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Abstract
In this paper we give the current state of high-throughput virtual screening. We describe a case
study of using a task-parallel MPI (Message Passing Interface) version of Autodock4 [1], [2] to
run a virtual high-throughput screen of one-million compounds on the Jaguar Cray XK6
Supercomputer at Oak Ridge National Laboratory. We include a description of scripts developed
to increase the efficiency of the predocking file preparation and postdocking analysis. A detailed
tutorial, scripts, and source code for this MPI version of Autodock4 are available online at http://
www.bio.utk.edu/baudrylab/autodockmpi.htm.
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1. Introduction
Many pharmaceuticals act by selectively binding to a specific protein and thus inhibiting a
specific process relevant to a disease or illness. Because of this, the early stage of drug
discovery consists of identifying potential compounds that bind to a protein of interest with
a high affinity and specificity. Experimentally testing a very large number of these
compounds is both costly and time consuming. Virtual high-throughput screening is an
equivalent computational process that can reduce the time and cost of discovering new drugs
[3], [4].
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A virtual screen is a task-parallel application in which each ligand from a large library of
drug-like compounds is “docked” into a protein of interest. The docking method produces
the structure of the ligand docked in the presumed active-site of the protein and a calculated
affinity estimating how well the ligand binds to the protein.

The scoring functions in typical docking applications use severe approximations in order to
efficiently produce results. Therefore, the calculated binding affinities rarely reproduce
accurate experimental affinities. However, docking applications can be very successful at
reproducing the correct “docked” conformation as well as scoring active compounds better
than inactive compounds[5]. Therefore, virtual screenings are powerful tools to create
“enriched” libraries (see Figure 1 for depiction).

Given a large library of diverse drug-like compounds, virtual screening applications can be
used to relatively quickly screen the entire library and assign scores to each compound.
Compounds with a high affinity (i.e. active) for the protein of interest are more likely to
score higher than non-active compounds. Once all of the compounds are scored and ranked,
the library can be partitioned by scores thus creating an “enriched” library that is a subset of
the original and presumably contains a much higher percent of active compounds. The
smaller number of compounds scoring well in the virtual screen can then be tested
experimentally with a higher success rate.

Since the true power of docking tools lies in the production of enriched libraries, the
capability of distributing a large number of docking tasks and collecting and analyzing the
data is extremely important. In this study, a task-parallel MPI implementation of Autodock4
is used that was developed to be used on high-performance computing (HPC) systems. A
similar implementation uses the MapReduce paradigm of Hadoop in order to distribute the
docking tasks on Hadoop clusters or cloud computing systems [6]. Other methods have been
developed to run virtual screens on small clusters and grid platforms. However, some HPC
resources require an MPI implementation in order to utilize tens of thousands of high-end
processors at once, which is the aim for Autodock4.lga.MPI. These applications require a
fair amount of computational expertise to set-up and run. This makes proper documentation
and sharing of code and potential pitfalls important in order for these tools to aid researchers
and improve the efficiency of drug development.

The main goals of this paper is to illuminate the reader on the current technological state of
high-throughput virtual screening and to share the experience of running a very large virtual
screen of just over one million compounds and direct the readers' attention to the publicized
code and tutorial to bring this powerful tool to a wider community of researchers. In Section
2 we give a review of the current published literature regarding high-throughput virtual
screening. In section 3 we describe improvements we have made in the high-throughput
virtual screening process (for the predocking and postdocking steps) when using
Autodock4.lga.MPI. In section 4 we describe the case study of running a million compound
virtual screening in under 24 hours and highlight some areas for future improvements. In
Section 5 we give a description of some future directions for virtual screenings.

2. Virtual Screening: Existing Tools and Techniques
The increasing computational power of supercomputers allows for potentially very large
chemical databases to be screened against a variety of protein targets. The software
technology that is needed to leverage such computing power is the subject of much effort. A
recent overview of some virtual screening tools aimed at making the task easier (typically
through a graphical user interface - GUI) on mostly smaller computing architectures or
individual machines, can be found in [7].
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2.1 Parallelization approaches of docking of large chemical databases
Two large docking initiatives on the EGEE Grid infrastructure have been reported [8], the
first targeting malaria and the second to target Influenza [9]. The study referenced in [9]
screened about 300,000 ZINC [10] compounds against eight variants of neuraminidase from
homology models on more than 2000 CPUs, generating about 600 Gigabytes of data. This
study used two different Grid tools: an enhanced version of WISDOM [9] on 2000 worker
nodes for a 6 week period, and a lightweight framework called DIANE. Due to Grid
scheduling overhead and problems with the Grid resource Broker, WISDOM had a
distribution frequency of only 38%. In addition, about 30% of the jobs failed during Grid
scheduling and had to be resubmitted. DIANE had a similar failure rate but could automate
the resubmission of tasks and had a much higher distribution efficiency of 80%. However,
DIANE is not very scalable due to communication needs between the DIANE master and
DIANE workers (which are limited to a few hundred).

Closer to our MPI development reported in the present paper is the multi-level
parallelization of Autodock4.2 (mpAD4) [11] which uses MPI to parallelize the distribution
of individual docking jobs and OpenMP to multi-thread the Lamarkian Genetic Algorithm
(conformational search mechanism) in Autodock. This implementation was only tested on
up to 16,384 CPU cores.

Approaches to develop better ways to connect to and utilize multiple computational
resources such as High-Performance Computing (HPC) and High-Throughput Computing
(HTC) systems have been repored [12], [13]. This work is applicable to the WISDOM [8]
project which uses HTC resources for virtual screens and HPC resources to run Molecular
Dynamics simulations to more accurately rescore the top hits resulting from the initial
screen.

Computing tasks are often classified as either high-throughput computing (HTC) or high-
performance computing (HPC). An emerging classification is many-task computing (MTC)
and it differs from traditional HTC tasks typically done on a grid in that their metric of
interest is the time to completion of the job and can take advantage of more traditionally
HPC systems. Virtual screening is recognized as an important MTC application [14], and
there is continued interest on the best paradigms for MTC applications to run optimally on
HPC architectures [15]. In [16], a virtual screening tool was developed using DOCK [17],
that incorporated HTC features available on the Blue Gene/L supercomputer. The
development included single processor optimization with compiler flag optimization and
optimized libraries and optimization of the parallel implementation by increasing load
balance by presorting the jobs by complexity and decreasing I/O by storing temporary files
in memory. Instead of a using a parent-child (master-slave) scheme to distribute the
individual docking jobs, a HTC mode available on Blue Gene/L was used in which a work
dispatcher runs on the front end of the supercomputer. While the traditional MPI parent-
child implementation had a major drop in performance between 8,192 (which had near
linear performance) and 16,384 processors, the HTC version maintained near linear
performance on 16,384 processors. Another large-scale implementation of DOCK was done
on Falcon [18] which is an execution framework that allows for loosely coupled programs to
run on petascale systems and can scale up to 160,000 cores. In a case study, after making
some changes to I/O patterns, DOCK scaled to 116,000 cores while being executed through
Falcon.

2.2 Current GPU Development
Graphical processing units (GPUs) which have been developed for efficient rendering of
high-quality graphics can be used in order to accelerate some scientific codes and are
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currently being incorporated into many large computing systems because of their increased
available floating point operations to power ratio. In a recent review of GPU development in
the computational molecular sciences [19], it is noted that GPU development in docking has
not been as popular as other areas such as Molecular Dynamics because the important metric
in docking is the time to completion of an entire screening, not the individual docking task
and large GPU clusters are still rare. However, there is a trend for some of the largest
supercomputer centers in the world to incorporate GPUs in their systems and utilizing them
to speed-up individual docking tasks can reduce the time taken for large scale screenings if
proper load balancing is ensured. In [20], the authors use GPUs to accelerate the
precalculation of potential grids. With the docking engine FlexScreen, this calculation
dominates 80% of the runtime for an individual docking. In a typical screen where a large
library of compounds is docked into the same structure, this information can be reused.
However, when using multiple receptor files, it becomes increasingly more important to
accelerate this portion of the calculation. They were able to accelerate the grid calculations
by a factor of 60. Also, as mentioned above in [21], the authors here achieved a speed-up of
213× when accelerating the calculation of the non-bonded electrostatic interactions.

3. Virtual Screening Using Task-Parallel MPI Autodock4
We report here on recent development of Autodock4.lga.MPI [2] and on its application to
screen quickly a very large database of compounds.Autodock4.lga.MPI is a task-parallel
version of Autodock4 that allows for independent and simultaneous docking of a large
number of ligands into a single specified protein on up to thousands of processors at one
time. The original serial version has many different input files: 1) a parameter file for each
ligand, 2) 3-D coordinate files for both the ligand and protein, and 3) pre-calculated affinity
maps of the protein (one for each atom type in the ligand library). The I/O is reduced in the
parallel version by creating only two parameter files for the entire screening, instead of one
file for each of the ligands in the screening. One parameter file contains all of the parameters
specific to the docking job; these are the same for all of the ligands. The other file contains a
list of the ligand specific parameters and is used for distributing the tasks. The I/O is also
reduced by having a single binary file for the precalculated affinity maps using HDF5 [22].

3.1 Improvements in Efficiency
Autodock4.lga.MPI only distributes the actual docking tasks. While this is the
computationally expensive aspect of a virtual screening, when a virtual screening is scaled-
up to handle millions of compounds on thousands of processors, file preparation and result
analysis become the bottlenecks in decreasing the overall screening time (the time it takes to
deliver the results).

3.1.1 PreDocking—The process in Figure 1 of [2] shows that the standard procedure is
done for predocking plus two additional steps. The standard procedure includes 1) preparing
the ligand and receptor PDBQT (similar to a Protein Data Bank (PDB) file with Autodock
charge (Q) and atom type (T) information) files, 2) creating the affinity maps (grids), and 3)
creating the Docking Parameter Files (DPF). The PDBQT files are the coordinate files that
Autodock4 takes as input for the ligands and receptor. They include charge and atom type
information needed by Autodock4 and are generated using AutoDockTools (ADT) [23]. The
affinity maps are created using Autogrid (program packaged with Autodock) and one file is
needed for each atom type in the ligand library. The DPF files are parameter files used by
Autodock4. One file is used for each individual docking of a ligand into a receptor. These
files are also created by ADT. ADT includes scripts in order to automate this process as
well.
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The additional predocking steps required by Autodock4.lga.MPI include running 1)
make_binary.exe and 2) make_dpf_input.exe. (1) creates the single binary file used by
Autodock4.lga.MPI from the ASCII affinity maps created in the standard procedure. (2)
creates the two input files needed by Autodock4.lga.MPI from the DPF files previously
required by Autodock4. Both of these programs were developed along with
Autodock4.lga.MPI.

C shell scripts were developed along with Autodock4.lga.MPI to automate the predocking
process including the standard procedure. One of the major pitfalls of this method is that it
was developed to run sequentially either locally or from a login node on a large machine,
such as a supercomputer. If the predocking process is done on a local machine then a large
amount of data will have to be transferred to the supercomputer between the predocking and
docking procedures. Since several users could be using the same login node on a
supercomputer, predocking from a login node can create severe contention. Therefore, we
have developed python scripts that automate the predocking process including a submission
script so that the predocking can be done from a compute node. This allows the input data to
be generated at the location it needs to be for the docking process without creating extra
contention on the login nodes.

Another pitfall of the previous process is that it only ran sequentially. Since the same
process must be done for a large amount of ligands, the predocking process is quite
straightforward to parallelize. The modified process can use multiple processors to partition
the ligand library and process the input in parallel. The benefit of this method is two-fold
because not only is the data being prepared in parallel, but the precursor files are created in a
subdirectory for each processor. This reduces the load on the file system when millions of
files need to be written to and read from. The final files needed by Autodock4.lga.MPI are
moved to the parent directory once they no longer need to be read from. This is where they
will need to be for the actual docking procedure and they will not need to be moved again. A
partial ligand specific parameter file is made during this predocking process per processor.
Every ligand processed by a particular processor is included in the partial parameter file
associated with that processor. These partial files are already ordered correctly (ligands with
the most torsional degrees of freedom listed first). We include a script to combine these files
which runs very quickly since the individual files are already correctly ordered.

The previous make_dpf_input.exe process used to create the ligand specific parameter file
made extensive use of AWK scripts (an interpreted language common on most Unix-like
operating systems). While AWK scripts can be quite powerful, they complicate this file
preparation procedure. AWK is not very reusable as it is difficult to trace what the script is
doing, and it also necessitates temporary files to be made during the process when the
amount of data needed in this step is small enough to hold in memory until the file can be
written in its final form. In our current predocking procedure, the necessary information is
parsed out of the DPF files and stored in a python dictionary. This makes it very easy to sort
the data and write it only once in the final form after all of the DPF files have been parsed.

Previously, the C shell predocking scripts assumed that there were already PDB (Protein
Data Bank) coordinate files for every ligand in the library. This would mean that, even if the
files are being prepared on the supercomputer, a large number of files will have to be
collected and transferred before the predocking stage even begins. In the present updated
procedure, the input is a concatenated MOL2 file which contains the entire ligand library in
one file. This is the only file that needs to be transferred to the supercomputer in order to
start the predocking process. Also, a MOL2 file is commonly used to store the information
on a library of ligands and would more likely be the initial input when starting a virtual
screening. A script is used in order to partition the library into subdirectories for the parallel
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predocking process as described above. To illustrate the improvements here, the million
compound library that is screened in this study has a concatenated MOL2 file size of 2.3 GB
and a compressed file size (gzip) of 406 MB. The directory containing the PDBQT input
files of the library is 4.0 GB and the compressed and archived file size (tar) is 531 MB.
While the file size of the compressed data is close, the limiting factor here is the time it takes
to compress and archive the files. It takes on the order of minutes to compress the
concatenated MOL2 file and hours to compress and archive the PDBQT files. In addition to
that, uncompressing the archived PDBQT files on a login node of a busy supercomputer
could take longer than a day.

Another key difference in the new procedure is completely separating the receptor
preparation from the ligand library preparation. The previous predocking method prepared
the receptor files and ligand files from the same script. However, the receptor preparation is
much simpler as there is only one receptor per screening and so it is much more
straightforward to prepare these files manually then to make changes in a script to adapt it to
a different project. Also, ligand libraries may be prepared separately and used in different
screenings with different receptors.

The complete workflow of the new predocking procedure is given in Figure 2. A
concatenated file containing the 3D coordinates for all of the ligands in the screening is split
into individual files for each worker processor. Each processor parses out the individual
molecules in their workset and uses ADT scripts in order to create the PDBQT input files
and the DPF files needed to create the list_par.dpf input file.

In addition to increasing the efficiency of the predocking process, the new procedure also
aims at simplifying it. The previous C shell scripts needed many changes in order to adapt
them to a new project, which required lots of code deciphering. In contrast, the new scripts
require minimal changes, such as changing path names. There is a thorough tutorial that
documents all necessary changes for a first time user.

3.1.2 PostDocking—Similar to the previous predocking procedure, C shell scripts were
developed along with Autodock4.lga.MPI in order to analyze the results and create a ranked
list of all the ligands in the library. Again, these scripts make extensive use of AWK and are
very hard to decipher and reuse, even though modifications will always need to be made to
adapt them to a new project. These scripts require many temporary files while manipulating
the data to extract the interesting results. The scripts are also developed to either run locally
or from a login node, and this requires either a large amount of data to be transferred that
there is no need to save or extra contention on a login node.

The new postdocking procedure uses python scripts that can run locally or be submitted to a
compute node via a submission script. Initially, we developed the script to parse all of the
result files and keep the needed information in a python dictionary in order to quickly sort
and write the ranked list once after all the results have been parsed. However, due to wall-
clock time limits, we developed a second way that splits the parsing and sorting. One
temporary file is kept with the needed information to maintain it if the job is killed. Once all
of the results are collected, the entire temporary file is read into memory, sorted, and written
in the correct order very quickly.

The current scripts utilize the python glob module which finds all pathnames matching the
given pattern. The glob() function creates a list of file names that can be used to iterate
through all of the files. This makes restarting the job very easy (if it was killed due to wall-
clock time restrictions, etc) because the file list can be truncated to start at the index past the
last file parsed in the previous job.
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The postdocking procedure returns the file names for any result files with incomplete
results. Another script ensures that all the result files have been created. Any missing or
incomplete docking tasks can then be restarted to ensure a complete screening.

The improvements described above increased the efficiency of postdocking by an order of
magnitude, so the postdocking procedure has not been parallelized. However, as with the
predocking, it would be very easy to parallelize this step as well. The result files could be
partitioned, then parsed and sorted on individual processors. If enough processors are used
to guarantee that the postdocking would finish within a systems wall-clock time limit, then a
temporary file would not be necessary. Each processor could hold the results in memory and
write the partial ranked list once. Then partial sorted lists could be combined very quickly
on one processor.

In addition to increasing the efficiency of the postdocking process, the new procedure aims
at simplifying it and making it more thorough. Just as with the predocking, a detailed tutorial
outlines all the changes that need to be made in order to adapt the scripts for a new project.
The new scripts also have more features and options.

Autodock4 results cluster the individual trials for one docking between one ligand and the
receptor. Trials with similar ligand conformations are placed in the same cluster and the
coordinates of the conformation with the lowest energy are reported for each cluster. A
ranked list can be created in two different ways: 1) using the lowest energy cluster or 2)
using the largest cluster. If the docking parameters are set-up correctly, the largest cluster
should be the converged result. Whereas, the previous scripts only ranked the results using
the largest cluster, the new scripts create sorted lists both ways: however, the largest cluster
is typically used.

The Autodock4.lga.MPI scripts collected only the structural information for the top
specified percentage of the ranked library. However, the new procedure allows for the
structure of a range of scored ligands to be collected. If a known active ligand is included in
the input library, then the ranked ligands with scores similar to the known active ligand may
be collected.

The previous scripts did not include any ligands in the ranked list that had a positive binding
free energy. This is because Autodock4 cannot calculate the binding constant for any ligand
with a positive free energy and the inhibition constant is also reported in the list and a
secondary sort key in the ranking. The new method gets around this by assigning a null
value of 0 for the inhibition constant for any ligand with a positive binding free energy and
not attempting to parse the information from the file. This allows all of the ligands to be
included in the ranked list.

Finally, the new method includes scripts and detailed instructions to create a concatenated
SDF (Structure Data File) of the enriched database. SDF files are structural files that can
include associated data. This method uses the <UNIQUE_ID> associated data tag to include
the rank of each ligand from the screening. This enables the delivery of the results in an easy
and efficient manner.

The complete workflow for the new postdocking procedure is given in Figure 3. All the
result files from Autodock4.lga.MPI are parsed in order to create a ranked list of
compounds. The result files corresponding to the highest ranking ligands are parsed in order
to generate PDB files containing the 3D coordinates of the final docked ligand poses.
Options are given in order to generate a concatenated file of the results.
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3.2 Improvements in Accuracy
When examining log files, we discovered some random errors of reading the binary affinity
maps. These appear to be memory errors as they are not reproducible and occur at different
rates on different architectures. The errors occurred while running 105 ligand screenings on
the Newton cluster at University of Tennessee as well as while running a 1 million ligand
screening on the Jaguar Cray XT5 at Oak Ridge National Laboratory. However, we did not
receive the errors while running a 1 million ligand screening on the new XK6 architecture.

During these errors, a message is written in the result file claiming that the wrong size grid
spacing is used. This is due to the binary file not being read correctly. However, using
incorrect (null) input, the calculations are still performed and results are reported that appear
normal during the postdocking process. If these files are not searched for explicitly, the
erroneous results will end up in the analysis and may skew the final rankings. Therefore, we
have developed a script to search for the errors. Detailed instructions are included in the
tutorial.

4. Case Study
Recently, we completed a screening of one million ligands. The details and biological results
of the screening are not discussed here. In this section, the focus is on the lessons learned
while performing such a large screening and ideas to further improve the virtual screening of
very large ligand libraries.

The one million compound screening ran on the Jaguar Cray XT5 Supercomputer at Oak
Ridge National Laboratory using 65 thousand processors. The entire one million compound
library was screened just under 24 hours, with half of the library finishing in about 5 hours
(see Figure 4). The library consisted of ligands ranging from 0 rotatable bonds to 32
rotatable bonds, with an average of 4.9. About 5% of the library consisted of ligands with at
least 10 rotatable bonds (not “drug-like” molecules). Almost the entire library was screened
in 10 hours with the large, extremely flexible ligands dominating the screening time.

4.1 Lessons Learned
4.1.1 Millions of files is a lot!—Handling millions of compounds is extremely time
consuming, even tasks such as transferring files to a new location is very taxing on the file
system. When a directory is overloaded, it takes the file system longer to find necessary
files. Some of this stress can be removed by creating a directory hierarchy to store files.
Also, Autodock4.lga.MPI writes the output files in the same directory as the input files. This
creates twice as many files to deal with and necessitates an extra step to separate the files in
order to process them more efficiently. Future virtual screening tools that are developed to
handle such large jobs should use a file system hierarchy to both reduce the number of input
files in one directory and separate the output from the input.

4.1.2 Naming conventions are important—Autodock4.lga.MPI names the result files
by the following naming convention:

where n is the worker number (processor) and m is the ligand number (from distribution
list). There are two problems with this convention. 1) If a screening is killed (due to wall-
clock time, etc.) then the result files from the first round must be renamed before the
screening is restarted to avoid files being overwritten. There will be at least x files with the
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same name where x is the number of worker processors. This could potentially lead to a lot
of data loss when using thousands of processors. 2) There is no way to link a result file to a
particular ligand without reading the results.

4.2 Additional Improvements
In order to decrease the amount of necessary I/O, Autodock4.lga.MPI uses binary file
creation and reading (with HDF5). This requires additional libraries to be available on the
system in which the screen will run and increase the complexity of the software. A better
solution would be to just eliminate the need to pass such a large amount of I/O in the first
place.

Autodock Vina [24] is another docking program similar to Autodock4. Using Vina as the
docking engine would eliminate the need to pass the binary files. Vina does not use
precalculated affinity maps, but calculates the information efficiently during the docking
process. Therefore, only the ligand and receptor files need to be passed to the compute node.

4.3 Tutorial
In order to make high-throughput virtual screening of large chemical libraries more
accessible to researchers, we have provided a tutorial detailing the entire process. It includes
the predocking (file preparation), docking (calculations), and postdocking (analysis). The
tutorial was written relative to running on the Jaguar supercomputer and Lens analysis
cluster (smaller cluster with shared file system with Jaguar). Compilation instructions are
included in the tutorial.

http://www.bio.utk.edu/baudrylab/autodockmpi.htm

5. Possible Future Directions
Flexible Receptors: Due to the large number of degrees of freedom in a protein, they are
usually considered to be rigid or at least mostly rigid in molecular docking. However,
proteins are not static structures and can exist in an ensemble of different conformational
states, each of which a different chemical could potentially bind. Reference [25] reviews
how molecular dynamics simulations (MD) can be included in the drug discovery process to
take into account protein flexibility, such as the Relaxed Complex Scheme (RCS) [26]. In
RCS, multiple representative snapshots are obtained from a MD trajectory and used in
docking to efficiently capture the diversity of protein's conformational states. Methods to
create “super” enriched lists from multiple ranked lists from different conformational states
are an interesting and active area of research.

A novel drug must not only bind well to its target protein but also have limited side effects
and toxicity. The earlier these adverse effects are found in the drug discovery pipeline, the
more cost efficient the entire process becomes. Therefore, a means to virtually test for
toxicity and side-effects before the synthesis and laboratory testing of a new chemical would
be of great financial benefit. Previous studies have shown that 83% of the experimentally
known toxicity and side effects for a drug target could be predicted by an inverse-docking
approach of docking the potential drug into a library of proteins [27] and are more novel
than the traditional one receptor – many ligands virtual screening [28].

6. Conclusions
In this paper we describe an improved predocking and postdocking procedure that works
with Autodock4.lga.MPI and give details on a case study of running a million ligand library
screening on the Jaguar supercomputer. Autodock4.lga.MPI, a previously published high-
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throughput screening application, is to the best of our knowledge the most scalable
screening application that does not require a non-standard distribution framework (such as
Falcon [18]) but relies on MPI which is standard on most high-performance computers. The
work here focuses on further improving the total time to complete a screening, from
preparing files to obtaining meaningful results for experimental validation. These steps are
often not the focus of screening applications and become the bottleneck of very large
screenings.
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Figure 1. Virtual Screening as a tool to create “enriched” libraries of potential novel
pharmaceuticals
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Figure 2.
Workflow for PreDocking procedure. The files outlined in red are input files for
Autodock4.lga.MPI. The entire workflow is managed by custom scripts available in the
online tutorial.
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Figure 3.
Workflow for PostDocking procedure. Files outlined in red are the output files from
Autodock4.lga.MPI. Custom scripts available in the tutorial manage the workflow.
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Figure 4. Actual time to screen one million compounds
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