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Abstract
Molecular imaging is highly advantageous as various insidious inflammatory events can be
imaged in a serial and quantitative fashion. Combined with the conventional imaging modalities
like computed tomography (CT), magnetic resonance (MR) and nuclear imaging, it helps us
resolve the extent of ongoing pathology, quantify inflammation and predict outcome.
Macrophages are increasingly gaining importance as an imaging biomarker in inflammatory
cardiovascular diseases. Macrophages, recruited to the site of injury, internalize necrotic or foreign
material. Along with phagocytosis, activated macrophages release proteolytic enzymes like matrix
metalloproteinases (MMPs) and cathepsins into the extracellular environment. Pro-inflammatory
monocytes and macrophages also induce tissue oxidative damage through the inflammatory
enzyme myeloperoxidase (MPO). In this review we will highlight recent advances in molecular
macrophage imaging. Particular stress will be given to macrophage functional and enzymatic
activity imaging which targets phagocytosis, proteolysis and myeloperoxidase activity imaging.
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Introduction
Inflammation plays a pivotal role in the pathogenesis of cardiovascular diseases. Oxidative
stress and inflammatory cytokines generated from inflammatory cells, especially monocytes
and macrophages, contribute to cellular infiltration, atherosclerotic plaque expansion,
thrombosis and adverse cardiovascular events leading to myocardial infarction (MI),
ventricular remodeling and heart failure [1]. Therefore, there has been a pressing need to go
beyond the capabilities of conventional imaging techniques; to image not only whole organs
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but also to probe at the cellular and molecular levels. This would allow us to visualize
various in vivo biological events that govern tissue structural integrity and functional
homeostasis. Equally important is to temporally decipher cellular and molecular events in
vivo that, in case of any pathological insult, culminate in disease. Molecular imaging is
highly advantageous to visualize these complex pathologies as various inflammatory events
that underlie or precede tissue morphological changes can be imaged in a serial and
quantitative fashion. Combined with the conventional imaging modalities like computed
tomography (CT), magnetic resonance (MR) and nuclear imaging, it helps us resolve extent
of ongoing pathology, quantify residing inflammation and predict future outcome [2]. Better
understanding of the molecular and cellular events also paves way to identify therapeutic
targets that would regulate the course the inflammation and improve outcome before the
irreversible damage ensues. Another translational advantage is to monitor treatment effects
in vivo due to the (semi)quantitative nature of molecular imaging [3, 4].

To grasp the full potential of molecular imaging advantages, it is important to identify
imaging targets that play prominent roles in disease pathogenesis, and if subjected to
therapeutic intervention, may lead to improved outcome. In preclinical studies, various
molecular agents targeting inflammation, apoptosis, thrombosis, fibrosis, angiogenesis etc.
have been synthesized and successfully imaged with various techniques [3]. Of these,
macrophages are increasingly gaining importance due to the multitudes of roles they play in
inflammatory cardiovascular diseases (Fig. 1A). In atherosclerosis, macrophages extravasate
to the site of endothelial activation, phagocytose oxidized low density lipoproteins (LDL)
and become foam cells. Later they release proteolytic enzymes which contribute to
vulnerable plaque formation and acute ischemic events. After MI, there is a sequential
monocytosis of the precursor pro-inflammatory Ly6Chi and then anti-inflammatory Ly6Clo
monocytes [5]. These are recruited to the infarcted myocardium and after differentiating into
macrophages, help in clearing infarct debris, tissue repair and in case of excessive
proteolysis, facilitate adverse tissue remodeling. Furthermore, various cardiovascular disease
pathologies are linked: post-MI monocytosis perpetuates atherosclerosis through increased
cellular infiltration and consequent inflammation [6]. Intra-lesional macrophages, which are
abundant in the inflamed plaque microenvironment, are also capable of self-renewal through
local proliferation, independent of the systemic monocyte influx [7]. As a link to adaptive
immunity, macrophages express non-self antigens to orchestrate T cell mediated rejection of
the cardiac allograft transplant [8]. Therefore, imaging strategies that target macrophages,
and its functions and products, would benefit in a wide variety of cardiovascular diseases.

Recent evidence suggests that there is considerable amount of phenotypic and functional
plasticity in macrophage development in local tissue environment. Exposure to certain
inflammatory cytokines such as interferon (IFN) and lipopolysaccharide (LPS) differentiates
macrophages into classically activated, pro-inflammatory M1 macrophages, while exposure
to IL-4 and IL-13 leads to a reparative and immunosuppressant M2 phenotype (Fig. 1A).
Therapeutically, it may be important to identify M1 and M2 subsets with in vivo molecular
imaging so that one with undesirable downstream effects can be targeted while others are
spared. Functional and enzyme activity imaging may be particularly important in this respect
as currently no single cell surface target can reliably identify these macrophage subsets [9].

In the past, several functional activities of macrophages have been exploited for in vivo
macrophage imaging [10]. Phagocytosis and proteolysis are the main tissue effector
functions of macrophages which help in clearing and digesting necrotic cellular and tissue
materials after injury. Macrophages, recruited to the site of injury, internalize necrotic or
foreign material. Along with phagocytosis, activated macrophages release their proteolytic
enzymes like matrix metalloproteinases (MMPs) and cathepsins into the extracellular
environment which break down extracellular matrix and attract more inflammatory cells by
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releasing chemokine and cytokines. Pro-inflammatory monocytes and macrophages also
induce tissue oxidative damage through inflammatory enzyme myeloperoxidase (MPO) after
ischemic or inflammatory insult. Cell surface targets have also been exploited for
macrophage imaging and may provide useful information about macrophage quantification.
Various cell surface receptors including vascular cell adhesion molecule-1 (VCAM) [11],
inter-cellular adhesion molecule-1 (ICAM) [12] and integrins [13] have been tagged with
different imaging reporters. However specificity of these agents is mixed as neutrophils,
monocytes and endothelial cells may also share the same receptors. Furthermore, these
mainly report macrophage content rather than pro-inflammatory activity directly.

Recent advances in molecular imaging techniques have made it possible to image these
diverse macrophage activities in vivo. In addition to anatomical imaging, these molecular
imaging strategies provide useful information about the ways macrophage interact with and
modify the inflammatory milieu. Molecular imaging of macrophages has greatly expanded
our understanding of the biological role of these important cells at the tissue, cellular, and
molecular level in a wide variety of physiological and pathological conditions. We will
highlight the principal functions of macrophages: (I) phagocytosis, (II) proteolysis, and (III)
oxidative stress in inflammatory cardiovascular diseases (Fig. 1B).

Imaging Phagocytic activity
After reaching the site of injury, an important function of macrophages is the phagocytosis
of the foreign pathogens or senescent cells [14]. This initiates a cascade of downstream
events in which macrophages continue to link and orchestrate innate and adaptive immune
responses depending upon the type of injury or pathogen involved. Being an attractive
imaging target, macrophage phagocytosis function has been exploited with the help of
specialized nanoscale constructs called magnetic nanoparticles (MNP) [15]. MNP are less
than 100nm particles with an iron oxide [16] or gadolinium (Gd) core [17, 18] and a surface
coat of dextran or related carbohydrates [19], lipids [20] or various polymers. There are
several advantages in the structural properties of MNP making them highly suitable for
molecular cardiovascular and monocyte/macrophage cellular imaging [10].

The outer surface coating allows identification and phagocytosis, while the inner magnetic
core makes MRI imaging possible. It is possible to modify the surface to target certain cell-
type or cell-state. For example, high-throughput surface-modified MNP screening revealed
specific nanoparticles for both resting and activated macrophages, endothelial and cancer
cells [21]. Target specificity can also be conferred by attaching certain antibodies or
peptides which can be recognized by macrophages receptors [22]. Newer generation of
MNP’s have considerably longer plasma half life and higher contrast on MRI imaging.
Additionally, their smaller size allows better tissue penetration, and after phagocytosis, these
tend to be concentrated within sub-cellular compartment (lysosomes) generating more MRI
contrast [23]. All these properties make them suitable to sensitively image phagocytes such
as monocyte and macrophages in atherosclerotic plaques [24] and inflamed myocardium
[25].

MNP have been extensively categorized to image macrophage phagocytic activity both in
experimental preclinical and clinical studies. Owing to the superior sensitivity and favorable
pharmacokinetics, ultrasmall superparamagnetic iron oxide nanoparticles (USPIO) have
been utilized for rodents in vivo imaging of atherosclerosis [24] and myocardial infarction
(MI) [25]. Similarly, in clinical studies, intralesional macrophages have been successfully
imaged in inflamed carotid atherosclerotic plaques [26] and ST elevation MI (Fig. 2E–G)
[27, 28], where macrophage MNP uptake was seen not only in infarct core and peri-infarct
tissue but also in non-infarcted remote myocardium. Macrophage infiltration in these remote
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areas may orchestrate tissue remodeling and further contribute to chronic heart failure. In
addition to diagnostic utility, MNP cardiac MR imaging has also proven useful for treatment
follow up. In these settings, treatment responses to various anti-inflammatory treatments
which either suppress macrophage phagocytic activity or decrease their recruitment to
inflamed plaque, have been successfully imaged in human [29](Fig. 2A–D), mice [30, 31],
and rabbits [32]. Another possible clinical utility is to non-invasively image cardiac
transplant rejections with USPIO, where pre-clinical studies have shown encouraging results
[33]. However, it has been shown in cell culture studies that MNP uptake may affect
macrophage biology by increasing cell proliferation and reactive oxygen species formation
[34]. This fact should be cautiously considered while performing in vivo imaging.

Iron oxide MNPs are superparamagnetic and after phagocytosis, generate negative contrast
on T2* weighted images [15] with superior sensitivity as compared to traditional gadolinium
based contrast agents which continue to stay in the extracellular fluid. Some imaging
artifacts such as blood flow or cardiac motion related abnormalities, air and calcification
may also produce negative contrast and need to be differentiated from MNP specific signal.
For this purpose, certain off-resonance techniques have been developed which detect MNPs
as a bright signal. Another approach is to use Gd-based nanoparticles with a surface coat of
liposomes with or without foam cells specific antibody (CD36). This liposome coat is
identified and internalized by macrophages with resultant contrast concentration, increased
signal-to-noise ratio and enhanced sensitivity. Imaging is then performed by T1-weighted
sequences generating positive contrasts. This technique has been utilized to label and track
serial monocytes/macrophages responses after MI (Fig. 3A–C) [35] and also in a recent
study, to specifically identify intra-lesional macrophages with atherosclerotic-targeting
contrast agent (ATCA) (Fig. 3D) [36]. Imaging at clinical MR strength may also be possible
with Gd-based nanoparticles which demonstrated increased lesional uptake in human aorta
harvested from cadavers and incubated with CD36 targeted nanoparticles ex vivo [37].
Recently, monocyte/macrophages have been imaged with 19Fluorine-MRI based positive
contrast. For this purpose, perfluorocarbon (PFC) nanoemulsions containing naturally
occurring fluorine isotope (19F) were synthesized. 19F is not present in the body and any
signal generated is due to exogenously injected 19F which can be superimposed on
conventional MRI imaging. This technique has been utilized to image myocardial infarction,
stroke [38] and cardiac transplant rejection [39].

Perhaps one the most significant advantages of MNP is that various fluorescent probes and
radioligands for PET or SPECT can be attached to the MNP surface such that they still can
be phagocytized by macrophages. At the same time, the fluorescent or nuclear probes could
report additional information or utilized for validation. These particles can be imaged not
only with MRI but also with other complementary imaging modalities both in vivo and ex
vivo. MRI provides excellent anatomical details while fluorescent or nuclear imaging
provides superior sensitivity. Ex vivo fluorescence detection techniques are also capable to
image at cellular resolutions. These complementary functions have greatly expanded the role
of MNP in modern era multi-modality molecular imaging where various aspects of
macrophage biology and their interactions with surrounding cells and tissues can be serially
imaged in vivo and validated further in vitro.

In experimental studies, fluorescent tagged MNPs facilitate their visualization during
particle synthesis, early validation and specificity studies. Furthermore, after in vivo MRI
imaging, tissues can be harvested and imaged ex vivo with fluorescent reflectance imaging
(FRI), microscopy, or analyzed with flow cytometry in order to ascertain target cell uptake.
Near infrared fluorescent (NIRF) probes are generally used for this purpose because of
decreased auto-fluorescence and less tissue light scatter leading to greater photon
penetration and depth of imaging. Recent advances in the 3D reconstruction algorithm have
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also made possible to perform in vivo small animal fluorescence molecular tomography
(FMT). Images are also co-registered with CT or MRI at the same time to better resolve
spatial resolution and anatomical details. This technique has been utilized to non-invasively
image infarcted hearts [25, 40] (Fig. 4a-b) and inflamed aorta [24] in mice. Another
noteworthy NIRF probe is indocyanine green, which is an FDA approved agent for various
diagnostics application since 1959. Recently it has been shown that indocyanine green is
taken up by foam cells and lipid-rich inflamed plaques as imaged by in vivo intravascular
NIRF imaging catheters and in vitro validation studies [41]. Being widely available and
FDA approved, it has a considerable promise for catheter-based human coronary imaging.

However, without invasive techniques, FMT cannot image tissue beyond a certain depth and
therefore not currently suitable for human studies. For clinical studies, superior sensitivity
and deep tissue imaging can be achieved with PET and SPECT nuclear imaging. Potential
draw backs are radiation exposure and suboptimal spatial resolution which requires
combined imaging with either CT or MRI. However, nuclear imaging is rapidly expanding
around the globe and lack of integrated PET/CT or PET/MR scanners is less of a problem
these days. Therefore, translational potential for a radioligand, which may specifically report
lesion macrophage burden, may be promising for clinical trials. 18F-Fluorodeoxyglucose
(18F-FDG), a glucose analogue, is thought to be taken up by early foam cells due to high
metabolic activity [42]. It has already been used clinically to measure plaque inflammation
[43, 44] as well as treatment response to delcetrapid [18, 45] (a cholesterol modulating agent
which works by increasing beneficial HDL) and statin where it showed significant dose
dependent reduction in 18F-FDG uptake in patients undergoing statin therapy [46].
However, it is not macrophage specific and may be taken up by other metabolically active
and/or hypoxic cells [47, 48] in the vicinity of infarcted tissue. In order to improve
macrophage specificity, 18F and newer radioligands with long plasma half life (64Cu
and 89Zr) were derivatizated and linked to MNPs. After injection, these particles were
phagocytized by macrophages and then successfully imaged with combined PET/CT or
PET/MRI in mice models of atherosclerosis [49, 50] (Fig. 4d), aortic aneurysm [51], cardiac
transplant rejection[52] and cancer [53]. In future, these multimodality radioligands may
prove to be attractive candidates for quantifying lesion macrophage burden and therapeutic
response follow up in clinical studies.

It is worth noting that while macrophages are the dominant phagocytes, other cells can also
have phagocytic activity. As such, MNPs are not specific to macrophages, and small
amounts can be taken up by smooth muscle cells, endothelial cells [24] or other
inflammatory cells, including anti-inflammatory cells such as Ly6Clo monocytes [54].

Imaging Proteolytic Activity
Macrophage secretes proteases that can play prominent roles in the pathogenesis of
cardiovascular diseases. In atherosclerotic plaques, macrophages phagocytose oxidized low
density lipoproteins to become foam cells and release their battery of extracellular matrix
degrading and pro-inflammatory proteases including MMP’s [55] and cathepsins [56]. These
proteases can lead to fibrous cap thinning, plaque rupture and acute coronary events. In the
infarcted myocardium, unchecked proteolytic activity also contributes to adverse ventricular
remodeling, dilatation, aneurysm formation or in worse cases, ventricular rupture. Due to the
diverse pathophysiological roles they play in cardiovascular diseases, both MMP’s and
cathepsins have been explored as imaging biomarkers for intra-lesional macrophage load
and increased proteolytic activity. Clinically it may have potential to identify high-risk
patients with vulnerable plaques [57] who might benefit from coronary stent placement
before an acute event occurs.
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Due to limited stoichiometry, targeted imaging of MMP’s and cathepsins requires high
sensitivity for detection in ranges that are detectable by nuclear imaging but difficult to
achieve by conventional MRI techniques. For this purpose, tissue inhibitors of
metalloproteinases (TIMP) attached with radioligands for PET/SPECT have been
synthesized with different target specificities and have been successfully used to image
atherosclerosis [58], vascular aneurysms [59] and MI [60] in both small and large animal
studies. Co-registration with MRI or CT adds on anatomical information while in vitro
studies confirm signal co-localization with macrophages.

It is also possible to not only image ex vivo but also in vivo (using FMT) protease enzyme
activity rather than enzyme presence with the use of activatable smart fluorescent probes.
For this purpose, NIRF probes have been synthesized such that in the native form,
fluorescent molecules lie in close proximity to each other with resultant signal quenching.
However, these molecules can be linked with synthetic linker peptides which are substrates
for protease. Upon exposure, the linker peptide bond is broken, resulting in an increase in
the physical distance between fluorochromes and consequent signal dequenching.
Depending on how active the protease is, several fluorochromes may be activated by a
single molecule which amplifies the signal. It is possible to tailor the linker peptide with
amino acid sequences specific for different MMP’s or cathepsins [61]. With the help of
these probes, macrophage protease activity has been successfully reported in atheroma [62],
aortic aneurysm [63] and infarcted myocardium [40, 64] in small animals (Fig. 4a).

However, as FMT is limited only to small animal studies, there has been an increasing trend
towards intravascular catheter based NIRF imaging which has translational potential of
imaging intracoronary pathology in clinical studies. This technique employs custom made
catheters to image inflammatory plaques in rabbit aorta which has a comparable vessel
diameter to human coronary arteries (diameter 3–4mm). In a proof-of-concept study, a
custom based catheter loaded with NIRF detection system was placed in rabbit iliac vessels
(slightly smaller than the human coronary) 24 hours after injection of a cathepsin specific
activatable probe (Prosense/VM110), and fluorescence signal was recorded [65]. In a later
study, two-dimentional NIRF imaging was performed with the help of automated rotational
catheter and later co-registered with intravascular ultrasound (IVUS) to better delineate
plaque anatomy (fig. 5e). This study provided highly detailed in vivo imaging of the
inflamed plaque as well as stent induced vessel injury [66], where increased cathepsin
activity was visible along the edges of the stent placement. Ex vivo fluorescence reflectance
imaging and microscopy corroborated in vivo imaging findings with NIR signal co-localized
with cathepsin and macrophage immunostaining.

In search of even superior plaque imaging at resolutions better than IVUS, newer catheters
have been developed which combine intravascular NIRF imaging with optical frequency
domain imaging (OFDI) [67]. OFDI mainly is based upon the principles of optical
coherence tomography (OCT) with faster intravascular imaging acquisition and capability to
delineate plaques structural details at microscopic resolutions (~10 μm) [68]. When paired
with catheter NIRF imaging, it provides a powerful tool to image in vivo plaque
inflammation superimposed on detailed vessel anatomy (Fig. 5a-d). In the future this
technique may be utilized for therapeutic monitoring for drugs designed to reduce plaque
inflammation as well as plaque thickness. Vulnerable plaque can also be identified at the
same time and may help in deciding which patients may benefit from percutaneous coronary
intervention and stenting.
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MPO activity imaging
In addition to the MMPs and cathepsins, primary granules of myeloid cells and intra-plaque
macrophages also contain abundant amount of the inflammatory enzyme MPO which is
released into the surrounding tissue environment to generate oxidative stress, and attract and
activate additional inflammatory cells [69]. There has been mounting evidence implicating
MPO’s role in various CVD’s including atherosclerosis, myocardial infarction and cardiac
transplant rejection. Unlike MMP and cathepsins, MPO is involved very early on in the
pathogenesis of atherosclerosis [70]. It affects endothelial function by disrupting
physiological balance of nitric oxide [71]. During plaque initiation, it impairs cholesterol
transport by oxidizing LDL which are then taken up by macrophages leading to foam cell
formation [70]. MPO and its products can also modify high density lipoproteins (HDL)
leading to decreased cholesterol transport out of the plaque [72, 73]. In mature plaque, MPO
is present in lesional macrophages where it interacts with and activates proteases. In the
infarcted tissue, myeloid cells infiltrate ischemic myocardium and release MPO to
contribute to adverse cardiac remodeling and chronic heart failure [74].

Therefore, MPO has emerged as a prominent CVD biomarker and has also been suggested
for prognostic risk stratification [75]. Indeed, plasma MPO levels strongly predict
prevalence of coronary artery disease [76] as well as adverse future outcome including need
for revascularization [77] in patients with suspected coronary event [78] as well as in
healthy individuals [79]. This makes MPO an ideal target for macrophage molecular
imaging in inflammatory cardiovascular diseases [80]. Successful in vivo MPO molecular
imaging may provide diagnostic as well as prognostic information for making informed
management decisions. Furthermore, it may also help to follow treatment response to
emerging anti-MPO therapies.

An activatable MRI-based smart imaging agent called MPO-Gd has been synthesized, which
is specific for extracellular MPO activity [81, 82]. MPO-Gd molecule carries two serotonin
moieties attached to Gd, which, upon exposure to active enzyme, is oxidized and forms
oligomers. This increases physical size of the agent which in turn increases longitudinal
relaxivity (r1) that can be visualized on T1-weighted MRI images as increased enhancing
signal. These oligomers can crosslink to proteins to further amplify the signal [83]. The
larger molecular size and protein binding further result in retention of the activated agents
and further enhance the signal at sites of elevated MPO activity. Consequent increase in
sensitivity as well as positive contrast advantages make it suitable for in vivo molecular
imaging at clinically available MR field strengths. MRI also provides high structural detail
and soft tissue contrast. In addition, systolic and diastolic cardiac functions can be quantified
and correlated with molecular information at the same time.

MPO-Gd has been successfully used for imaging inflamed atherosclerotic plaques [84],
myocardial infarction [85], stroke [86] and heart transplant rejection [87]. In a rabbit
atherosclerotic disease model, delayed images obtained two hours after contrast injection
showed two-fold signal increase in inflamed aortic lesions as compared to normal wall (Fig.
6a). Because of the superior spatial resolution, focal areas of MPO induced signal
enhancement were also identified which corresponded extremely well with MPO
immunohistochemistry (fig. 6b)[84]. Similarly, MPO-Gd successfully imaged MPO activity
from neutrophil and monocyte/macrophage influx after ischemic insult to the infarcted
myocardium in vivo (Fig. 6c), later confirmed by histology and MPO activity assays [85].
Specificity of the agent was confirmed by lack of signal enhancement in infarcted MPO-
knockout mice. Another noteworthy aspect of this study was the in vivo treatment response
monitoring with anti-inflammatory therapy atorvastatin. Serial MPO-Gd imaging has not
been found to affect the course of the disease process when comparing clinical outcome,
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flow cytometry, and histological markers with and without agent injection in animals models
of neurological and cardiovascular diseases [82, 86–89], further underpinning the
translational potential of this imaging technique (Fig. 6d).

Serial cardiac biopsy is the current clinical standard for temporally resolving events that
govern cardiac transplant rejection. However, it is invasive and subject to sampling error as
not all areas of myocardium are accessible through biopsy. In a study investigating allograft
transplant rejection, MPO-Gd was successfully used to identify and characterize cellular
influx of MPO rich inflammatory monocytes to detect transplant rejection in sites that are
not accessible by biopsy (Fig. 7C–G). Furthermore, treatment response with
immunosuppressive therapy can be tracked, demonstrating decreased signal enhancement in
the treated allograft (Fig. 7A–B). This study suggested an additional role of MPO-Gd
imaging as a useful non-invasive alternative for serial cardiac biopsy [87].

Conclusion
One of the driving questions in the field of molecular imaging is how to identify and
quantify disease process before it has advanced to the point that available therapeutic
intervention do not work affectively. In cardiovascular medicine, this translates into
identifying patients with inflamed atherosclerotic plaques about to rupture or patients with
pathological inflammatory stresses during early phase of post-MI wound repair as well as
initiation of events culminating in cardiac transplants rejection. Furthermore, to keep pace
with the drug development research, new technologies are needed which shed light on
relevant biological process and monitor in vivo anti-inflammatory therapeutic effects.
Indeed, current macrophage functional and enzymatic activity imaging has the potential to
help answer these important questions with a promise of future clinical translation. 18F-PET
and USPIO have already been used in the clinical trials for successful macrophage imaging,
plaque inflammation quantification and treatment effects monitoring [29, 44–46].

Although not used in patients so far, pre-clinical agents targeting protease and MPO activity
have a potential to open new ways to understand cellular and tissue microenvironment
interactions. Individual patients or populations with certain genetic polymorphism, which
may predispose them to excessive MPO [90, 91] or protease activity [92], can be identified
for making timely and individually tailored management decisions. Additionally, there is a
rapidly expanding field for identifying and characterizing distinct macrophage cell
phenotypes which orchestrate divergent pro- and anti-inflammatory functions. Surface or
enzymatic biomarkers, which may more specifically define these cells, should be validated
in unperturbed tissue microenvironment. Macrophage imaging, as described here, will help
to expand this effort to study cellular and molecular events and downstream inflammatory
effects for improving our understanding of biological events in cardiovascular diseases.
More importantly, macrophage imaging can identify distinct phenotypes, track disease
progression, monitor treatment response, and predict prognosis noninvasively in a variety of
inflammatory cardiovascular diseases to improve future patient care.
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Fig. 1.
(A) Macrophage phenotypic and functional plasticity. Circulating monocytes cross
endothelial barrier at the site of injury. Depending upon tissue microenvironment, precursor
Ly6Chi and Ly6Clow monocytes will give rise to M1 and M2 macrophages with pro- and
anti-inflammatory functions respectively. (Dashed arrows: possible pathways yet to be
proven in cardiovascular disease settings; derived from Nahrendorf et al. [87]). In
atherosclerotic plaque, macrophages gobble up oxidized low density lipoproteins (ox-LDL),
become foam cells and contribute to lesion burden (B) Schematic diagram for macrophage
functional imaging with various molecular imaging techniques in myocardial infarction and
atherosclerosis. Principal macrophage functions exploited for the purpose of cardiovascular
molecular imaging are phagocytosis, proteolysis with matrix metalloproteinases (MMPs)
and cathepsin, and induced oxidative stress with enzyme myeloperoxidase (MPO) (further
details in respective sections).

Ali et al. Page 14

Curr Cardiovasc Imaging Rep. Author manuscript; available in PMC 2015 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
Clinical human Imaging with USPIO: Response to high dose statin therapy as imaged by
T2*-weighted imaging of a human carotid artery atherosclerosis before and after ultrasmall
superparamagnetic iron oxide (USPIO) infusion at week zero (A and B) and 12 weeks (C
and D) after treatment. (B) USPIO uptake can be seen in the plaque before treatment (yellow
arrowheads). (D) The plaque enhances at 12 weeks (blue arrowheads), indicating that the
high-dose statin treatment has damped the USPIO-defined inflammation. Cross hairs:
middle of the lumen. Green asterisk: blood pool (reproduced from Tang et al. with
permission [29]). (E) Imaging myocardial infarction with USPIO. Late gadolinium
enhancement (LGE) [pre-Feraheme™ (FH; a USPIO agent)] compared with (F) cine-
cardiovascular magnetic resonance (CMR) images, (G)T2-weighted hypoenhancement
andT2*-mapping signal voids; each 48 h after ferumoxytol administration (post-Feraheme™)
(modified from Yilmaz et al. with permission [27]).
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Fig. 3.
(A–C) Correspondence between R1 map, CD68-positive monocytes/macrophages and
liposomes containing Gd and Dil dye (DLL) in mouse model of myocardial infarction. (A)
R1 map of infarcted heart at day 4 post-MI. (B) Fluorescence immunohistochemistry low
magnification. C, High-power (×20) magnification of region bounded by white box in B.
CD68-positive monocytes and/or macrophages are in green, DLL in bright red and double
positive in yellow (reproduced from Naresh, et al. with permission [35]). (D)
Atherosclerotic-specific contrast agent (ATCA) is composed of Gd metallofullerences and
liposome coat carrying CD36 antibody for macrophage targeting. Representative aortic
plaque images from two mice injected with (ATCA) and one control mouse with non-
targeted agent (without CD36). Post-contrast images show enhanced plaque areas (arrows)
only in the (ATCA) injected mice as compared to control (modified from Dellinger et al.
[36] with permission).
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Fig. 4.
(a) 3-dimentional combined fluorescence molecular tomography and computed tomography
(FMT-CT). C57BL/6 mice and genetically modified mice prone to atherosclerosis (apo
E−/−) were imaged 5 days after myocardial infarction with both protease probe (Prosense)
and phagocytic probe (CLIO). Arrows denote apical infarct signal, arrow heads denote
fluorescence signal in the carotid artery; both are increased in apo E−/− mice. (b) Ex vivo
fluorescence reflectance imaging (FRI) corroborates in vivo FMT findings (modified from
Panizzi et al. [40] with permission). c) Combined positron emission tomography and
magnetic resonance imaging (PET-MRI) of myocardial infarction and aortic root with 64Cu
and 89Zr [50] labeled iron oxide nanoparticles respectively (NP: nanoparticles).
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Fig. 5.
(a–c) Combined dual catheter NIRF-OFDI imaging in rabbit aorta dilineating plaque outline
and superimposed cathepsin activity with high spatial resolution. (d) Fluorescence imaging
and immunohistochemistry (not shown) revealed increased cathepsin B activity along the
plaque surface (red) which co-localized with intravascular NIRF imaging signal. Green
asterisk: higher protease signal; blue asterisk: lower signal. (Modified from Yoo et al. [67]
with permission) (e) Combined IVUS-NIRF imaging with 2D rendering showing increased
cathepsin activity in rabbit aortic plaque (Modified from Jaffer et al. [66] with permission).
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Fig. 6.
(a) Delayed contrast MRI at two hour shows brighter signal in MPO-Gd imaging as
compared to DTPA-Gd in rabbit model of atherosclerosis (reproduced from Ronald et al.
[84] with permission). (b) MPO-Gd also precisely localizes focal areas of inflamed plaque
as outlined and confirmed with MPO immunohistochemistry visually as well as correlation
analysis. (c) At two hours post contrast injection, much of the DTPA-Gd is washed away
however MPO-Gd still lights up the infarcted myocardium in mouse model. (d) Follow up of
atorvastatin treatment response with MPO-Gd imaging reveals decreased inflammation and
in vivo MPO activity (modified from Nahrendorf et al. [85] with permission).
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Fig. 7.
(A) Cadiac allografts showed MPO dependent signal enhancement in wild type mice but no
signal in the MPO-KO mice confirming specificity of imaging agent. (B)
Immunosuppressive therapy resulted in attenuation of inflammation and signal enhancement
in cardiac allograft. (C) Magnified MR image of isograft 120 minutes after injection of
MPO-Gd. Some focal bright signal reflects spin refreshment effects due to blood flow. Scale
bars: 1 mm. (D) Allograft 120 minutes after injection of MPO-Gd. (E) Same data as in D,
but the MPO-Gd signal was thresholded and pseudocolored in red. (F) Immunoreactive
staining for MPO in the area that enhances in D and E. Scale bar: 20 μm. (G) Thresholded
data of signal enhancement 120 minutes after injection of MPO-Gd show typical
enhancement patterns. To highlight the more comprehensive sampling of imaging over the
clinical standard, areas that would be accessible to heart biopsies, which are routinely taken
from the right ventricular cavity, are color-coded in yellow. Red encodes foci of rejection
that could not be reached with routine transvenous right ventricular biopsies (modified with
permission from Swirski et al. [87])
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