 3.

Scaling of solver CPU times and memory usages versus grid numbers for the two inexact
Newton methods and the APBS solver in the test set of 364 nucleic acids, excluding the ten
largest ones.
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Figure4.

Solver CPU times versus convergence criterion for the two inexact Newton methods. Note
that the flat region between adjacent convergence criteria results from the same number of
iterations required to converge even if the convergence criteria are different, i.e. the residual
reduction is more than the specified convergence criterion reduction.
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Table 1

Solver Convergence and Relative Performance Statistics in the Test Set of 364 Nucleic Acids, excluding the
ten largest ones. Relative performance of a solver for a molecule is defined as the CPU time of the solver over
the CPU time of the NT-MG solver for the same molecule. Avg Rel: average relative performance over all
tested molecules. Unconv: number of convergence failures.

Solver GS | SOR | ASOR | DSOR CG | NT-ICCG | NT-MG
Avg Rel | 47.10 3.32 3.71 5.86 | 21.35 1.99 1.00
Unconv 6 25 6 3 0 0 0
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Solver Times (second) of Two Inexact Newton Methods for the 22 Largest Nucleic Acids in the Test Set of

364 Nucleic Acids. Nagom: atom number; Ngyig: grid number.

Nucleic Acids | N aom Ngig | NT-MG | NT-ICCG
1EHZ 2509 7258191 51.71 131.35
1EVV 2509 6650175 46.76 108.97
112y 2124 3820287 18.31 51.83
INUJ 3112 7498575 53.54 140.65
INUV 3112 7498575 53.97 142.65
1Q96 2616 4887087 31.08 80.03
1U8D 2145 3285711 20.83 44.12
1ZCl 2448 5980975 34.74 107.87
244D 3120 4956175 34.81 79.97
2Dz7 2032 2597023 17.35 28.18
2EES 2145 3285711 20.43 48.83
2EET 2147 3285711 20.89 46.78
2EEU 2145 3285711 20.71 46.67
2EEV 2147 3285711 20.75 48.43
2G3S 2580 4779775 26.27 77.83
2G9C 2144 3285711 20.67 48.07
2GWQ 3128 6286383 40.55 104.68
352D 3024 4956175 34.75 90.32
3BNN 2696 8078175 57.32 146.12
3D2v 4970 8299375 61.94 164.3
2775 4646 | 11979711 102.47 225.23
3DIL 5569 | 15218175 126.39 383.26
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Solver Times (second) of Two Inexact Newton Methods for the 26 Largest Proteins in the Amber test set.

Proteins | N atom Ngia | NT-MG | NT-ICCG
1B8O_A | 4348 | 4779775 29.91 98.38
1COP_A | 5566 | 7258191 73.34 194.19
1D8V_A | 4211 | 5849375 32.19 119.25
IDCIA | 4281 | 6204975 40.45 160.39
1DJ0_A 4176 | 5759775 44.74 115.93
1IDS1_A | 4916 | 4869375 45.02 121.3
1E19_A 4874 | 6384175 34.93 127.91
1E6Q_ M | 7819 | 8816751 74.85 193.63
1E6U_A | 4966 | 5180175 49.82 103.8
1EZA_0 | 4034 | 4921631 29.07 69.93
1EZ0_A | 5735 | 8392815 49.42 147.62
1F24_A 6221 | 6286383 39.43 108.85
1HZY_A | 5092 | 4869375 30.28 97.17
1IXH_0 4856 | 5637663 36.70 87.21
IMLA O | 4485 | 4424175 28.18 81.41
1PA2_A | 4441 | 4779775 30.43 91.16
1QH4_A | 5983 | 6829375 37.72 130.39
1QNR_A | 5129 | 4379375 37.47 91.42
1QOP_B | 5895 | 5233167 41.56 140.93
1QQF_ A | 4365 | 4019679 22.28 56.62
1QTW_A | 4380 | 4342767 26.85 85.04
1YUB_O | 4168 | 6768719 37.55 1345
2CTC_ 0 | 4801 | 4342767 28.59 71.34
20LB_A | 8254 | 7866207 53.02 148.77
3SIL_0 5804 | 5359375 38.29 120.5
7A3H_A | 4578 | 3615183 22.25 68.95

J Chem Theory Comput. Author manuscript; available in PMC 2014 April 08.



