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Abstract
The hypothalamic-pituitary-adrenal (HPA) axis is crucial in coping with stress and maintaining
homeostasis. Hormones produced by the HPA axis exhibit both complex univariate longitudinal
profiles and complex relationships among different hormones. Consequently, modeling these
multivariate longitudinal hormone profiles is a challenging task. In this paper, we propose a
bivariate hierarchical state space model, in which each hormone profile is modeled by a
hierarchical state space model, with both population-average and subject-specific components.
The bivariate model is constructed by concatenating the univariate models based on the
hypothesized relationship. Because of the flexible framework of state space form, the resultant
models not only can handle complex individual profiles, but also can incorporate complex
relationships between two hormones, including both concurrent and feedback relationship.
Estimation and inference are based on marginal likelihood and posterior means and variances.
Computationally efficient Kalman filtering and smoothing algorithms are used for
implementation. Application of the proposed method to a study of chronic fatigue syndrome and
fibromyalgia reveals that the relationships between adrenocorticotropic hormone and cortisol in
the patient group are weaker than in healthy controls.
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1. INTRODUCTION
The hypothalamic-pituitary-adrenal (HPA) axis plays a major role in coping with stress and
maintaining the homeostasis of the human body. In responding to external and internal
stimuli, the paraventricular nucleus of hypothalamus produces corticotropin-releasing
hormone (CRH) and vasopressin (VP), which stimulate the pituitary gland to secrete
adrenocorticotropic hormone (ACTH). ACTH in turn stimulates the adrenal cortex to
produce cortisol. Cortisol is a major stress hormone and has wide-ranging effects, such as
increasing blood sugar, suppressing immune system and regulating the metabolic system.
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Cortisol then inhibits both the hypothalamus and the pituitary gland in a classical endocrine
feedback loop. Dysregulation of the HPA axis, consequently, can trigger the development of
multiple pathologies (e.g. Fink et al., 2012, Chapter 29).

Our particular interest in the HPA axis comes from a study of chronic fatigue syndrome
(CFS) and fibromyalgia (FM). While the etiology of CFS and FM remains unclear,
dysfunction of the HPA axis is the most common hypothesis. Consequently, evaluation and
comparison of HPA function are of primary interest to researchers. A study has been
conducted to obtain the plasma ACTH and serum cortisol levels over a 24-hour period from
a group of patients with CFS or FM or both and a group of healthy controls (Crofford et al.,
2004). The data are displayed in Figure 1 and 2. Both ACTH and cortisol exhibit complex
patterns, which from the physiological point of view can be viewed as a result of the
combination of burst hormone secretions, distribution and clearance. These complex
hormone profiles can be decomposed into two parts: a slowly varying basal concentration
which is usually referred to as circadian rhythm, and rapid concentration changes which are
referred to as pulses (e.g. Gudmundsson and Carnes, 1997). A general view is that the
ACTH circadian rhythm is largely responsible for the cortisol circadian rhythm and the
pulses are responsible for the short term feedback loop (e.g. Fink et al., 2012, Chapter 3).
For this particular study, we are interested in quantifying the relationships between ACTH
and cortisol and our interest is twofold. Firstly, we aim to evaluate whether the cortisol
circadian rhythm can be explained by a linear function of ACTH circadian rhythm, and if so
to compare this relationship between patients and controls. Secondly, we aim to evaluate and
compare the directions and magnitudes of the short term feedback loop. Consequently, a
joint modeling of ACTH and cortisol is required. Note that such a joint modeling would
allow localization of HPA dysregulation to the pituitary gland, the adrenal gland or their
communications, which would not be possible if only a single hormone were studied.

Joint modeling the profiles of ACTH and cortisol is challenging. This is not only because of
the complex univariate profiles, but also the complex relationships in the pulses. Firstly, the
relationships are asymmetric. ACTH has positive feedforward on cortisol, while cortisol has
negative feedback on ACTH. Secondly, the effects are lagged in time instead of concurrent.
Both the feedforward and the feedback take effects after a certain amount of time instead of
instantaneously. Thirdly, the feedforward and feedback are on the pulses rather than on the
overall level of the underlying signals. Despite these complexities, methods used in studying
their relationships in the biomedical literature are rather simple. For example, one-way
analysis of variance has been used to study the temporal effects of ACTH on glucocorticoid
(Spiga et al., 2011). These simple methods, obviously, cannot fully capture the relationships
between ACTH and cortisol.

From the statistical point of view, ACTH and cortisol profiles can be viewed as bivariate
longitudinal data. In the literature, the random effects approach is mostly used in modeling
bivariate longitudinal data (Reinsel, 1982; Shah et al., 1997). This approach models each
univariate outcome by linear mixed effects models and the relationships across different
outcomes by the joint distributions of the random effects. It has subsequently been extended
to nonlinear and nonparametric regression functions (Zhou et al., 2008; Wu et al., 2010).
The limitation of this approach is that the concurrent correlations are symmetric by
definition. On the other hand, time-lagged and asymmetric relationships have been widely
studied in time series analysis, such as vector autoregressive (VAR) models (e.g. Box et al.,
2008, Chapter 14). Additionally, Guo and Brown (2001) extended multiprocess dynamic
linear models to allow flexible relationships among multiple time series. Carlson et al.
(2009) developed bivariate de-convolution models for hormone pulses. Aschbacher et al.
(2012) developed differential equation based models. These models, however, are generally
applicable to a single subject instead of a group of subjects. Zeger and Liang (1991)
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combined fixed effects and VAR in marginal models to study feedback. Funatogawa et al.
(2008) combined linear mixed effects models with VAR to study profiles approaching
asymptotes. The limitation of these two approaches is that the relationships are built on the
observed values. Consequently, the same relationship structure is forced upon every
component of the underlying signal and the error terms. Not only is this relationship
structure rigid, but imposing the same autoregressive structure on both the errors and the
true signals may lead to model identifiability problems. In a similar approach Sy et al.
(1997) modeled asymmetric relationships using bivariate integrated Ornstein-Uhlenbeck
processes, which can be viewed as generalizations of autoregressive processes. Latent
processes have also been used to model multivariate longitudinal data (e.g. Roy and Lin,
2000; Dunson, 2003), which are limited to multivariate outcomes measuring the same latent
trait. Multivariate longitudinal data have also been analyzed by modeling the joint
distributions of the error terms (e.g, Rosen and Thompson, 2009), whose focus is on
improving the estimation efficiency rather than on quantifying the relationships.

In this paper, we adopt a signal extraction approach to study the relationships between
ACTH and cortisol. Both the individual hormone profiles and the between-hormone
relationships are viewed as signals to be extracted from noisy observations. For each
hormone, we aim to extract group-average circadian rhythms and subject-specific pulsatile
activities. Periodic smoothing splines are adopted for the circadian rhythms to account for
their complex shapes. Autoregressive processes are adopted for the pulses, which can be
derived from compartmental models and are widely used in modeling pulses. Both
components can be represented in state space forms and thus can be unified into one
hierarchical state space model. The feedforward and feedback in the pulses are then built
into the AR components by concatenating the corresponding state vectors. By doing so, they
can be modeled as asymmetric and time-lagged on a subcomponent of the underlying
signals. Parameters are estimated by maximizing the marginal likelihood. The underlying
signals are estimated by posterior means, and confidence intervals can be constructed using
posterior variances. Computationally efficient Kalman filtering and smoothing algorithms
are adopted for implementations. Note that this approach can be used to model general
multivariate longitudinal data to handle both complex univariate profiles and complex
between-outcome relationships beyond the ACTH and cortisol data.

The rest of the paper is organized as follows. The ACTH and cortisol data are described in
Section 2. The proposed models are presented in Section 3. Estimation and inference are in
Section 4. The proposed method is applied to the ACTH and cortisol data in Section 5. A
small simulation is performed in Section 6. Some concluding remarks are given in Section 7.

2. THE ACTH AND CORTISOL DATA
CFS is characterized by persistent and unexplained fatigue and affects about 0.5% to 1.5%
of the general adult population (e.g. Reeves et al., 2007). FM is characterized by chronic
pain and has a prevalence of around 2% (e.g. Arnold, 2010). Although their etiologies
remain unclear, the most popular hypothesis is that both syndromes are stress-related.
Consequently, the HPA axis has undergone intensive investigations (e.g. Riva et al., 2010;
Papadopoulos and Cleare, 2012, and references therein). It is known that ACTH has positive
feedforward effects on cortisol and cortisol has negative feedback on ACTH. Dysregulation
of the normal relationships between ACTH and cortisol has been conjectured to be part of
the pathophysiological processes in CFS and FM. The clinical results, however, are
inconsistent. For example the response of cortisol to ACTH in patients has been found to be
hypersensitive, blunted, or the same compared to healthy subjects (Parker et al., 2001;
Papadopoulos and Cleare, 2012). One possible reason is that most of these studies used a
single dose of stressor or suppressor, which were originally designed to evaluate acute stress
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responses and may not be suitable for chronic stress. The data presented in this paper, on the
other hand, provide an opportunity to study the relationships in a more natural setting.

A study was conducted at the University of Michigan General Clinical Research Center. Its
overall aim was to study the HPA axis in patients with CFS or FM or both and healthy
controls. The data are displayed in Figure 1 and 2, which exhibit circadian rhythms and
pulses for both hormones. There were 36 patients and 35 controls. The patients were
recruited from outpatient clinics and the controls from local communities. The patients were
18–65 years old, mostly female (32 of 36 subjects), non-smoking, and non-obese. The
controls were matched by age, gender and menstrual status when applicable. All subjects
were admitted on the evening before the blood sample collection, were provided standard
meals at regular times and were at rest. Blood samples were collected at 10-minute intervals
over a 24-hour period beginning at 9am and hormone levels were assayed. Consequently,
there are 145 equally spaced observations for each subject. See Crofford et al. (2004) for
details of the study.

Previous analyses of this study have focused on univariate approaches. Guo (2002)
compared the cortisol circadian rhythms by functional mixed effects models. He found that
cortisol circadian rhythms of the FM patients and the controls were statistically different.
These results were confirmed by a periodic approach (Qin and Guo, 2006). Crofford et al.
(2004) first extracted the subject-level parameters by a smoothing base-line plus pulses
approach (Guo et al., 1999). They then compared the parameters by Student’s t test and
found that cortisol levels in FM patients declined more slowly from acrophase to nadir than
in healthy controls, but they were unable to detect any significant difference in the pulsatile
activities. To gain insights into the HPA axis from a different angle, we propose to
investigate the relationships between ACTH and cortisol.

3. THE MODEL
3.1 The General Model

We will present a bivariate model for the clarity of presentation, but our methods can be
readily extended to a general multivariate setting. Let yi(tij) = { yi1(tij) yi2(tij) }⊤ be the
bivariate outcomes of the ith subject at time tij for i = 1,⋯, m and j = 1,⋯, ni. Let Xi(tij) and
Zi(tij) be the design matrices containing experimental conditions and covariates. In this
paper, we propose a hierarchical model in state space form

(1)

(2)

(3)

(4)

(5)

where

Liu et al. Page 4

J Am Stat Assoc. Author manuscript; available in PMC 2015 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Equation (1) defines the hierarchical structure of the underlying signal as a combination of
group-averages and subject-specific deviations. Group-averages are indexed by design
matrices Xi(tij) and the effects β(tij) are the features shared by the whole group. Subject-
specific deviations are indexed by possibly different design matrices Zi(tij) and the effects
αi(tij) are realizations from independent and identically distributed stochastic processes. The
underlying signal is observed with serially and mutually independent errors ei(tij) ~N(0,

diagonal ).

Both β(tij) and αi(tij) are dynamic effects, which are specified in state space forms. Equation
(2) and (3) are the state space observation equations. Processes u(tij) and vi(tij) are known as
state vectors, which are transformed into effects β(tij) and αi(tij) by the observation matrices
Fβ(tij) and Fα(tij). Equation (4) and (5) are the state transition equations. State vectors
evolve over time according to the state transition matrices Tu(tij) and Tυ(tij), and stochastic
innovations Ru(tij)ηu(tij) and Rυ(tij)ηυi(tij). The stochastic innovations are serially and
mutually independent normal random vectors as ηu(tij) ~ N(0,Σu(tij)) and ηυi(tij) ~
N(0,Συ(tij)) with

Processes u(tij) and vi(tij) need to be initialized at time zero. Subject specific process vi(tij) is
initialized with a proper distribution N(0,Συ(0)). Group-average process u(tij), if stationary,
can also be initialized with a proper distribution, whose variance Σu(0) can be derived from
model parameters. When we are completely ignorant about the initial conditions, we can use
N(0, κI) with κ → ∞ to indicate the lack of prior information. This is known as diffuse
initialization (see, e.g. Durbin and Koopman, 2012, Chapter 5). Equations (1) to (5) define a
general bivariate model. Its state space formulation can incorporate many popular methods,
such as classical regression models, smoothing splines, autoregressive moving average
models (ARMA), structural time series models, multiple processes dynamic linear models,
and dynamic factor models (see, e.g. Durbin and Koopman, 2012, Chapter 3).

3.2 Relationships between Group-Averages
We first present an exemplary model for the bivariate group-averages. Period cubic
smoothing splines are used for illustration, which will later be adopted to model circadian
rhythms in data analysis. The design matrix is a 2 × 2 identity design matrix, denoted as I2.
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For the gth group as g = p for patients and g = c for controls, the observation and state
transition equations are

where ug(tij) = {βg1(tij) β̇g1(tij) βg1(0) β̇g1(0) βg2(tij) β̇g2(tij) βg2(0) β̇g2(0)}⊤, and β̇gk(t) is the
first derivative with respect to t which is scaled to [0, 1]. The state transition matrix Tu(tij) =
block diagnoal{Hj, I2, Hj, I2} and stochastic innovation ηu(tij) has variance matrix Σu(tij) =
block diagnoal{λg1Σj, 02×2, λg2Σj, 02×2} with

.

This bivariate periodic smoothing spline is initialized as

This diffuse initialization comes from the Bayesian equivalent model of smoothing splines
(Wahba, 1978) and the state space representation of univariate spline is due to Wecker and
Ansley (1983). The bivariate extension is immediate. A vector of pseudo data points (0 0 0
0)⊤ is added at t = 1 to numerically enforce βgk(0) = βgk(1) and β̇gk(0) = β̇gk(1) for k = 1, 2
(Ansley et al., 1993). The periodic constraint is adopted because conceptually circadian
rhythms have a 24-hour period. For these pseudo data points, the observation matrix is

Under this state space framework, it is straightforward to evaluate if one groupaverages is a
linear function of the other group-averages. For example in the ACTH and cortisol data, we
are interested if the cortisol circadian rhythm βg2(t) is a linear function of the ACTH
circadian rhythm βg1(t) as βg2(t) = a + bβg1(t). This can be formulated as

where f(t) is another periodic cubic smoothing spline with a zero intercept. If H0 is true then
f(t) ≡ 0, which is equivalent to the corresponding covariance parameter λf = 0. Note that λf =
0 falls on the boundary of the parameter space. The likelihood ratio statistic, consequently,
no longer follows a chi-square distribution. We will demonstrate how to approximate the
null distribution by simulation in data analysis.
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3.3 Relationships between Subject-Specific Deviations
In this section we use bivariate autoregressive process of order 1 (BAR(1)) to illustrate how
to model relationships between subject-specific deviations. The design matrix is I2. For the
gth group, the observation and state transition equations are

For example in the ACTH and cortisol data, υgi1(tij) denotes ACTH pulses and υgi2(tij)
denotes cortisol pulses. The diagossnal elements of the state transition matrix, ϕg11 and ϕg22,
denote the exponential decays of the two hormones. The off-diagonal elements ϕg12 and
ϕg21 are used to model the asymmetric and time-lagged relationships. The time-lagged
feedback of cortisol on ACTH is characterized by ϕg12, and the time-lagged feedforward of
ACTH on cortisol is characterized by ϕg21. These relationships can also be symmetric if
ϕg12 = ϕg21. This BAR(1) approach is a simplification of the human body system by
compartmental models. Time-lags bigger than one can be incorporated by augmenting the
corresponding states into the state vectors.

The innovation vector is distributed as

The innovation covariance matrices Σgv are used to model concurrent and symmetric
relationships, whose direction and magnitude are captured by ρg. From the scientific aspect,
this correlation can be used to model certain shared driving force that are not measured
directly. For model identifiability consideration, we assume this BAR(1) to be covariance
stationary by constraining the eigenvalues of state transition matrix, Φg = {ϕgkl}k,l=1,2, to be
within the unit circle. One approach is to code the transition matrices as Φg = {chol(I2 +
AA⊤)}−1A, where “chol” denotes cholesky decomposition and “A” is a matrix with arbitrary
real numbers. Consequently, vgi(0) = { υgi1(0) υgi2(0) }⊤ has a proper distribution. Its

covariance matrix Σgv(0) is obtained by solving . Note that this
model is for equally spaced situation. Continuous time BAR(1) would be required for non-
equally spaced cases.

To evaluate if the two groups have the same relationship, we will test if the BAR(1)
parameters are the same, especially the ϕgkl’s. Note that under the null hypothesis the
differences of the parameters equal to zero, which are interior points of the parameter space
for differences can be either positive or negative. Consequently, the likelihood ratio statistics
will follow chi-square distributions.

4. ESTIMATION AND INFERENCE
Parameters are estimated by maximizing the marginal likelihood. When diffuse initialization
exists, maximizing the diffuse marginal likelihood is equivalent to restricted maximum
likelihood (Harville, 1974; Laird and Ware, 1982; Ansley and Kohn, 1985). With the
estimated parameter, effects and state vectors are estimated by posterior means, which in
combination with posterior variances can be used to construct confidence intervals. These
posterior means are equivalent to best linear unbiased predictions. For diffuse initial state
vectors, they are equivalent to the generalized least squares estimates of fixed effects (Sallas
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and Harville, 1981). The maximized marginal likelihood can be used to construct likelihood
ratio tests (LRTs) and Akaike information criterion (AIC). Model selection can be
performed using LRTs and AIC with respect to covariance structures. Additional
considerations are required when nonparametric curves are involved, for it is in general hard
to derive the analytic forms of the null distributions. As an alternative, simulations can be
adopted to approximate the null distributions. For implementation, we adopt the
computationally efficient element-wise Kalman filtering and smoothing algorithms. A brief
description of the algorithms is given in the appendix. Readers are referred to Durbin and
Koopman (2012) Chapter 4 and 5 for details. The marginal likelihood can be maximized by
the Nelder-Mead’s simplex method.

5. APPLICATION
The group-average circadian rhythms are modeled by periodic cubic smoothing splines as in
Section 3.2. The subject-specific pulses are modeled by BAR(1) as in Section 3.3. It has also
been observed that there is a potential synchronization of pulsatile activities, which may be
due to the similar data collection environment which the pulses could have partially aligned
to. This synchronization may cause undersmoothing in the circadian rhythms. To remedy,
we add a group level AR(1) process to account for the synchronized pulses. For simplicity
consideration the same AR(1) coefficients, namely ϕgkk for k = 1, 2, are adopted. This is
because the estimates of group-level and subject-level AR(1) coefficients are essentially the

same when we do assume them tobe different. The innovation variances are denoted as 
for k = 1, 2. Our primary interest, however, is still on smooth circadian rhythms and subject-
specific pulses.

5.1 Parameter Estimates
Parameter estimates for BAR(1) are presented in Table 1 under “Proposed Method”.
Likelihood ratio tests were performed to compare the subject-specific BAR(1) parameters
between the patient and the control group. For all the 7 parameter, the 4 BAR(1)
coefficients, and the 3 innovation covariance parameters, the test statistics are 225.82, 65.83

and 84.57, respectively. Consequently, all three p-values are < 0.0001 under  and .
Thus we conclude that they are significantly different at the 0.05 level.

For parameters that quantify the relationships between ACTH and cortisol, Table 1 shows
that ϕ̂g12 are negative for both groups, which confirms a negative feedback of cortisol on
ACTH. Estimates ϕ̂g21 are positive for both groups, which confirms a positive driving force
of ACTH on cortisol. Estimates ρ̂g are positive for both groups, which suggests that the
rapid changes of ACTH and cortisol are positively correlated. Both ϕ̂p12 and ϕ̂p21 have
smaller absolute values than ϕ̂c12 and ϕ̂c21. This suggests that the feedforward and feedback
between ACTH and cortisol in patients have been weakened compared to the healthy
controls. For the correlations between the innovations, on the other hand, we have ρ̂p > ρ̂c.
The lag-one cross correlations can be calculated from cov{αgi(tij),αgi(ti,j−1)} = ΦgΩυg, where
Ωυg is the stationary variance of αgi(tij). The patient group has smaller lag-one cross-
correlations for both cov{αg1i(tij), αg2i(ti,j−1)} as 0.2034 versus 0.2464 and cov{αg2i(tij),
αg1i(ti,j−1)} as 0.3187 versus 0.3729. These results again suggest that the communications
between ACTH and cortisol in patients are not as good as those in the healthy controls.

5.2 Posterior Means
Figure 3 displays individual fittings for two patients and two controls. Fittings for other
subjects are similar. We then quantified goodness-of-fit using the conditional coefficient of

determination for each subject , adopted from linear mixed effects models (e.g., Liu et
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al., 2008). It is calculated as , for
k = 1, 2 as ACTH and cortisol, where ŷik(tij) is the posterior mean from the model and ȳik is
the arithmetic mean along time. The minimum, median and maximum for each group and
each hormone are: (0.9053, 0.9767 0.9966) for patient ACTH, (0.9820, 0.9940 0.9982) for
patient cortisol, (0.9615 0.9829 0.9947) for control ACTH and (0.9873 0.9953 0.9983) for

control cortisol. Both Figure 3 and  ’s show that the individual level fittings are
reasonably well.

The estimated circadian rhythms with 95% confidence intervals, calculated from the
posterior means and variances, are displayed in Figure 4. It shows that the 95% confidence
intervals of the controls completely cover the mean curves of the patients, hence their
circadian rhythms are not significantly different. The estimated circadian rhythms of cortisol
are similar in shape to these of ACTH. One interesting question is whether the cortisol
circadian rhythms are mainly linearly driven by the ACTH circadian rhythms. This can be
tested as described in Section 3.2. For the patient group, the likelihood ratio statistic is
45.64. Its analytic null distribution, however, is difficult to derive. We instead approximated
the null distribution by simulation. One thousand data sets were generated under the reduced
model. The circadian rhythms were generated from the posterior distributions that were
available from the fitted model, and the pulses were generated using BAR(1) parameter
estimates. For each simulated data set, both the reduced model and the full model were
fitted. The likelihood ratio statistics were obtained and served as the null distribution. By
comparing the observed value of 45.64 to the simulated null distribution, we have P < 0.01.
Thus the reduced model is rejected and we conclude that for the patient group the circadian
rhythm of cortisol is not a linear function of the circadian rhythms of ACTH. Similar results
were obtained for the control group. Since the cortisol circadian rhythms are not mainly
linearly driven by ACTH circadian rhythms, we did not compare patients and controls in
that aspect.

5.3 Comparison with Two Other Methods
In this section we compare the proposed method with two other methods. First we compare
it with a two-stage time series analysis approach (e.g. Box et al., 2008). In the first stage a
BAR(1) was fitted for each subject after detrending individual hormone series. In
detrending, a cubic smoothing spline plus AR(1) model was used. In the second stage, the
parameter estimates from individual BAR(1) fittings were summarized and compared.
Columns under “TSTSA” in Table 1 display the mean values and p-values of comparing the
two groups by Student’s t-test. The p-values for all 7 parameters, 4 BAR(1) coefficients and
3 innovation parameters are respectively 0.3772, 0.1431 and 0.6519 by Wilk’s lambda. The
results show that the estimates are rather different from the proposed method and most of the
p-values are non-significant. One possible reason is that in the detrending step, the trend and
the AR process compete for signals. Consequently, the detrended series are likely to be
different from the targeted signals. Additionally, the proposed method is a unified modeling
approach which usually has better power than multiple-stage approaches.

We then compare the proposed method with the random effects approach (Shah et al., 1997).
For each hormone, we used cubic smoothing splines for the group-averages and a quadratic
random effect for the subject-specific deviations. The quadratic term was chosen by
likelihood ratio test comparing to higher and lower order polynomial terms. The joint model
of ACTH and cortisol was formulated by modeling the six random regression coefficients
with an unstructured covariance matrix. The error terms were assumed to be independent
between two hormone. This model was fitted using SAS PROC MIXED (Wang, 1998;
Thiébaut et al., 2002). To compare the proposed method with this approach, we again
calculated the lag-one cross correlations. The results are displayed in Figure 5. The derived
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lag-one cross correlations from the random effects approach are time-varying, which is an
artifact due the concurrent assumption. This can lead to misunderstanding if over-interpreted
(Fieuws and Verbeke, 2004). The figure also shows that the lag-one cross correlations from
the random effects approach are in general smaller than those from the proposed method.
This is because ACTH and cortisol pulses exhibit comovements only in a short time span.
The proposed method uses BAR(1) to capture these comovements, which are thus
recognized as signals. The random effects approach, on the other hand, treats these
comovements as random fluctuations around the long term trends. Consequently, the lag-one
cross correlations were underestimated by the random effects approach.

6. SIMULATION
In this section a small simulation is conducted to investigate the performance of the
proposed method with respect to parameter estimation of BAR(1) on top of smooth curves.
We then compared the proposed method with the two-stage time series analysis approach
mentioned in Section 5.3. Data were generated as

for outcome 1 and 2, subject i = 1,⋯, 35, and time point j = 1,⋯, n where n = 25, 50, 100.
Group level circadian rhythms were generated as f1(t) = 1.5 + 5cos(2πt) and f2 = 3 +
10cos(2πt) for t ∈ [0, 1]. BAR(1) components {υ1i (tj), υ2i (tj)}⊤ were generated with

, ρ = 0.5 and the transition matrix Tυ with six scenarios

Independent errors with  and  were added.

Each combination of Tυ and time point n was repeated 100 times. The results show that for
all the BAR(1) parameters, the estimates are around their true values. When n increases, the
estimates become more accurate and less variable. The results are obviously expected hence
not displayed. We then used scenario 5 to compare the proposed method with the two-stage
time series analysis approach. For each of the 100 simulated data sets, the estimates of the
BAR(1) coefficients are summarized by the boxplots in Figure 6. The two-stage time series
analysis approach shows bigger variations in parameter estimates and with more substantial
biases. The biases are more obvious for ϕ11 and ϕ22, less so for ϕ12 and ϕ21. The biases
decrease as the number of time points n increases.

7. DISCUSSION
We have proposed a bivariate hierarchical state space model. The proposed methods can be
straightforwardly generalized to multivariate situations. Analyses of the ACTH and cortisol
data reveal that the driving forces of ACTH on cortisol and the feedback of cortisol on
ACTH were weakened in the patient group. One potential consequence of these weakened
communications is that the HPA axis in patients does not respond to external and internal
stimuli as well as in healthy subjects. The study analyzed in this paper does not have data on
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CRH and VP, which are important components of the HPA axis. The proposed models can
be easily extended to incorporate CRH and VP, when such data become available.

In this paper we have concentrated on linear Gaussian models. The proposed modeling
framework can be generalized to nonlinear and non-Gaussian situations. Estimation and
inference of nonlinear and non-Gaussian models would require simulation-based algorithms,
such as sequential Monte Carlo methods for non-Gaussian state space methods Durbin and
Koopman (2012). One such method is particle filter (Gordon et al., 1993). In this method,
sequential random draws are used to approximate the continuous distributions. From these
draws, both state estimates and likelihood function can be evaluated.
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APPENDIX: ALGORITHMS

The vector form of mixed effects state space models
We first reformulate the proposed models into vector state space forms by collecting items
across all m subjects at the same time points

(6)

(7)

where j = 1,⋯, n for n distinct time points,

and ej and ηj are serially and mutually independently distributed as

The initial state vector is distributed as
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The vector form needs to be formulated on the finest time grid. The time points across
subjects, however, do not need to be equally spaced nor balanced. For each time point, only
the available observations across subjects are needed for the filtering and smoothing
algorithms. Also note that β(t) and αi(t) can be recovered from γi(t), Fβ(t) and Fα(t).

Filtering algorithm
Let zl (tj) be the lth element of yj, Yl (tj) = {y (t1)⊤ ,⋯, y (tj−1)⊤, z1 (tj) ,⋯, zl (tj)}⊤ for l =
1,⋯, 2m. Let el (tj) be the lth element of ej, γl (tj) be the state vector γ(tj) indexed by zl(tj),
the univariate version state space model of (6) and (7) is

where Fl(tj) denotes the lth row of F(tj).

Define

The transition from time j − 1 to j is

for j = 1,⋯, n, initialized as a2m+1 (t0) = 0 and P2m+1 (t0) = P0.

The element-wise filtering algorithm is

for l = 1,⋯, 2m,  with k = l − 2(i − 1), i = ⌈l/2⌉ where ⌈x⌉ denotes the smallest integer
≥ x. The logarithm likelihood is calculated by

where θ is the parameter vector and Y is the collection of all observations.

Smoothing algorithm
Denote
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Let r2m (tn) = 0, N2m (tn) = 0, the backward recursion is

for l = 2m,⋯, 1. And the smoothed state vectors and their posterior variances are

Readers are referred to Koopman and Durbin (2003) for details of exact diffuse filtering and
smoothing.
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Figure 1.
Individual hormone levels over a 24 hour period at 10-minute intervals for the patient group.
Time is from 9am to 9am. Each of the 36 cells is for one subject. Black lines are for cortisol
(µg/dl) and gray lines are for ACTH (pg/ml).
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Figure 2.
Individual hormone levels over a 24 hour period at 10-minute intervals for the control group.
Time is from 9am to 9am. Each of the 35 cells is for one healthy control. Black lines are for
cortisol (µg/dl) and gray lines are for ACTH (pg/ml).
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Figure 3.
ACTH (pg/ml) and cortisol (µg/dl) data from two patients and two controls. For each
subject, the upper lines are for cortisol, and the lower lines are for ACTH. The original data
are displayed by dotted lines with dots, and the fitted values are displayed as solid lines.
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Figure 4.
Estimated circadian rhythms with 95% confidence intervals. The left panel is for ACTH, the
right panel is for cortisol. The solid black lines are for patients, the dashed gray lines are for
controls. There are some differences between the patient group and the control group, but
the confidence intervals overlap with each other.
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Figure 5.
Lag-one cross correlations. Solid black lines are from random effects approach. Gray dashed
lines are from the proposed method. The upper panel is for the patient group. The lower
panel is for the control group.
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Figure 6.
Comparison of BAR(1) coefficient estimates for scenario 5 between the proposed method
and the two-stage time series analysis approach. True parameter values are displayed in the
titles and by dotted reference lines. For each cell, box 1, 2 and 3 are for the proposed method
with n = 25, 50, 100, respectively. Box 4, 5 and 6 are for the two-stage time series analysis
approach with n = 25, 50, 100, respectively.
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