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Abstract
Cluster analysis methods seek to partition a data set into homogeneous subgroups. It is useful in a
wide variety of applications, including document processing and modern genetics. Conventional
clustering methods are unsupervised, meaning that there is no outcome variable nor is anything
known about the relationship between the observations in the data set. In many situations,
however, information about the clusters is available in addition to the values of the features. For
example, the cluster labels of some observations may be known, or certain observations may be
known to belong to the same cluster. In other cases, one may wish to identify clusters that are
associated with a particular outcome variable. This review describes several clustering algorithms
(known as “semi-supervised clustering” methods) that can be applied in these situations. The
majority of these methods are modifications of the popular k-means clustering method, and
several of them will be described in detail. A brief description of some other semi-supervised
clustering algorithms is also provided.
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The objective of cluster analysis is to partition a data set into a group of subsets (i.e.
“clusters”) such that observations within a cluster are more similar to one another than
observations in other clusters. For a more detailed discussion, see Hastie et al. 1 or Gordon 2.

Traditional clustering methods are unsupervised, meaning that there is no outcome measure
and nothing is known about the relationship between the observations in the data set.
However, in many situations one may wish to perform cluster analysis even though an
outcome variable exists or some preliminary information about the clusters is known. For
example, an e-mail classification procedure may seek to characterize the properties of
“spam” e-mails. Suppose a large database of e-mails is available, a small subset of which
has already been classified as “spam” or “not spam.” One may wish to identify clusters in
this data set such that one cluster consists primarily of “spam” and the other cluster consists
primarily of “not spam.” Or in a genetic study of cancer, one may wish to identify genetic
clusters that can be used to determine the prognosis of cancer patients. Such clusters would
only be of interest if they were associated with the outcome of interest, namely patient
survival.

Clustering methods that can be applied to partially labeled data or data with other types of
outcome measures are known as semi-supervised clustering methods (or sometimes as
supervised clustering methods). They are examples of semi-supervised learning methods,
which are methods that use both labeled and unlabeled data3–6. This review will briefly
describe several semi-supervised clustering methods that can be applied to different types of
partially labeled data sets. The review will focus primarily on variations of k-means
clustering, since most existing semi-supervised clustering methods are modified versions of
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k-means clustering. However, a brief description of some semi-supervised hierarchical
clustering methods will also be provided.

Traditional (Unsupervised) Clustering Methods
This section will briefly describe two of the most common traditional cluster analysis
methods, namely k-means clustering and hierarchical clustering.

K-Means Clustering
K-means clustering is one of the most popular cluster analysis methods. It is generally
applied to data sets where all the variables are quantitative and the distance between
observations is measured using the squared Euclidean distance, which is defined as follows:

(1)

Here xi and xi′ are observations from a data set with p features, and xij represents the value of
the jth feature for observation i. The k-means clustering algorithm attempts to assign each
observation to a cluster to minimize the following objective function:

(2)

In the above expression, K represents the number of clusters, and Ci represents the cluster to
which observation i is assigned, where 1 ≤ Ci ≤ K. This objective function is also known as
the “within-cluster sum of squares” or WCSS. Note that (2) can be written as:

where nk is the number of observations in cluster k and x̄kj is the mean of feature j in cluster
k.

Several k-means clustering algorithms have been proposed to minimize (2) 7–10. However,
each algorithm uses some variation of the following strategy:

1. Randomly assign each observation to an initial cluster.

2. For each feature j and cluster k, calculate x̄kj, the mean of feature j in cluster k.

3. Assign each observation i to a new cluster Ci as follows:

4. Repeat steps 2 and 3 until the algorithm converges.

The above algorithm is guaranteed to converge, but it may converge to a local minimum.
Hence, it is advisable to repeat the algorithm multiple times with different initial clusters and
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choose the set of clusters that produces the minimum WCSS. For a more detailed discussion
of k-means clustering and several variations of the k-means algorithm see Hastie et al. 1.

The k-means clustering algorithm requires one to choose the number of clusters K. Several
methods have been proposed for choosing K. One common method is the “gap statistic”
proposed by Tibshirani et al. 11. Let Wk be the WCSS (2) when K = k. It is simple to verify
that Wk will always decrease as k increases, so one cannot simply choose the value of K that
minimizes WK. The motivation for the gap statistic is the following: Let K* denote the true
value of K. If k < K*, then at least one cluster produced by the k-means algorithm is actually
two separate clusters, and so Wk+1 should be significantly smaller than Wk. On the other
hand, if k > K*, then at least two clusters produced by the k-means algorithm are actually a
single cluster, so Wk−1 should be only slightly larger than Wk. Thus, the gap statistic seeks to
identify the smallest K such that Wk does not decrease significantly for k > K.

Formally, the gap statistic is defined to be

The expected value E [log(Wk)] is calculated under a suitable reference distribution. One
common choice of a reference distribution is a multivariate uniform distribution with the
same range as the data set of interest. In this case, this expected value may be estimated by
sampling from this (uniform) reference distribution. Tibshirani et al. 11 estimate the number
of clusters K as follows:

where sk is the estimated standard deviation of E [log(Wk)]. The idea is that when k ≥ K*

then Gk+1 ≈ Gk, so one may estimate K* by choosing the minimum k such that Gk+1 ≈ Gk.

A number of other methods have been proposed for choosing the number of clusters K12–14.
See the aforementioned references for details of these methods.

Hierarchical Clustering
K-means clustering is an example of what are known as partitional clustering methods,
which partition a data set into a fixed number of disjoint subgroups. In contrast, hierarchical
clustering groups data points into a series of clusters in a tree-like structure. At each level of
the tree, clusters are formed by merging clusters at the next lower level of the tree. Thus,
each data point forms a singleton cluster at the bottom level of the tree, and the top level of
the tree consists of a single cluster containing all of the data points.

There are a wide variety of different methods for hierarchical clustering. This review will
briefly describe a few of the most common hierarchical clustering methods, although many
other hierarchical clustering methods have been proposed. See Hastie et al. 1 for more
information (including descriptions of several other hierarchical clustering methods).

One of the most common hierarchical clustering methods is agglomerative hierarchical
clustering. Agglomerative hierarchical clustering methods start with the set of individual
data points and merge the two “most similar” points into a cluster. At each step of the
procedure, the two “most similar” clusters (which may be individual data points) are merged
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until all of the data points have been merged into a single cluster. See Figure 1 for an
illustration of agglomerative hierarchical clustering.

In order to apply the hierarchical clustering algorithm described above, one must define how
the pair of “most similar” clusters is chosen. Note that for hierarchical clustering it is not
sufficient to define a dissimilarity (or distance) measure between pairs of points; one must
also define a dissimilarity measure between pairs of clusters. Many different dissimilarity
measures have been proposed for hierarchical clustering, but the most commonly used
methods start by defining a dissimilarity measure between pairs of points. The Euclidean
distance defined in (1) is a common choice, but other dissimilarity measures are possible.
For example, when clustering DNA microarray data, is it common to define the dissimilarity
measure between two points to be 1 − ρ, where ρ is the Pearson correlation coefficient
between the two points.15

Once a dissimilarity measure between two points has been defined, there are several ways to
define distances between clusters. Two common dissimilarity measures are known as
“single linkage” and “complete linkage.” Let C1 and C2 denote the indices of the elements in
two clusters. In other words, i ∈ C1 if and only if data point xi is contained in the first
cluster. Also, let d(xi, xi′) be the dissimilarity between data points xi and xi′. Then the single
linkage dissimilarity between the two clusters is defined to be

and the complete linkage dissimilarity is defined to be

Other dissimilarity measures between clusters can also be used. For example, one could
define the dissimilarity between two clusters to be the average dissimilarity between the
elements of the two clusters:

where n1 and n2 are the number of data points in clusters 1 and 2, respectively. Each such
dissimilarity measure between clusters has certain advantages and disadvantages. See Hastie
et al. 1 for details.

As noted earlier, the results of hierarchical clustering may represented as a binary tree. Each
node of the tree represents a cluster. (In particular, the root node is the topmost cluster which
contains all of the data points, and each terminal node corresponds to a singleton “cluster”
consisting of a single data point.) This tree structure can be represented in a graphical form
known as a dendogram. It is customary to plot the dendogram such that the height of each
node in the tree corresponds to the dissimilarity between the two clusters that were merged
to form the cluster. See Figure 2 for an example of a dendogram of a simple data set.
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Semi-Supervised Clustering Methods
We will now briefly outline several semi-supervised clustering methods. These methods will
be organized according to the nature of the known outcome data. First, we will consider the
simplest case, namely the case where the data is partially labeled. In other words, the cluster
assignments are known for some subset of the observations. We will then consider the case
where some sort of relationship between the features is known, and finally the case where
one seeks to identify clusters associated with a particular outcome variable.

Partially Labeled Data
In some situations, the cluster assignments may be known for some subset of the data. The
objective is to classify the unlabeled observations in the data to the appropriate clusters
using the known cluster assignments for this subset of the data.

In a certain sense, this problem is equivalent to a supervised classification problem, where
the objective is to develop a model to assign observations in a data set to one of a finite set
of classes based on a training set where the true class labels are known. However, traditional
supervised classification methods may be inefficient when only a small subset of the data is
labeled. For example, if one wishes to classify web pages into a discrete number of groups,
one can easily collect millions of unlabeled observations, but classifying any given
observation requires human intervention (and hence is likely to be slow). Similarly, if one
wishes to develop a method to classify e-mails as “spam” or “not spam,” then one can easily
collect numerous unlabeled observations, but the proportion of labeled observations will be
much smaller. For these types of problems, conventional supervised classification methods
may be inefficient since they typically do not use unlabeled data to build the classification
algorithm. Thus, the vast majority of the available data will not be used. In these situations,
one can often build more accurate classification rules by combining both labeled and
unlabeled data. See Blum and Mitchell 3 or Joachims 4 for a more detailed discussion and
examples.

Basu et al. 16 developed a generalization of k-means clustering (which they called
“constrained k-means”) for the situation where class labels are known for a subset of the
observations. Once again, we let xi and xi′ be observations from a data set with p features,
and xij represents the value of the jth feature for observation i. Suppose further that there
exists subsets S1, S2, …, SK of the xi’s such that xi ∈ Sk implies that observation i is known to
belong to cluster k. (Here K denotes the number of clusters, which is also assumed to be

known in this case.) Let |Sk| denote the number of xi’s in Sk. Also let . The
algorithm proceeds as follows:

1. For each feature j and cluster k, calculate the initial cluster means as follows:

2. Assign each observation i to a new cluster Ci. If xi ∈ S, then let Ci = Sk, where xi ∈
Sk. Otherwise let

(3)

3. For each feature j and cluster k, calculate x̄kj, the mean of feature j in cluster k.
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4. Repeat steps 2 and 3 until the algorithm converges.

Note that this procedure is identical to the conventional k-means procedure with the
exception of the initial cluster assignments (which are generally arbitrary anyway) and step
2. In step 2, labeled observations are always assigned to their known cluster even if they are
closer to the mean of another cluster.

The constrained k-means clustering algorithm described above assumes that none of the
labeled observations are misclassified. Using the constrained k-means clustering procedure,
if a labeled observation is misclassified, this misclassification can never be corrected, since
this observation will be assigned to the same cluster in step 2 in every iteration of the
algorithm. Thus, Basu et al. 16 recommend an alternative algorithm (which they call “seeded
k-means clustering”) that is identical to constrained k-means clustering with the exception of
step 2. The seeded k-means clustering algorithm always assigns observations to the nearest
cluster using (3) even if the observation is labeled. Thus, if an observation is initially
mislabeled, then the mislabeled observation may be corrected if it is closer to the cluster
center of a different cluster.

Observe that seeded k-means clustering is identical to conventional k-means clustering with
the exception of the first step in the procedure. Thus, seeded k-means clustering is simply
conventional k-means clustering that uses the labeled data to help choose the initial cluster
centers. A similar approach is used in the supervised sparse clustering method of Gaynor
and Bair 17, which is described below.

Methods for clustering partially labeled data can be useful when analyzing DNA microarray
data. In a typical microarray experiment, one measures the gene expression levels of p genes
for each of n samples, where normally p ≫ n. One may wish to identify clusters of genes
with similar expression levels across samples, since the genes in each such cluster may
belong to the same biological pathway. If certain genes are known to belong to certain
pathways prior to performing the experiment, then the cluster labels for these genes are
known. In this situation, one seeks to cluster the remaining genes using the information from
the labeled genes. Several clustering methods have been developed for the specific problem
of analyzing partially labeled microarray data18–26. These methods are specifically designed
for microarray data and will not be described in this review; see the references for details.

Known Constraints on the Observations
We now consider clustering when more complex relationships among the observations are
known. In particular, we will consider two types of possible constraints among observations:
“Must-link constraints” require that two observations must be placed in the same cluster,
and “cannot-link constraints” require that two observations must not be placed in the same
cluster. One possible application is when repeated measurements are collected on some
subset of the experimental units. In such a situation, one may want to assign all of the
repeated measurements of the same experimental unit to the same cluster.

Note that this is a generalization of the problem considered in the previous section, where
the cluster assignments are known for a subset of the features. In that situation, for each
feature j that is known to belong to cluster k, one may impose a must-link constraint between
feature j and all other features known to belong to cluster k and a cannot-link constraint
between feature j and features known not to belong to cluster k. Numerous methods have
been proposed for solving the problem of constrained clustering. This review will briefly
describe a few of the most commonly used methods, and references for numerous other
methods are listed below. Also see Basu et al. 27 for a more detailed description of various
algorithms for constrained clustering.
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Wagstaff et al. 28 proposed the following algorithm (with they called “COP-KMEANS”) for
solving clustering problems given this type of constraint:

1. Randomly assign each observation to an initial cluster.

2. For each feature j and cluster k, calculate x̄kj, the mean of feature j in cluster k.

3. Assign each observation i to a new cluster Ci as follows:

where

4. Dik = {k : no constraints are violated when observation i is assigned to cluster k}

5. Repeat steps 2 and 3 until the algorithm converges. The algorithm fails if Dik = ∅
for any i at any step of the procedure.

Note that COP-KMEANS is identical to conventional k-means clustering with the exception
of step 3. COP-KMEANS assigns each observation to the nearest cluster such that no
constraints are violated (whereas conventional k-means clustering assigns each observation
to the nearest cluster without considering the constraints).

One potential drawback of the COP-KMEANS algorithm is the fact that it requires that no
constraints are violated. In some situations, one may wish to allow for the possibility that
some constraints may be violated if there is a strong evidence that a particular constraint is
incorrect. Thus, Basu et al. 29 proposed a method (which they call “PCKmeans”) that solves
the problem of identifying clusters given a set of must-link and cannot-link constraints on
the observations that allows some constraints to be violated. PCKmeans seeks to minimize a
modified version of the objective function (2) that is defined as follows: Let observations (xi,
xi′ ) ∈  if there is a must-link constraint between observations i and i′, and let (xi, xi′) ∈ 
if there is a cannot-link constraint between observations i and i′. Then PCKmeans minimizes
the following objective function:

(4)

Here li,i′ is a user-defined penalty for violating a must-link constraint between observations i

and i′ and  is the penalty for violating a cannot-link constraint between i and i′. See Basu
et al. 29 for details of the PCKmeans algorithm for minimizing (4).

The methods described above modify an existing clustering method (namely k-means
clustering) such that the constraints are satisfied. Thus, such methods are sometimes referred
to as “constraint-based methods” in the literature6,30. In contrast, “distance-based methods”
(or “metric-based methods”) use an existing clustering method but modify the metric used to
measure the “distance” between a pair of observations such that the constraints are satisfied.
For example, rather than using the simple Euclidean distance (1), one may use an alternative
distance metric such that two observations with a “must-link constraint” will necessarily
have a lower distance between them 31–43. Moreover, other constraint-based methods have
been proposed 44–48, and still other methods combine both of these approaches into a single
model6,30. Other forms of constrained clustering are also possible, such as clustering on
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graph data49,50. These methods will not be described further in this review; see the original
references for details.

Thus far we have also assumed that the constraints on the observations were specified when
the data was collected. In some situations, the data analyst may have the opportunity to
select some subset of the observations and impose constraints on this subset. For example,
suppose the objective is to cluster a large set of text documents based on the frequency of
selected words that appear in the documents. One may manually examine any given pair of
documents to determine if they should be classified to the same cluster (and hence imposing
either a must-link constraint or a cannot-link constraint). Suppose a researcher looked up the
titles of three documents and determined that two of the documents were romance novels for
teenagers and the third document was an article from a medical journal. In this case, the
researcher would impose a must-link constraint between the two novels and a cannot-link
constraint between each novel and the journal article. However, there is a cost associated
with making such a determination, so typically one may only analyze a small subset of the
observations. In such a situation, it is advantageous to choose this subset to maximize the
information about the clusters.

Basu et al. 29 describe a variant of PCKmeans (called “active PCKmeans”) that chooses a
subset of the observations on which to impose constraints such that the accuracy of the
clustering algorithm is maximized. They show that this method outperforms the generic
PCKmeans algorithm for this type of problem. For other methods for constraint selection in
this situation, see Greene and Cunningham 51 or Mallapragada et al. 52.

Semi-Supervised Hierarchical Clustering
The majority of existing semi-supervised clustering methods are based on k-means
clustering or other forms of partitional clustering. Comparatively few semi-supervised
hierarchical clustering methods have been proposed 53. This is partly due to the fact that the
problem must be formulated differently for hierarchical clustering. As noted earlier, most
semi-supervised partitional clustering methods utilize either partially labeled data or known
constraints (e.g. “must-link” or “cannot-link” constraints) on the observations. It is more
difficult to define such constraints for hierarchical clustering, since hierarchical clustering
links all observations in a data set at some level of the clustering hierarchy. Thus, a “must-
link” constraint will always be satisfied at some level of the hierarchy and likewise a
“cannot-link” constraint will always be violated.

Hence, semi-supervised hierarchical clustering methods have considered different types of
constraints. For example, Miyamoto and Terami 54 require observations linked by a “must-
link” constraint to be clustered together at the lowest possible level of the hierarchy. They
further require that observations separated by a “cannot-link” constraint must not be part of
the same clustering hierarchy. Thus, rather than identifying a single clustering hierarchy, the
method of Miyamoto and Terami 54 returns several clustering hierarchies. A separate
hierarchy is produced for each observation that is part of a “cannot-link” constraint. Several
related methods have been proposed to perform hierarchical clustering subject to such
constraints45,54–56.

Other types of constraints have been proposed for semi-supervised hierarchical clustering.
Bade and Nurnberger 57 describe a method for performing hierarchical clustering given a set
of “must-link before” constraints, where certain a certain set of observations must be
clustered together before they are clustered with other data points.53 develop an alternative
method for hierarchical clustering with this type of constraint. Zhao and Qi 58 consider
hierarchical clustering with “ordering constraints,” wherein observations must be combined
in a certain order. In other words, given an ordering constraint of (x3, x1, x4, x2),
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observations x1 and x3 must be clustered together before they can be combined into a cluster
containing x4, and observations x1, x3, and x4 must be clustered together before they can be
combined into a cluster containing x2. Hamasuna et al. 59 define “clusterwise tolerance
based pairwise constraints” which define “must-link” and “cannot-link” constraints between
pairs of clusters based on a weighted count of the number of such constraints that exist
between observations in the clusters. They developed algorithms for implementing several
variants of hierarchical clustering subject to this type of constraint59–61.

Most of these methods for semi-supervised hierarchical clustering are very new and little
research has been performed on the advantages and disadvantages of the various methods.
The development of methods for semi-supervised hierarchical clustering remains an active
research area.

Clusters Associated with an Outcome Variable
In other situations, one may wish to identify clusters that are associated with a given
outcome variable. Typically the outcome variable is a “noisy surrogate”62 for the
(unobserved) clusters of interest. For example, in genetic studies of cancer, there may exist
subtypes of cancer with different genetic characteristics. Some subtypes may be more likely
to metastasize, resulting in a poorer prognosis for patients with these subtypes. In this case
these genetic subtypes are unobserved, but the survival times of the patients in the study
may be available. A patient who has a “high-risk” subtype is more likely to have a low
survival time than a patient who has a “low-risk” subtype, but there is considerable variation
within subtypes. It is possible to observe a patient with a “low-risk” subtype and a low
survival time (and vice versa). See Figure 3 for an illustration of such a scenario. In this
example, patients in cluster 2 have a higher mean survival time than patients in cluster 1, but
there is significant overlap in the two groups, so it is not possible to identify the clusters
using only the survival times.

Since conventional clustering methods do not use the values of an outcome variable, they
may fail to identify clusters associated with the outcome and instead identify clusters
unrelated to the outcome. Figure 4 shows an example of a situation where a specialized
clustering method is needed to identify clusters associated with an outcome variable of
interest. In this situation, features 1–50 form clusters that are associated with the outcome
variable and features 51–150 form clusters that are unrelated to the outcome variable.
Conventional clustering methods will nevertheless identify the clusters defined by features
51–150, since the distance between the centers of these clusters is greater than the distance
between the centers of the clusters defined by features 1–50. Thus, special methods are
needed to identify the clusters of interest (i.e. the clusters defined by features 1–50) in this
scenario.

Despite the importance of this problem, relatively few methods have been proposed for
identifying clusters associated with an outcome variable. Methods exist for identifying
secondary clusters for data sets similar to the data shown in Figure 4 (see for example
Nowak and Tibshirani 63), but these methods also do not use information from the outcome
variable to identify the secondary clusters. One of the earliest methods for identifying
clusters associated with an outcome variable is the “supervised clustering” method of Bair
and Tibshirani 62, which proceeds as follows:

1. For each feature in the data set, calculate a test statistic Tj for testing the null
hypothesis of no association between the jth feature and the outcome variable. If
the outcome variable is binary (i.e. case versus control), Tj may be a t-statistic. If
the outcome variable is continuous, Tj may be a t-statistic for testing the null
hypothesis that the regression coefficient for predicting the outcome based on
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feature j is equal to 0. If the outcome variable is a right-censored survival time, Tj
may be the corresponding test statistic from a Cox proportional hazards model.

2. Choose a threshold M, and apply k-means clustering to the features for which |Tj| >
M. Features with |Tj| ≤ M are discarded and do not affect the cluster assignments.

Although this approach is relatively simple, Bair and Tibshirani 62 show that this method
can identify biologically relevant clusters in several data sets. In particular, Bullinger et
al. 64 used this method to identify subtypes of acute myeloid leukemia that were associated
with patient survival. An advantage of this method is the fact that it performs well even
when the data is high-dimensional. Since clustering is performed using only a subset of the
features, a high-dimensional data set can be effectively reduced to a data set with fewer
features.

This supervised clustering procedure requires the choice of a tuning parameter M, which
may be chosen using cross-validation. Also, while the method proposed by Bair and
Tibshirani 62 applies k-means clustering to the subset of the features that are most strongly
associated with the outcome variable, one could use the same strategy of selecting the
features that are most strongly associated with the outcome and then apply hierarchical
clustering or an alternative clustering method. Indeed, Koestler et al. 65 propose a method
called “semi-supervised recursively partitioned mixture models (RPMM)” that uses this
strategy. Semi-supervised RPMM first selects a set of features that are most strongly
associated with the outcome variable and then applies the RPMM method of Houseman et
al. 66 to this subset of the features. One possible advantage of RPMM over k-means
clustering is that RPMM does not require one to choose the number of clusters K. Koestler
et al. 65 provide several examples where semi-supervised RPMM produces more accurate
results than the supervised clustering method of Bair and Tibshirani 62. However, in other
situations semi-supervised RPMM can fail to detect clusters even when such clusters exist;
see Gaynor and Bair 17 for examples.

One possible drawback to methods such as supervised clustering and semi-supervised
RPMM is the fact that any feature that is discarded after the initial screening step is
permanently excluded from the analysis. This is problematic if one wishes to identify the
features that differ across clusters, since it is possible for features that differ across clusters
to be only weakly associated with the outcome variable, particularly if the association
between the clusters and the outcome variable is weak. Indeed, if the association between
the clusters and the outcome variable is very weak, supervised clustering and semi-
supervised RPMM can fail to identify the correct clusters.

To overcome this difficulty, Gaynor and Bair 17 propose a method called “supervised sparse
clustering,” which is a modification of the “sparse clustering” method of Witten and
Tibshirani 67. Sparse clustering is an unsupervised clustering method that is useful when the
clusters differ with respect to only a subset of the features. See Figure 5 for an example of a
data set where sparse clustering produces better results than traditional k-means clustering.
In this (two-dimensional) example, the clusters differ with respect to x but not with respect
to y. Applying 2-means clustering to both x and y results produces inaccurate results, but
applying 2-means clustering only to x identifies the correct clusters.

The following is a brief description of the sparse clustering algorithm of Witten and
Tibshirani 67: First, note that minimizing the k-means objective function (2) is equivalent to
maximizing
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Here each xij is an observation from a data set with n observations and p features that is
partitioned into K clusters, where Ci = k if and only if observation i belongs to cluster k and
nk is the number of observations in cluster k. Then the sparse clustering algorithm seeks to
identify weights w1, w2, …, wp for each feature to maximize

(5)

subject to the constraints that , and wj ≥ 0 for all j. The variable
s is a tuning parameter. As s increases, the number of nonzero wj’s will increase. Thus, by
choosing an appropriate value of s, the clustering will be performed using only a subset of
the features (the features for which wj > 0). Note that sparse clustering imposes an L1
penalty on the feature weights, which is similar to the L1 penalty imposed on the regression
coefficients in lasso regression 68 (which also causes an increasing number of coefficients to
be equal to 0 as the value of the tuning parameter changes). See Witten and Tibshirani 67 for
a more detailed description of the sparse clustering algorithm, including a method for
choosing the tuning parameter s. In particular, Witten and Tibshirani 67 show that this sparse
clustering method tends to produce better results than several previously published methods
for reducing the dimension of a data set prior to clustering, such as clustering on PCA
scores69,70.

Witten and Tibshirani 67 maximize (5) by using an algorithm that sets  at the
beginning of the procedure and then updates the wj’s iteratively. The supervised sparse
clustering method of Gaynor and Bair 17 is similar to sparse clustering but chooses the initial
feature weights as follows:

1. For each feature in the data set, calculate a test statistic Tj for testing the null
hypothesis of no association between the jth feature and the outcome variable.

2. Choose a threshold M, and define the initial weights w1, w2, …, wp as follows:

where m is the number of features such that |Tj| > M.

In other words, rather than giving equal initial weights to all the features in the data set,
supervised sparse clustering gives equal initial weights to the features most strongly
associated with the outcome variable and an initial weight of 0 to all other features. Gaynor
and Bair 17 show that this modification of sparse clustering is more likely to identify clusters
that are associated with an outcome variable.

Note that supervised sparse clustering is similar to several other semi-supervised clustering
methods. The method for choosing the initial cluster weights is analogous to the method for
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choosing the features in the supervised clustering algorithm of Bair and Tibshirani 62.
Indeed, the first step of the supervised sparse clustering algorithm applies k-means
clustering to the features most strongly associated with the outcome variable, which is
identical to the supervised clustering method. The difference is that supervised sparse
clustering updates the feature weights after identifying the initial set of clusters and iterates
the procedure until convergence. Gaynor and Bair 17 show that this procedure can produce
better results than supervised clustering in some situations, particularly when the outcome
variable is only weakly associated with the clusters. The supervised sparse clustering
procedure is also similar to the seeded k-means clustering algorithm of Basu et al. 16 since it
uses the known outcome data to “seed” the initial step of the sparse clustering method and
then iterates the remainder of the sparse clustering algorithm without further consideration
of the outcome variable.

Conclusion
There has been considerable methodological research activity in the area of semi-supervised
clustering (particularly constrained clustering) in the past decade. There now exists
numerous methods for performing constrained clustering (including the special case of
partially labeled data) that can be applied to a wide variety of different data sets. In
particular, several methods have been developed for the special case of clustering genes in
DNA microarray data, where biological information often exists about the relationships
between some subset of the genes.

Nevertheless, there are several important unanswered questions in the area of semi-
supervised clustering. Although many algorithms exist for performing constrained
clustering, there does not appear to be extensive research comparing the performance of the
various algorithms (either in terms of running time or in terms of their ability to identify
clusters correctly). Thus, users of these methods may be uncertain about which method
should be applied to a given data set given the large number of options. Also, in the
important special case of genetic data, most existing research has focused on clustering data
from DNA microarrays. One might also wish to identify gene clusters based on other types
of modern high-throughput genetic data, including data from genome-wide association
studies, RNA-Seq, or next-generation DNA sequencing. There is a need for semi-supervised
clustering methods that can be applied to these other types of genetic data sets. Finally, as
noted earlier, the problem of identifying clusters associated with an outcome variable has
not been studied extensively in the literature. Only a handful of methods currently exist.
Development of new methods for this problem is another potential area for future research.
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Figure 1.
This figure illustrates how hierarchical clustering would partition a simple data set. In the
first two steps, the two pairs of adjacent points would each be combined into a single cluster.
In the third step, these two clusters would be combined into a larger cluster. In the final step,
the remaining point would be combined to this cluster. All the data points are now combined
into a single cluster, so the algorithm terminates.
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Figure 2.
Hierarchical clustering was applied to the five data points plotted in the left panel. The
resulting dendogram is shown on the right panel. Note that point 3 is much more distant
from (and hence dissimilar to) the remaining four points. Thus, the height of the node where
point 3 is merged to the remaining points is higher than the height of the other nodes in the
graph.
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Figure 3.
This figure shows an example of a situation where an (observed) outcome variable (namely
survival) is a “noisy surrogate” for two unobserved clusters. Suppose there are two subtypes
of cancer, and patients with the first subtype (cluster) tend to have lower survival than
patients with the second subtype. However, there is considerable overlap in the distribution
of the survival times, so while a patient with a low survival time is more likely to be in
cluster 1, it is not possible to assign each patient to cluster based only on their survival time.
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Figure 4.
This figure shows an example of a data set where two different sets of clusters exist and only
one cluster is associated with the outcome of interest. In the above figure, darker shades of
blue correspond to higher values of the features and lighter shades of blue correspond to
lower values. Suppose that observations 1–100 have a disease of interest and observations
101–200 are controls. In this case we would be interested in identifying the clusters formed
by features 1–50. However, conventional clustering algorithms will identify the clusters
formed by features 50–150, since the distance between the centers of these two clusters is
greater than the distance between the centers of the clusters formed by features 1–50.
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Figure 5.
In the above figure, there are two clusters such that the cluster means differ with respect to x
but not with respect to y. If 2-means clustering is applied to both x and y, then it fails to
identify the correct clusters, but 2-means clustering produces satisfactory results when
applied only to x.
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