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Abstract

Pathogens that rely upon multiple hosts to complete their life cycles often modify behavior and development of these hosts
to coerce them into improving pathogen fitness. However, few studies describe mechanisms underlying host coercion. In
this study, we elucidate the mechanism by which an insect-transmitted pathogen of plants alters floral development to
convert flowers into vegetative tissues. We find that phytoplasma produce a novel effector protein (SAP54) that interacts
with members of the MADS-domain transcription factor (MTF) family, including key regulators SEPALLATA3 and APETALA1,
that occupy central positions in the regulation of floral development. SAP54 mediates degradation of MTFs by interacting
with proteins of the RADIATION SENSITIVE23 (RAD23) family, eukaryotic proteins that shuttle substrates to the proteasome.
Arabidopsis rad23 mutants do not show conversion of flowers into leaf-like tissues in the presence of SAP54 and during
phytoplasma infection, emphasizing the importance of RAD23 to the activity of SAP54. Remarkably, plants with SAP54-
induced leaf-like flowers are more attractive for colonization by phytoplasma leafhopper vectors and this colonization
preference is dependent on RAD23. An effector that targets and suppresses flowering while simultaneously promoting
insect herbivore colonization is unprecedented. Moreover, RAD23 proteins have, to our knowledge, no known roles in
flower development, nor plant defence mechanisms against insects. Thus SAP54 generates a short circuit between two key
pathways of the host to alter development, resulting in sterile plants, and promotes attractiveness of these plants to
leafhopper vectors helping the obligate phytoplasmas reproduce and propagate (zombie plants).
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Introduction

Microorganisms that inhabit eukaryotic hosts must adapt

themselves to these living environments, or manipulate their hosts

to permit colonization. A classical example of the latter is the release

of proteineaceous effectors (i.e., virulence proteins) by microbial

pathogens to modulate processes of their eukaryotic hosts, with most

effectors acting either directly or indirectly to suppress host defence

responses. Prominent examples of these include type III effectors of

Gram-negative bacteria such as Pseudomonas and Salmonella [1],

RXLR and Crinkler proteins secreted by oomycetes [2], and the

TAL effectors of Xanthomonas, which bind to host promoters and

misregulate gene expression [3]. By these means, the pathogen

impairs the host’s ability to defend itself, thereby promoting host

susceptibility to the invading microorganism.

Pathogens and parasites may also manipulate the behavior

and development of their hosts. The protozoan Toxoplasma

gondii modifies the behaviour of rats in response to the scent of

cat urine, reprogramming the rat’s behavioural responses to

increase its likelihood of predation [4]. Similarly, the lancet

liver fluke infects the brain of ants and compels the insect to

climb to the top of a blade of grass and remain motionless until

ingested by a grazing ruminant. Thus, these parasites coerce

host behavior to improve their opportunities for transmission

to a new host. Parasites may also influence host development,

with known examples including a pathogenic fungus (Puccinia

monoica) that stimulates the growth of pseudo-flowers from

infected plant hosts to attract insects that subsequently

‘‘pollinate’’ the fungus [5] and bacterial pathogens that alter

the profile of organic volatiles released from infected plants as
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a means of attracting insect vectors [6]. However, molecular

mechanisms by which pathogens alter either host behaviour or

development are largely unknown.

Host coercion is particularly important for obligate patho-

gens that are completely dependent on their hosts. Phyto-

plasma are bacterial plant pathogens that have a dual host life

cycle that is dependent on sap-feeding insects for transmission

to plants [7]. Insect vectors (planthoppers, leafhoppers, and

psyllids) acquire phytoplasma by ingesting the phloem of

infected plants. The insect vectors become competent to

transmit the bacteria to healthy plants following the coloniza-

tion of salivary glands by phytoplasma, which are subsequently

released into the phloem with saliva during insect feeding.

Aster Yellows phytoplasma strain Witches’ Broom (AY-WB)

can infect a broad range of plants, eliciting symptoms such as

phyllody (conversion of flowers into leaf-like structures),

virescence (greening of floral organs such as petals and

stamens), and witches’ brooms (increased proliferation of

stems) reflecting perturbations in host development that are

beneficial to AY-WB or its insect vector [7,8]. We have

previously identified an AY-WB effector protein (called SAP54)

that transforms flowers into leaf-like vegetative tissues when

expressed in Arabidopsis thaliana (hereafter Arabidopsis) [9].

Healthy Arabidopsis flowers are determinate structures with

APETALA1 (AP1) regulating gene expression programs during

the establishment of floral meristems [10]. Flowers of AY-WB–

infected plants and SAP54-expressing transgenic Arabidopsis

lines exhibit a loss of floral determinacy, reflected by vegetative

shoots arising from the center of the flower and from the axil of

the first whorl organs. We herein reveal the mechanism by

which AY-WB phytoplasma coerces the plant host into

suppressing its floral development to the benefit of this

pathogen and its insect vector, but at the expense of the plant

host reproductive success.

Results

Phytoplasma Effector SAP54 Interacts with MADS-
Domain Transcription Factors

We wished to investigate how AY-WB phytoplasma alters

flower architecture in infected plants. A yeast two-hybrid

screen against an Arabidopsis seedling library (with SAP54 as

bait) identified the Type II MADS-domain transcription

factors (MTFs) AGAMOUS-LIKE 12 (AGL12), MADS AF-

FECTING FLOWERING1 (MAF1), and SEPALLATA3

(SEP3) as SAP54 interactors (Table S1). To investigate the

breadth of interactions between SAP54 and MTFs, we

examined SAP54 interaction with 106 Arabidopsis MTFs in

a matrix-based yeast two-hybrid screen [11]. This confirmed

SAP54 interaction with AGL12, MAF1, and SEP3, and

furthermore identified 12 additional interacting partners

(Figure 1A and Table S2), including the well-characterized

floral meristem identity and homeotic proteins AP1 [10], and

SEP3 paralogues SEP1, SEP2, and SEP4. SAP54 interacts

solely with Type II MTFs and not with Type I MTFs in the

two-hybrid experiments, indicating that SAP54 primarily

targets the MTFs involved in floral transition and floral organ

development.

Type II MTFs are modular proteins consisting of four

domains. We found that SAP54 interacts primarily with the

Keratin-like (K) domain of AP1 (Figure 1B) and not with the

more highly conserved MADS domain that is present in both

plant and animal MTFs. The K domain contributes to the

formation of MTF protein–protein interactions when these

regulators associate as dimers and quartets [12,13], and a

classical K domain is specific to plant Type II MTFs [14].

Therefore SAP54 may have evolved to selectively target plant

MTFs (that contain a K domain) and not those of insects (that

lack this domain), an important characteristic given that

phytoplasmas effectively colonize many organs of their insect

vectors [7].

To assess whether SAP54 interacts with MTFs in AY-WB–

infected plants, we made use of Arabidopsis transgenic lines

that express translational fusions of SEP3–GFP, FUL–GFP, or

AG–GFP under control of their native promoters [15] to

conduct co-immunoprecipitation experiments. The transgenic

lines produce leaf-like flowers that are indistinguishable from

those of wild-type Arabidopsis plants when infected with

phytoplasma (Figure 1C), indicating that these lines are

suitable to the study of SAP54–MTF interaction. To minimize

MTF loss due to SAP54 destabilization (described below), we

harvested flowers of transgenic lines shortly after infection with

AY-WB (2 wk postinoculation) at a stage when flowers exhibit

a normal (non-leaf-like) appearance, yet SAP54 is present in

infected plants. SAP54 co-immunoprecipitated with SEP3–

GFP in samples of AY-WB–infected plants, but no corre-

sponding protein was detected in healthy controls (Figure 1D

and Table S3). In contrast, SAP54 did not co-immunopreci-

pate with FUL–GFP or AG–GFP (Figure 1D). This experiment

confirms that AY-WB produces SAP54 during infection of

Arabidopsis and that SAP54 interacts with SEP3 in AY-WB–

infected plants. As well, while SAP54 interacts with 15 MTFs

in a yeast two-hybrid system (Figure 1A), it is possible that only

a subset of these interactions occur in planta. To address this,

we conducted an immunoprecipitation experiment of GFP–

SAP54 from 35S:GFP–SAP54 transgenic Arabidopsis followed

by a mass spectrometry analysis to identify interacting

proteins. Peptides associated with Type II MTFs MAF1,

SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1

Author Summary

Parasites that colonize multiple hosts often coerce these
hosts into improving their own survival and reproduction
rates. However, how parasites do this is largely unknown.
Phytoplasmas are bacterial plant parasites that require sap-
feeding insect vectors—leafhoppers—for their propaga-
tion and dispersal. It has been known for a long time that
phytoplasmas stimulate dramatic developmental changes
in a broad range of plant species, such as the conversion of
flowers into leaves known as phyllody and the proliferation
of stems known as ‘‘witches’ broom.’’ Here we report how
and why phytoplasmas cause these dramatic develop-
mental changes. We identified a phytoplasma virulence
protein, SAP54, which transforms flowers into leaves and
converts plants into more attractive hosts for the egg-
laying and reproduction of their leafhopper vectors. We
show that SAP54 exerts its effect by promoting the
degradation of proteins that regulate important develop-
mental processes in flowering plants. These proteins are
highly conserved transcription factors of the MADS-box
family, and reducing their activity through SAP54–mediat-
ed degradation curtails flower development, generating
sterile plants. This degradation process requires RAD23, a
protein that recruits the transcription factors to the protein
degradation machinery. The resulting sterile plants, which
form leaves in place of flowers, are more attractive to
leafhoppers, arguably making phytoplasmas master ma-
nipulators of the parasite world.

Phytoplasma Effector Degrades MADS-box Proteins
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(SOC1), SEP1, SEP2, and AP1 were recovered in samples

immunoprecipitated with GFP–SAP54 but not with GFP alone

(Table S4). Thus, we conclude that SAP54 indeed interacts

with MTFs in infected plants, and that many of the MTFs

identified as SAP54 interactors in the yeast two-hybrid screens

also interact with SAP54 in planta.

SAP54 Destabilizes MTFs in an Ubiquitin/26S
Proteasome-Dependent Manner

The floral architecture of SAP54-expressing and AY-WB–

infected Arabidopsis resembles that of higher order sep mutants

(i.e., loss of floral determinacy and conversion of floral organs into

leaf-like structures [16,17]), and we hypothesized that SAP54 may

Figure 1. Phytoplasma SAP54 interacts specifically with the Keratin-like (K) domain of selected Type II MADS-box transcription
factors (MTFs). (A) A comprehensive yeast two-hybrid screen of 106 Arabidopsis MTFs reveals that SAP54 interacts with members of the Type II
subfamily of MTFs (proteins that interact with SAP54 are indicated in red font). For simplicity, not all MTFs are included in the phylogenetic tree. (B)
SAP54 interacts primarily with the K domain of AP1. AD, GAL4-activation domain; BD, GAL4-DNA binding domain; EV, empty vector control. (C)
Flowers produced from healthy (left) and AY-WB–infected (right) Arabidopsis lines approximately 4 wk postinoculation. (D) SAP54 (indicated by an
arrow) co-immunoprecipitates with SEP3–GFP but not FUL–GFP or AG–GFP. Flowers for immunoprecipitation experiments were harvested from
transgenic lines pictured in panel C at an early point of infection (approximately 2 wk postinoculation) to minimize MTF loss due to destabilization.
Equal loading of samples was confirmed via Bradford assays to quantify protein concentration.
doi:10.1371/journal.pbio.1001835.g001
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act to perturb MTF function. Western blots performed using

flowers collected from healthy and AY-WB–infected Arabidopsis

lines expressing AP1–GFP or SEP3–GFP revealed that these

MTFs appear to be less abundant in infected leaf-like flowers

harvested at a late stage of infection (4+ wk postinoculation)

(Figure 2A and Table S5), suggesting that phytoplasma may act to

destabilize these transcription factors. Phytoplasma are obligate

biotrophs that are genetically intractable, and thus we were unable

to generate an AY-WB SAP54 mutant. Therefore, we examined

the interaction between SAP54–MTFs more closely by co-

expression assays in Nicotiana benthamiana using pTRBO-based

vectors, which are Tobacco mosaic virus–based expression vectors

that allow for higher levels of in planta protein production

compared with 35S constructs [8,18]. We observed that whereas

Type II MTFs were detected on immunoblots when transiently co-

expressed with a control protein (pTRBO::Flag-RFP), the accu-

mulation of AP1, SEP3, and SOC1 was much reduced or

undetectable when co-expressed as 10xmyc-tagged proteins with

pTRBO::Flag-SAP54 (Figure 2B and Table S6). In contrast, the

accumulations of non-SAP54 interacting Type I MTFs AGL50,

AGL62, and AGL80 in the presence of SAP54 were not or only

weakly reduced (Figure S1A). SAP54 interacted with members of

the Type II canonical MADS-box proteins (MIKCC) in yeast two-

hybrid screens, but not with MIKC* proteins, which have a

distinct Keratin-like domain [19]. Consistent with this is the

observation that the Type II MIKC* type AGL66 was not

destabilized in the presence of SAP54 in N. benthamiana (Figure

S1B). Thus, the phytoplasma effector SAP54 appears to selectively

destabilize Type II MIKCC MTFs that are the key regulators of

floral organ formation in flowering plants.

SAP54 may act directly as a protease to catalyze the proteolysis

of select MTFs, or alternatively, this effector may exploit a host

mechanism, such as the ubiquitin/26S proteasome system (UPS)

to degrade MTFs. Treatment of infiltrated samples with a protease

inhibitor cocktail did not affect SAP54 activity (Figure S1C),

however treatment with epoxomicin, a potent inhibitor of the UPS

Figure 2. Phytoplasma SAP54 interacts with and destabilizes MADS-box transcription factors in plants. (A) MTFs AP1 and SEP3 are
destabilized in AY-WB–infected Arabidopsis lines. Flowers from healthy and phytoplasma-infected plants were harvested approximately 4 wk
postinoculation. (B) MTFs are destabilized when expressed in the presence of SAP54. 10xmyc-tagged MTFs were transiently co-expressed with flag-
tagged SAP54 or an RFP control in agroinfiltrated N. benthamiana leaves. (C) SAP54-mediated destabilization of AP1 is inhibited by epoxomicin.
Infiltrated tissues were treated with 50 mM epoxomicin (dissolved in DMSO) 8 h prior to harvest. (D) MTFs AP1, SEP3, and SOC1 co-immunoprecipitate
with GFP-tagged SAP54. Co-immunoprecipitation experiments of these Type II MTFs were performed alongside Type I MTF AGL50, which was not
detected. Proteins were transiently expressed in N. benthamiana in the presence or absence of 50 mM epoxomicin to stabilize MTFs.
doi:10.1371/journal.pbio.1001835.g002
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[20], prevented the SAP54-mediated destabilization of AP1

(Figure 2C, Table S7, and Figure S1C). Thus, SAP54 is likely to

degrade MTFs via the host UPS. All eukaryotes have a UPS,

including yeast. Nonetheless, SAP54 did not degrade the MTFs in

yeast two-hybrid experiments in which SAP54 was fused to the

GAL4 DNA binding domain (GAL4BD–SAP54) and Type II

MIKCC MTFs to the GAL4 activation domain (GAL4AD–AP1,

GAL4AD–SEP3, and GAL4AD–SOC1) (Figure S1D). Therefore,

the SAP54-mediated degradation of MTFs may require a helper

protein(s) from the plant host.

We lastly employed the transient expression system in N.

benthamiana to confirm the interactions between SAP54 and MTFs

in planta. 10xmyc-tagged AP1, SEP3, and SOC1 readily co-

immunoprecipitate with GFP-tagged SAP54 (but not GFP),

whereas Type I AGL50 (Type I MTF) was not pulled down with

SAP54 (Figure 2D, Tables S8, S9).

SAP54 Interacts with Ubiquitin Binding Proteins RAD23C
and RAD23D

In addition to the MTFs, the yeast two-hybrid screen against the

Arabidopsis seedling library revealed that SAP54 interacts with

RADIATION SENSITIVE23 (RAD23) family isoforms RAD23C

and RAD23D (Table S1). RAD23 proteins have been proposed to

act as shuttle proteins to deliver ubiquitinated substrates to the

UPS for degradation in eukaryotes [21]. Arabidopsis encodes four

RAD23 isoforms, however the yeast two-hybrid data indicate that

SAP54 interacts specifically with RAD23C and RAD23D but not

RAD23A or RAD23B (Figure 3A). This is consistent with the

observation that RAD23C and RAD23D co-immunoprecipitate in

the presence of GFP–SAP54 (but not GFP alone) (Figure 3B) in

Arabidopsis. RAD23 proteins did not co-immunoprecipitate with

GFP–SAP54 in the rad23CD mutant (Figure 3B), indicating that

SAP54 prefers to interact with RAD23C and RAD23D as

opposed to RAD23A and RAD23B in planta.

RAD23 Proteins Are Essential for Phytoplasma-Induced
Phyllody

With the consideration that SAP54 degrades MTFs and that

RAD23 proteins act to shuttle poly-ubiquitinated substrates to the

UPS, we hypothesized that the Arabidopsis RAD23 proteins may

be required for SAP54-mediated degradation. Although the

RAD23 proteins are essential, the proteins have largely redundant

functions and rad23 single mutants and the majority of rad23

double mutants do not exhibit any obvious developmental defects

(Figure S2), although higher order rad23B mutants do demonstrate

various pleiotropic phenotypes (i.e., shorter stature, smaller

siliques, and reduced seed production) [21].

To investigate if RAD23 proteins contribute to SAP54-induced

leaf-like flowers, homozygous Arabidopsis rad23 T-DNA mutant

lines [21] were transformed with 35S:GFP–SAP54 (Figure 3C). In a

wild-type Arabidopsis background, expression of GFP–SAP54

induces a strong degree of phyllody (growth of leaf-like flowers),

virescence (greening of floral organs), and a frequent loss of floral

determinacy as evidenced by the outgrowth of stems from the

centre of the flower. However, approximately one half of

35S:GFP–SAP54–expressing transformants obtained from rad23C

(48 of 109 transgenic plants) and rad23D (8 of 22 transgenic plants)

mutant lines exhibited a milder degree of phyllody, with loss of

determinacy typically restricted to the early onset flowers (Table 1

and Figure S3). Moreover, the majority of transformants

originating from rad23CD double mutants (124 of 138 transgenic

plants) and rad23BCD triple mutants (50 of 64 transgenic plants)

produced flowers that displayed no signs of phyllody or virescence

(Figure 3C). Western blot analysis confirmed the expression of the

GFP-tagged SAP54 in the transgenic lines (Figure 3D) and

revealed that the mild phyllody observed in a minority of rad23CD

transgenic lines (14 of 138 transgenic plants) was likely due to a

very high level of SAP54 expression (Figure S4). In contrast,

rad23AC, rad23AD, rad23BC, rad23BD, and rad23ABD mutant

transgenic lines produced flowers comparable to those observed in

a wild-type (Col-0) background (Figure 3C, Table 1). Thus, the

SAP54-mediated degradation of MTFs is dependent predomi-

nantly on RAD23C and RAD23D, whereas other RAD23

isoforms may be involved depending on SAP54 abundance.

To assess whether the Arabidopsis RAD23 proteins are also

required for SAP54-mediated MTF destabilization during AY-WB

infection, the various rad23 single, double, and triple T-DNA

insertion mutants were infected with AY-WB phytoplasma. AY-

WB–infected rad23BCD triple mutants produced determinate

flower-like organs that resemble those of healthy wild-type Col-0

plants (Figure 4). The degradation of MTF SEP3 was lost in the

phytoplasma-infected rad23BCD mutant, whereas degradation of

this MTF was observed in rad23BD mutant (with leaf-like flowers)

(Figure 4). Remarkably these plants still showed other symptoms of

infection (Figure S5), such as the witches’ brooms that are typically

observed in AY-WB–infected Arabidopsis plants [7]. In contrast,

the rad23 single and double mutants, including rad23BD and

rad23CD mutant lines, and the rad23ABD triple mutants produced

leaf-like indeterminate flowers that resemble those of AY-WB–

infected wild-type Col-0 plants (Figure 4, Figure S6). We conclude

from these results that the SAP54-mediated degradation of MTFs

requires predominantly RAD23C and RAD23D, but that

RAD23B may also facilitate this process in infected hosts.

SAP54 Enhances Phytoplasma Insect Vector Colonization
in a RAD23-Dependent Manner

We hypothesized that AY-WB may induce leaf-like flowers as a

means of attracting its insect vector, which feeds from the phloem

of vegetative tissues. We conducted choice experiments in which

M. quadrilineatus adults (10 males and 10 females) were released in

the middle of a confined space (Figure S7) and were allowed free

access to AY-WB–infected rad23BD (leaf-like flowers) and

rad23BCD (non-leaf-like flowers) plants (Figure 5A). Insect

preference was then assessed by counting the number of nymphs

produced from eggs oviposited on individual plants. Insects

produced more progeny on infected rad23BD plants versus infected

rad23BCD plants (t(5) = 4.7; p = 0.042; Figure 5A), supporting a

hypothesis that plants with leaf-like flowers may be more attractive

hosts for leafhopper ovipositing. No differences in leafhopper

progeny numbers were observed between healthy rad23BD and

rad23BCD mutants (t(5) = 0.45; p = 0.694; Figure 5A), indicating

that insects do not exhibit a preference for either T-DNA mutant

line in the absence of AY-WB infection.

We likewise performed leafhopper choice assays with transgenic

Arabidopsis lines expressing 35S:GFP (wild-type flowers) or

35S:GFP–SAP54 (leaf-like flowers) and determined that M.

quadrilineatus females preferentially oviposit on transgenic lines

that express GFP–SAP54 (t(7) = 6.45; p = 0.008; Figure 5B). As the

transgenic lines were not infected with AY-WB, these results

clearly indicate that SAP54 has the ability to modulate plant–

insect interactions, even in the absence of any additional

phytoplasma proteins, thereby promoting AY-WB fitness by

enhancing leafhopper vector colonization and oviposition.

Lastly, we wished to assess the contribution of green leaf-like

flowers to insect preference in the absence of both AY-WB and

SAP54. We thus performed leafhopper choice experiments in

which insects were allowed access to Col-0 (wild-type) plants and

Phytoplasma Effector Degrades MADS-box Proteins
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ap1 mutants that produce leaf-like flowers with similarity to mild

SAP54-expressing transgenic lines (Figure S8). Interestingly, the

insects did not exhibit a preference, producing equivalent progeny

on Arabidopsis wild-type plants and ap1 mutants (t(11) = 0.22;

p = 0.835; Figure S9). The developmental defects in ap1 mutant

flowers (which lack petals but are nonetheless fertile flowers that

produce seed) may not be severe enough to enhance the

attractiveness to the insects. Most likely, SAP54-mediated desta-

bilization of additional MTFs (for example, the SEP paralogues

and SOC1) is required for the conversion of all floral whorls into

Figure 3. Phytoplasma SAP54 interacts with Arabidopsis RAD23 proteins. (A) SAP54 interacts with Arabidopsis RAD23C and RAD23D but
not RAD23A or RAD23B isoforms in yeast two-hybrid assays. (B) RAD23C (44 kDa) and RAD23D (40 kDa) co-immunoprecipitate with GFP–SAP54 in
samples obtained from transgenic Arabidopsis expressing 35S:GFP–SAP54. We did not detect RAD23 following immunoprecipitation of GFP (in
transgenic Arabidopsis expressing 35S:GFP), nor did we detect an interaction with RAD23A or RAD23B in an Arabidopsis rad23CD double mutant.
Equal loading of samples was verified via Bradford assays to confirm protein concentration. (C) Flowers produced from transgenic lines expressing
35S:GFP–SAP54 in wild-type (Col-0) and rad23 mutant Arabidopsis lines indicate that SAP54-induced phyllody requires RAD23C and RAD23D. (D)
Western blot analysis reveals GFP–SAP54 expression levels in rosette leaves harvested from plants in panel C. GFP–SAP54 is indicated by an arrow.
AD, GAL4-activation domain; BD, GAL4–DNA binding domain; EV, empty vector control.
doi:10.1371/journal.pbio.1001835.g003
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leaf-like organs with increased vegetative biomass, which may be

important to modulating plant–insect interactions, or SAP54 may

promote insect colonization via a mechanism that extends beyond

the growth of leaf-like flowers (for example, modulation of

phytohormones). Taken together, our data indicate a role of

phytoplasma effector protein SAP54 and Arabidopsis RAD23 in

flower development and plant defense to insects.

Discussion

MTFs comprise a key family of eukaryotic transcription factors

that occupy central positions in floral development, dictating both

the transition to flowering and the formation of floral organs in all

angiosperms [22]. The function of MTFs has been the focus of

much study, and these proteins have no known role in plant

defence. Similarly, RAD23 proteins are broadly conserved among

eukaryotes and play essential roles in mediating the turnover of

plant proteins, as evidenced by the lethality of the quadruple

rad23ABCD Arabidopsis mutant [21]. Microbial effectors func-

tionally characterized so far target specific processes within

defence-related pathways, whereas the phytoplasma effector

SAP54 has uniquely evolved to link two key pathways involved

in plant reproduction and basic protein regulatory processes to

alter host development and shape, and thus represents a highly

unusual protein. The advantage of targeting conserved host

proteins may be particularly relevant for AY-WB, which has a

broad plant host range and where the selection of a host is made

by the insect vector and not by the phytoplasma. By employing

effectors that target conserved (sub)families of plant proteins, AY-

WB increases the likelihood that it can modulate developmental

processes in the plant species chosen by the insect.

Green leaf-like flowers are a hallmark trait of phytoplasma-

infected plants, and we propose that this characteristic trademark

is the result of an effector-mediated destabilization of conserved

MTFs (i.e., posttranslational regulation via proteolysis). AP1 (with

CAL and FUL) and the four SEP proteins play prominent roles in

the establishment of a floral meristem and in regulating floral

organ identity in the majority of flowering plants [16,23].

Moreover, SEP3 occupies a central position in mediating the

higher order protein interactions necessary to form MTF

regulatory complexes [24]. Destabilization of SEP3 (and AP1) by

SAP54 is expected to significantly impair the establishment of the

MTF protein complexes that are necessary to regulate floral

development, especially if accompanied by the destabilization of

SEP1, SEP2, and SEP4. Whereas there is much evidence that the

expression of various MTFs is mis-regulated in phytoplasma-

infected plants [25–27], it is unlikely that phytoplasma are directly

targeting gene expression. Indeed, the complex auto-regulatory

and cross-regulatory network by which MTF gene expression is

regulated dictates that the destabilization of several MTFs within

this network will result in aberrant gene expression. We have

identified several putative SAP54 homologues in other phyto-

plasma strains (Figure S10), thus indicating that SAP54 may be a

member of a larger effector family that modulates floral

development.

Animals such as insects also encode MTFs, although a classical

Keratin-like domain is absent in these proteins [14]. As an insect-

vectored pathogen of plants, AY-WB infects and colonizes both

plants and animals. However, the relationship that exists between

the phytoplasma and these two hosts is not the same. Phytoplasma

are reliant upon their insect vectors for dispersal in the

environment, and the association between the phytoplasma and

the insects can be beneficial to both organisms [7]. In contrast,

phytoplasma are aggressive pathogens of plants, and exposure of a

susceptible plant to phytoplasma eventually leads to the death of

the plant. Accordingly, SAP54 may have evolved to bind to the

plant specific Keratin-like domain of Type II MTFs as a means of

selectively targeting plant MTFs and not insect MTFs, which

might have a deleterious effect upon AY-WB’s vector. Consistent

with this hypothesis is the observation that SAP54 expression is up-

regulated in plants compared to insects, and many other genes

encoding candidate AY-WB effectors show a host-specific

expression [9]. Thus, phytoplasmas are likely to produce insect-

and plant-specific effectors, in line with their life cycle involving

alternate hosts.

SAP54 may escape degradation via the host UPS, as evidenced

by the lack of an increase in SAP54 protein levels in epoxomicin-

treated tissues (Figure 2C). RAD23 resists proteasomal degrada-

tion and is released from the UPS to bind other cargo [28]. It is

possible that SAP54 resists degradation by associating with

RAD23. SAP54 may simultaneously interact with MTFs and

RAD23 upon which the MTFs are delivered to the UPS for

Table 1. Phenotype scoring of 35S:GFP–SAP54 transgenic lines.

Degree of Phyllody and Virescence

Genotype Absent Mild Strong Total No. Plants

Col-0 0 8 26 34

rad23A 0 10 69 79

rad23B 0 14 68 82

rad23C 0 48 61 109

rad23D 0 8 14 22

rad23AC 0 9 35 44

rad23AD 0 6 9 15

rad23BC 0 2 23 25

rad23BD 0 8 12 20

rad23CD 124 14 0 138

rad23ABD 0 4 49 53

rad23BCD 50 14 0 64

doi:10.1371/journal.pbio.1001835.t001
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degradation, whereas SAP54–RAD23 complexes are released to

bind more MTFs (Figure S11A). Although we did not observe

ubiquitylation of SAP54 and MTFs in the proteomics analyses, we

cannot exclude the possibility that RAD23 interacts with ubiquitin

groups linked via lysine (K) residue(s) on SAP54 (Figure S11B). A

third possibility is that another pathway is involved in transpor-

tation of SAP54–MTF complexes to the host UPS, whereupon

SAP54 interacts with RAD23 to evade degradation (Figure S11C).

Future research is focused on dissecting these possibilities and the

characterization of other plant proteins that are involved in the

SAP54-mediated degradation of MTFs in a RAD23-dependent

manner. To our knowledge, this is the first report of a microbial

effector that recruits RAD23 proteins to enable the inappropriate

degradation of a host protein. Nevertheless, exploitation of the

UPS by microbial effectors is rapidly emerging as a common

theme in plant–pathogen interactions [29–31]. Pathogen effectors

that suppress, stabilize, or mimic the activity of host ubiquitin

ligases have been described [32–36], whereas other effectors act as

deubiquitylases that catalyze the removal of ubiquitin tags from

host proteins [37,38]. Pathogens also exploit the host UPS to

regulate the degradation, localization, and activity of their own

effectors via ubiquitination of these proteins, or even by using

ubiquitin as a cofactor [39–41]. Along this line, RAD23 has been

shown to interact with a Pseudomonas syringae effector, HopM1 [42],

suggesting that RAD23 may have a role in mediating defense-

related processes in other host–microbe interactions as well. Taken

Figure 4. Arabidopsis rad23BCD triple mutants do not exhibit symptoms of virescence or phyllody when infected with AY-WB. (A)
Flowers produced from AY-WB–infected rad23BD mutants produce leaf-like flowers, whereas infected rad23BCD mutants grow flowers that resemble
those of healthy plants. (B) Western blot analysis reveals that SEP3 is destabilized in rad23BD leaf-like flowers but not in rad23BCD flowers. SAP54 was
detected in flowers harvested from AY-WB–infected rad23 mutants but not healthy Arabidopsis plants. (C) The infection status of plants in panel A
was confirmed using primers specific for AY-WB.
doi:10.1371/journal.pbio.1001835.g004
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together, our study extends these earlier observations to reveal that

pathogens also exploit host machinery (i.e., shuttle proteins) that is

accessory to the UPS.

Insect choice assays involving both AY-WB–infected rad23

mutants and GFP(-SAP54) lines yield data in support of a

hypothesis that leaf-like vegetative flowers are attractive to the

phytoplasma leafhopper vector. Our study further demonstrates

that SAP54 promotes the colonization of leafhoppers in a RAD23-

dependent manner, however it is likely that the RAD23 proteins

only play a supporting role in modulating leafhopper behaviour, as

leafhoppers do not appear to discriminate between healthy

rad23BD and rad23BCD mutants. On the other hand, experiments

performed with Arabidopsis ap1 mutants suggest that the mere

presence of green flowers may not be sufficient to promote

leafhopper colonization. Whereas flowers of ap1 mutants to some

extent resemble flowers of AY-WB–infected and SAP54-express-

ing plants (an observation that is consistent with AP1 destabiliza-

tion via SAP54), our data strongly indicate that SAP54 targets

multiple MTFs for destabilization, including SEP3 and its

paralogues. It is thus conceivable that the loss of these MTFs in

addition to AP1 is necessary to strongly promote leafhopper

colonization. An intriguing (and not mutually exclusive) possibility

is that SAP54-mediated promotion of leafhopper colonization

extends beyond the recruitment of leaf-like flowers as a means of

attracting insects. Whereas leafhoppers may be visually attracted

to the bushy, leaf-like appearance exhibited by 35S:GFP–SAP54

plants (Figure S12), we note that AY-WB–infected rad23BD

mutants do not appear bushier than infected rad23BCD mutants,

suggesting that ‘‘bushiness’’ is also unlikely to be the sole factor for

the observed leafhopper colonization preference. Notwithstanding

the above, our study demonstrates convincingly that SAP54

degrades MTFs in a RAD23-dependent manner, resulting in the

production of leaf-like flowers and that SAP54 also promotes

attractiveness of plants for leafhopper colonization in RAD23-

dependent manner. Thus, AY-WB employs at least two protein

effectors (SAP54 and SAP11 [8]) that make the plant more suitable

for colonization by the insect vector. This is important, because

phytoplasmas depend on leafhoppers for transmission and more

leafhopper vector progeny will likely result in higher phytoplasma

transmission and dispersal rates. Phytoplasma-infected plants are

often sterile, as leaf-like flowers do not yield seed, and thus exposed

plants become converted into hosts that only serve to help the

phytoplasmas reproduce and propagate (zombie plants).

Materials and Methods

Yeast Two-Hybrid Analyses
Hybrigenics Services SAS (Paris, France) performed the initial

yeast two-hybrid screen, using SAP54 (amino acids 34–124; lacking

the signal peptide) cloned into pB27 bait plasmid, as a C-terminal

fusion to LexA (N-LexA-SAP54-C). Preliminary testing revealed

that SAP54 was not toxic to yeast and did not autoactivate the

system. Two screens were performed against a random-primed

Arabidopsis thaliana seedlings cDNA library constructed into pP6 prey

plasmid. A total of 71.7 million clones (7-fold library coverage) were

screened following a mating approach with Y187 (mata) and L40

Gal4 (mata) yeast strains as previously described [43]. Of the

proteins identified in the Hybrigenics two-hybrid screen and listed

in Table S1, we independently confirmed the interaction of each

protein with SAP54 using yeast strain MaV203 (Invitrogen) with

plasmids pDEST32 (GAL4–DNA-binding domain) and pDEST22

(GAL4-activation domain) as follows. MaV203 was transformed

according to [44], and transformants were selected and maintained

by growth on minimal medium lacking leucine (to select for

pDEST32) and tryptophan (to select for pDEST22). To examine

protein–protein interactions, freshly transformed yeast colonies

were resuspended in 1 mL sterile deionized water, and 10 mL

aliquots were spotted upon medium lacking leucine and tryptophan

(2L/2W) and medium lacking leucine, tryptophan, histidine,

supplemented with 60 mM 3-Amino-1,2,4-triazole (3-AT; Sigma

Aldrich) (2L/2W/2H). Growth was scored after 5 to 7 d of

incubation at 28uC.

For the comprehensive MTF yeast two-hybrid assay, a matrix-

based approach was followed as described previously [45]. The

originally described GAL4-AD and GAL4-BD MTF collection [11]

was extended with a number of known MTF splicing variants

[46,47], making a total of 106 MTF proteins expressed from the

pDEST22 and pDEST32 vector. The above-described pDEST32–

SAP54 and a pDEST22–SAP54 construct were used as bait,

respectively, in the pair-wise screening. Growth of yeast, and hence

interaction events, was scored after 5 d of incubation at 20uC on

synthetic dropout (SD) medium lacking leucine, tryptophan,

histidine, supplemented with 1 mM 3-AT (2L/2W/2H). All

identified positives were rescreened in a second experiment, in

which the yeast was spotted onto selective medium lacking leucine,

tryptophan, and adenine (2L/2W/2A).

For Western blot analysis, we followed a protocol established by

Kushnirov [48]. Yeast strains were grown in liquid growth

medium lacking leucine and tryptophan at 28uC overnight, and

2.5 OD600 of yeast cells were harvested for each experiment.

Co-Expression and Co-Immunoprecipitation Assays
SAP54 was amplified using a forward primer that encodes a

Flag-tag (Table S10), thus enabling the expression of SAP54

Figure 5. Aster leafhopper Macrosteles quadrilineatus demon-
strates oviposition preference for plants with leaf-like flowers.
(A) M. quadrilineatus produces significantly more progeny on AY-WB–
infected rad23BD mutants (leaf-like flower phenotype) compared to
rad23BCD mutant plants (non-leaf-like flower phenotype) (t(5) = 4.7;
p = 0.042). Insects do not exhibit a preference between healthy rad23BD
and rad23BCD plants (t(5) = 0.45; p = 0.694). (B) M. quadrilineatus adults
produce more nymphs on transgenic Arabidopsis expressing GFP-
tagged SAP54 (leaf-like flowers) compared to GFP control plants (wild-
type flowers) (t(7) = 6.45; p = 0.008). In these experiments, 10 male and
10 female M. quadrilineatus adults were released in a choice cage
containing two test plants for the period of 5 d. After removal of adult
insects, plants were bagged individually and incubated for 14 d to
allow nymph emergence. The graphs in panel A and B represent the
percentage of M. quadrilineatus nymphs found on each test plant within
a single choice cage.
doi:10.1371/journal.pbio.1001835.g005
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(amino acids 34–122) with an N-terminal Flag-tag in place of its

signal peptide. The PCR product was cloned into pTRBO [18] via

restriction enzyme sites AvrII and NotI using standard molecular

techniques. The construction of Flag-tagged RFP has already been

described [8]. Type I and Type II MTFs were initially cloned into

pDONR207 using BP Clonase (Invitrogen), and the genes were

then transferred into pGWB21 [49] via LR Clonase (Invitrogen) to

generate 35S:10xmyc–MTF. Primers used to amplify these genes

are included in Table S10. All genes cloned into pDONR207 as a

result of this study were sequenced prior to use to ensure the

absence of mutations within the gene. Furthermore, we also

sequenced the gene insert within the 10xmyc-tagged MTF

plasmids following completion of our co-expression assays to

ensure the validity of our plasmids.

Co-expression assays were performed using constructs tran-

siently expressed in Nicotiana benthamiana leaves of 3- to 4-wk-old

plants that were grown in a controlled growth room in 16/8-h

light/dark at 22uC with 55% humidity. 35S:10xmyc-tagged MTFs

and 35S:Flag-tagged RFP or SAP54 were expressed in parallel

following agroinfiltration using a needless syringe, using a 1:1

mixture of Agrobacterium tumefaciens (strain GV3101) cultures

adjusted to a final OD600 of 0.1–0.2 (RFP and SAP54) and

OD600 of 0.5 (MTFs). For each co-expression assay, one leaf per

plant (two plants per assay) was agroinfiltrated, with the Flag-RFP

+ Myc-MTF mixture infiltrated on the left side and Flag-SAP54 +
Myc-MTF mixture infiltrated on the right side of the same leaf.

After 3 d, one leaf disk (11 mm diameter) per infiltrated area was

harvested and these were frozen immediately in liquid nitrogen.

For Western blot analysis, two frozen leaf disks per sample were

ground using a mortar and pestle in liquid nitrogen. We added

30 mL of 46 NuPage LDS sample buffer (Invitrogen) to the

powdered tissue, and samples were boiled for 10 min. In a typical

co-expression assay, 3 mL (anti-Flag blot), 5 mL (anti-SAP54 blot),

and 15 mL (anti-Myc blot) aliquots were loaded into the SDS-

PAGE gel.

Epoxomicin-treated samples were agroinfiltrated as described

above, however 50 mM epoxomicin (Merck Chemicals LTD) was

infiltrated using a needless syringe into the relevant area 3 d after

agroinfiltration. The epoxomicin was prepared immediately prior

to use by adding 2.78 mL of a 18 mM stock (dissolved in 100%

DMSO) into 1 mL of sterile water. An equal volume of 100%

DMSO (Sigma Aldrich) was added to sterile water to comprise the

DMSO-only control, which was infiltrated alongside the epox-

omicin treatment. Leaf disks from epoxomicin-treated (and

DMSO-treated) samples were harvested after 8 h, and leaf disks

were frozen in liquid nitrogen.

For co-immunoprecipitation assays performed using protein

transiently expressed in N. benthamiana leaves, agroinfiltration was

performed as describe above, however two entire leaves were

infiltrated (per construct) to provide sufficient material (typically

yielding about 1–2 grams of tissue). Leaf disks were removed from

each leaf prior to freezing in liquid nitrogen, and Western blots

were performed using these disks to confirm adequate protein

expression levels prior to co-immunoprecipitation experiments.

Following this verification, the remaining sample was ground using

a mortar and pestle in liquid nitrogen, and added to cold

extraction buffer (150 mM Tris-HCl, pH 7.5, 150 mM NaCl,

10% glycerol, 10 mM EDTA, 20 mM sodium fluoride, 10 mM

DTT, 0.5% (wt/v) polyvinylpolypyrrolidone, 0.1% Triton-X,

protease cocktail inhibitor (Sigma Chemical)) on ice. Samples were

centrifuged at 3,2006 g at 4uC for 15 min, and the supernatant

was filtered through a 0.45 mm filter (Sartorius Stedim UK

Limited) using a needleless syringe. We added 2 mL filtered

extract to 20 mL equilibrated GFP-binding affinity resin (GFP-

Trap_M; Chromotek GMBH), and samples were incubated at

4uC overnight upon a rotating wheel. Samples were initially

pelleted by centrifugation at 2,7006 g for 2 minutes and pellets

were washed with 1 mL TBS buffer (10 mM Tris-HCl, pH 7.5,

150 mM NaCl, 0.5 mM EDTA, 0.1% Tween-20). Subsequent

wash steps were performed using a magnetic stand to pellet GFP-

binding resin. Samples were washed a minimum of three times,

and all steps were performed at 4uC using ice-cold buffer.

Following the final wash, all buffer was carefully removed using a

syringe fitted with a 27G needle, and the resin was resuspended in

20 to 30 mL 46 NuPage LDS sample buffer (Invitrogen) and

boiled for 10 min prior to loading on SDS/PAGE gels. In a typical

co-immunoprecipitation experiment, 1 to 3 mL (anti-GFP) and 10

to 15 mL (anti-myc) aliquots were loaded onto an SDS-PAGE gel.

Co-immunoprecipitation assays performed using Arabidopsis

transgenic lines were performed as described above with a few

modifications. Transgenic lines expressing GFP-tagged AG, FUL,

and SEP3 under control of their native promoters are described in

[15,50]. To minimize loss of MTFs due to SAP54-mediated

destabilization, flowers were collected at an early stage of infection

approximately 2–3 wk following exposure to noncarrier (for

healthy flowers) and AY-WB–carrier (for infected flowers)

Macrosteles quadrilineatus. At this point, plants are only beginning

to produce flowers and early flowers appear normal or exhibit a

mild degree of phyllody. Flowers produced at a later stage of

infection (4 wk following inoculation) exhibit a strong degree of

phyllody and loss of determinacy (samples of these flowers were

harvested for Western blot analysis in Figure 2A). For mass

spectrometry, samples were collected from stably (T1) transformed

Arabidopsis lines expressing either 35S:GFP–SAP54 or 35S:GFP as

a control. Primary and secondary inflorescences were harvested

comprising all stages of developing floral buds from plants grown

in a long day photoperiod (16/8-h light/dark). We used 0.85 to

0.90 g of plant tissues per pull-down experiment, and immuno-

precipitation was performed using 50 mL equilibrated GFP-

binding affinity resin. The GFP-binding resin was resuspended

in 45 mL 46NuPage LDS sample buffer prior to boiling. Western

blots (anti-GFP) were performed to confirm the successful

immunoprecipitation of GFP–SAP54 (or GFP) using 2 mL aliquots

of each sample prior to further analysis via mass spectrometry.

The remaining sample (approximately 40 mL) was resolved upon a

1.5 mm NuPAGE 4–12% Bis-Tris gel (Invitrogen) using a MOPS

SDS running buffer. Proteins were visualized using SimplyBlue

SafeStain (Invitrogen) and protein bands were cut out and

collected using a new razor blade. In areas of the lane with no

visible protein, 10 mm610 mm gel slices were collected. All gel

slices were destained in 30% ethanol (3630 min washes at 65uC)

prior to mass spectrometry analysis.

Western Blots
Proteins were separated on 12.5% (wt/v) SDS-PAGE gels and

transferred to 0.45 mm Protran BA85 nitrocellulose membranes

(Whatman) using the BioRad minigel and blotting systems

following standard protocols. Blotted membranes were incubated

in blocking buffer (5% (wt/v) milk powder in 16 phosphate

buffered saline and 0.1% (v/v) Tween-20) with primary antibody

at 4uC overnight. Peroxidase-conjugated anti-rabbit or anti-mouse

secondary antibody (Sigma Aldrich) was added to washed blots

and incubated at room temperature for 4 h. Bound antibodies

were detected using Immobilon Western Chemiluminescent HRP

Substrate (Millipore). Protein loading was visualized using

Ponceau S solution (0.1% (wt/v) in 5% acetic acid; Sigma

Aldrich). Signal intensity was quantified by generating density
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histograms for each protein band and then determining the area

within the corresponding peak using ImageJ.

Anti-SAP54 antibodies were raised in rabbits (Genscript)

injected with purified 66His-tagged SAP54. A 1:2,000 dilution

of anti-SAP54 was used in Western blots, and is sufficient to detect

,10 ng purified SAP54. Monoclonal anti-Myc, anti-GFP, anti-

Flag, and anti-GAL4AD antibodies (all from Sigma Aldrich) were

used at a 1:10,000 dilution. Anti-RAD23 antibodies (used at a

1:10,000 dilution) were provided by R. D. Vierstra and were

raised in rabbit [21]. Anti-SEP3 antibodies (used at a 1:1,000

dilution) were provided by Cezary Smaczniak and were raised in

rabbit.

Generation of AY-WB–Infected Plants
Healthy and AY-WB–carrier Macrosteles quadrilineatus Forbes

(Hemiptera: Cicadellidae) stocks were maintained as previously

described [8]. To generate infected Arabidopsis, three male AY-

WB–carrier leafhoppers were added per plant to 4-wk-old plants

that were previously grown in a short day photoperiod (10/14-h

light/dark). Insects and plants were left for 4 to 5 d to allow

inoculation of the phytoplasma in a controlled growth chamber set

to a long day photoperiod to stimulate flowering (16/8-h light/

dark). Insects were then removed and plants were returned to the

growth chamber. Leaf-like flowers are typically produced 3 wk

following initial exposure to the infected leafhoppers. Healthy

controls were included in each experiment and comprised plants

that were exposed to an equivalent number of noncarrier

Macrosteles quadrilineatus leafhoppers as infected plants, and insects

were removed on the same day as infected plants. The infection

status of plants was determined via PCR analysis of DNA

extracted from rosette leaves using AY-WB–specific primers BR

and BF (Table S10) [51].

Insect Choice Assays
rad23BD and rad23BCD lines are described in [21], whereas seed

for the ap1 mutant was obtained from NASC (ID: N6232, allele

ap1-12). Plants were sown on insecticide-free F2 compost soil

(Levington) and grown at 22uC in a growth chamber adjusted to a

short day photoperiod (8/16-h light/dark). Five-week-old plants

were infected with AY-WB by adding five male AY-WB–carrier

Macrosteles quadrilineatus leafhoppers to each plant in a transparent

perspex tube (10 cm high, diameter 4 cm) for 5 d. Test plants

were transplanted in 10 cm610 cm square pots (F2 soil) and

grown for an additional 2 wk at 22uC in a growth chamber

adjusted to a long day photoperiod (16/8-h light/dark) to

stimulate flowering. Prior to choice experiments, three rosette

leaves were collected for extraction of genomic DNA to confirm

the genotype of all plants (using primers as previously described

[21]) and AY-WB infection status (using AY-WB–specific primers

BF and BR in Table S10).

All insect choice experiments were performed in transparent

polycarbonate cages 620 mm6300 mm6410 mm (height6
width6length). Two opposite sides of the cage were fitted with

white nylon mesh held in place by magnetic strips to enclose the

cage. Two test plants (21 dai with AY-WB) were randomly placed

diagonally opposite each other in the corners of a cage (Figure S7).

Ten male and 10 female healthy adult M. quadrilineatus leafhoppers

were released from a transparent perspex tube (9 cm high,

diameter 3 cm) in the centre of the cage equidistant from each test

plant. Adult insects were removed 5 d after addition to the cage.

At that time, plants were removed from the choice cage and

enclosed individually in transparent perforated plastic bags, and

returned to the growth chamber. Nymphs were counted on each

test plant 14 d after removal of adult insects from the cages. Data

were expressed as proportion of total number of nymphs found on

the test plants within each choice cage.

Statistical Analysis
Statistical analysis was performed in Minitab16. Insect ovipo-

sition choice data were analysed using paired t test. Assumptions of

the statistical tests (normal distribution and equal variance) were

checked with the Anderson-Darling and the Levene’s tests,

respectively.

Generation of 35S:GFP–SAP54 and 35S:GFP Transgenic
Arabidopsis Lines

The gene encoding SAP54 (lacking the signal peptide; amino

acids 34 to 124) was PCR-amplified using primers attB1SAP54

and attB2SAP54 (Table S10) and cloned in pDONR207

(Invitrogen) using Clonase BP according to the manufacturer’s

instructions. For expression in Arabidopsis, SAP54 was transferred

into Gateway vector pB7WGF2 using Clonase LR as per the

manufacturer’s instructions. pB7WGF2 encodes an N-terminal

GFP fragment under control of the CaMV 35S promoter [52],

thus generating 35S:GFP–SAP54. For the construction of a

35S:GFP transgenic Arabidopsis line, the gene encoding eGFP

was amplified using pB7WGF2 as a template and primers

attB1foreGFP and attB2reveGFP (Table S10). eGFP was then

cloned into pDONR207 using Clonase BP, and the gene was

transferred into pB7WG2 [52] to create 35S:GFP. Arabidopsis

plants were transformed via floral dip [53] with Agrobacterium

tumefaciens strain GV3101. Seedlings of transformed plants were

selected by the herbicide glufosinate (BASTA). Transgenic plants

expressing GFP–SAP54 are sterile (with the exception of

transformants obtained in rad23CD and rad23BCD backgrounds);

thus, experiments and phenotypic analyses were performed upon

T1 lines. Prior to the assessment of GFP–SAP54–induced

phenotypes in rad23 T-DNA mutant lines, a minimum of 10

randomly selected plants from each transformation group were

examined via PCR analysis, using primers specific to each of the

four RAD23 genes as described in [21] to confirm the genotype of

the plants. rad23 single mutants are the result of T-DNA insertions

(SALK lines 066603, 075940, 068091, and 014137) and higher

order mutants were kindly provided by Richard Vierstra and are

described in [21].

Mass Spectrometry Analysis
Gel slices cut from the SDS-PAGE gel were washed, reduced

and alkylated, and treated with trypsin according to standard

procedures [54]. Peptides were extracted with 5% formic acid/

50% acetonitrile, dried down, and re-dissolved in 0.1% TFA. For

LC-MS/MS analysis, a sample aliquot was applied via a

nanoAcquityTM (Waters, Manchester, UK) UPLCTM-system

running at a flow rate of 250 nL min-1 to an LTQ-Orbitrap mass

spectrometer (Thermo Fisher, Waltham, MA). Peptides were

trapped using a pre-column (Symmetry C18, 5 mm,

180 mm620 mm, Waters) that was then switched in-line to an

analytical column (BEH C18, 1.7 mm, 75 mm6250 mm, Waters)

for separation. Peptides were eluted with a gradient of 3–38%

acetonitrile in water/0.1% formic acid at a rate of 0.67% min-1.

The column was connected to a 10 mm SilicaTip nanospray

emitter (New Objective, Woburn, MA, USA) attached to a

nanospray interface (Proxeon, Odense, Denmark) for infusion into

the mass spectrometer. The mass spectrometer was operated in

positive ion mode at a capillary temperature of 200uC. The source

voltage and focusing voltages were tuned for the transmission of

MRFA peptide (m/z 524) (Sigma Aldrich, St. Louis, MO). Data-
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dependent analysis was carried out in oribtrap-IT parallel mode

using CID fragmentation on the five most abundant ions in each

cycle. The orbitrap was run with a resolution of 30,000 over the

MS range from m/z 350 to m/z 1800 and an MS target of 106

and 1 s maximum scan time. Collision energy was 35, and an

isolation width of 2 was used. Only mono-isotopic 2+ and 3+
charged precursors were selected for MS2. The MS2 was triggered

by a minimal signal of 1,000 with an AGC target of 36104 ions

and 150 ms scan time using the chromatography function for peak

apex detection. Dynamic exclusion was set to 1 count and 30 s

exclusion with an exclusion mass window of 620 ppm. MS scans

were saved in profile mode, whereas MSMS scans were saved in

centroid mode.

Raw files were processed with MaxQuant version 1.3.0.5 ([55];

http://maxquant.org) to generate re-calibrated peaklist-files which

were used for a database search using an in-house Mascot 2.4

Server (Matrix Science Limited, London, UK). Mascot-mgf

files were generated from MaxQuant apl-files using a

suitable perl script. Mascot searches were performed on the

TAIR_10_pep_20101214.fasta database (http://www.arabidopsis.

org/) using trypsin/P with 2 missed cleavages, 6 ppm precursor

tolerance, 0.6 Da fragment tolerance, carbamidomethylation (C) as

fixed, and oxidation (M) and acetylation (protein N-terminus) as

variable modifications. Mascot search results were imported and

evaluated in Scaffold 4.0.4 (proteomsoftware.com, Portland, OR,

USA) resulting in a protein false discovery rate of 0.9%.

Supporting Information

Figure S1 Analysis of SAP54 interactions with MADS-
domain proteins. (A) Type I MTFs AGL50, AGL62, and

AGL80 are partially destabilized when transiently co-expressed in

the presence of the phytoplasma effector SAP54. (B) Noncanonical

Type II MIKC* protein AGL66 is stable in the presence of

SAP54. (C) SAP54-mediated destabilization of Type II MIKCC

protein AP1 is inhibited following treatment with 50 mM

epoxomicin, whereas AP1 is destabilized in samples treated with

a protease inhibitor cocktail. (D) AP1, SEP3, and SOC1 are not

destabilized by SAP54 in yeast.

(TIFF)

Figure S2 Phenotype of various rad23 mutants. (A) Four-

week-old Arabidopsis wild-type (Col-0) and rad23 mutant lines.

Note the reduced stature of rad23BC, rad23BD, rad23ABD, and

rad23BCD plants. Scale bar, 5 cm. (B) rad23 mutants produce wild-

type flowers, with the exception of the rad23BCD triple mutant that

frequently produces flowers with five or six petals (lateral and

frontal view as shown).

(TIFF)

Figure S3 Scoring of phenotypes exhibited by 35S:GFP–
SAP54 transgenic lines. Plants were scored as follows, with

representative flowers depicted. Absent, flowers are indistinguish-

able from wild-type based upon visual examination. Mild,

enlarged sepals, mild to moderate virescence of petals, stamens

produce pollen, and occasional loss of determinacy observed in

early arising flowers. Strong, leaf-like sepals, strong virescence of

petals, stamens are virescent and do not produce pollen, frequent

loss of determinacy throughout the plant.

(TIF)

Figure S4 Characterization of transgenic Arabidopsis
lines expressing 35S:GFP–SAP54. (A) Expression of GFP–

SAP54 induces phyllody and loss of determinacy in wild-type

Arabidopsis Col-0, but the majority of transformants obtained in

rad23CD double mutants produce normal flowers. 35S:GFP–SAP54

rad23CD line 8 represents a minority of transgenic lines exhibiting

a mild degree of virescence and loss of determinacy. (B) Western

blot analysis reveals protein levels of GFP–SAP54 (indicated by an

arrow) in transgenic plants picture in panel A.

(TIFF)

Figure S5 AY-WB phytoplasma induces witches’ broom
but not phyllody in infected rad23BCD triple mutants. (A)

An image of a healthy (wild-type) Arabidopsis plant. (B) Wild-type

(Col-0) and rad23 triple mutants following infection with AY-WB

phytoplasma. Note the occurrence of witches’ broom (increased

proliferation of stems) in all plants. (C) Wild-type (Col-0) and

rad23ABD produce leaf-like flowers when infected with AY-WB,

whereas the rad23BCD mutant produces normal flowers.

(TIFF)

Figure S6 Arabidopsis rad23 mutants produce leaf-like
flowers following infection with phytoplasma AY-WB.

(TIF)

Figure S7 Experimental set-up for insect oviposition
choice experiments. Photograph (top) illustrates the actual

arrangement of the test plants (A, D) in a choice cage. Several other

choice cages are visible in the background with alternative

positioning of the test plants. Diagramme (bottom) depicts all

available positions for the test plants in the cage (A, B, C, D). Only

two positions are occupied in any given cage, resulting from

randomly placing the test plants in two out of the four available

corners. Insects are introduced in the center of the cage (equidistant

from both plants) and released from a transparent plastic tube (E).

Arrows indicate the physical dimensions of the cage.

(TIFF)

Figure S8 Arabidopsis ap1-12 mutants produce green
leaf-like flowers that lack petals. (A) Images of flowers from

healthy and AY-WB–infected Arabidopsis wild-type (Col-0) are

compared to a GFP–SAP54–expressing transgenic line and ap1-12

mutant. (B) Images of plants representative of healthy and AY-WB–

infected Arabidopsis, GFP–SAP54–expressing transgenic lines, and

ap1-12 mutants. Scale bars, 5 cm. Se, sepal; Pe, petal; St, stamen;

Ca, carpel.

(TIFF)

Figure S9 Aster leafhopper Macrosteles quadrilineatus
produces a similar number of nymphs on wild-type (wt)
and ap1 mutant Arabidopsis plants (t(11) = 0.22;
p = 0.835).

(TIFF)

Figures S10 Alignment of amino acid sequences of
SAP54 homologues identified in other phytoplasma
strains. M-AY, Maryland aster yellows phytoplasma

(ABH11652); Spiraea, Spiraea stunt phytoplasma (ABU55747);

OY-M, Onion yellows phytoplasma strain OY-M (PAM_049);

PnWB, Peanut Witches’ Broom phytoplasma (ZP_23918844).

(TIFF)

Figure S11 Models of SAP54-mediated degradation of
MTFs. (A) SAP54 binds directly to both MTFs and RAD23. The

latter takes the SAP54–MTF complex to the plant UPS where the

MTFs are degraded. SAP54 may remain associated with RAD23

to prevent being degraded. (B) RAD23 and SAP54 do not interact

directly, but via one or more ubiquitin moieties linked via lysine

(K) residue(s) on SAP54. RAD23 takes the SAP54–MTF complex

to the plant UPS (as in A). (C) An unknown pathway is involved in

transportation of SAP54–MTF complexes to the host UPS,

whereupon SAP54 interacts with RAD23 to evade degradation.
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RAD23 and SAP54 may interact directly (as in A) or via ubiquitin

(as in B).

(TIFF)

Figure S12 Phytoplasma effector SAP54 alters host
development to promote vegetative growth. Shown are

7-wk-old (A) and 10-wk-old (B) transgenic Arabidopsis lines

expressing 35S:GFP (control) and 35S:GFP–SAP54. Scale bars,

5 cm.

(TIFF)

Table S1 Clones identified as SAP54 interactors in
Hybrigenics screen.
(DOC)

Table S2 Yeast two-hybrid analysis of SAP54 interac-
tions with MTFs.
(DOC)

Table S3 Quantification of signal intensity levels (Im-
ageJ) of bands in Figure 1D.
(DOC)

Table S4 Mass spectrometry analysis of MTFs that
interact with GFP–SAP54.
(DOC)

Table S5 Signal intensity levels (ImageJ) of bands in
Figure 2A.
(DOC)

Table S6 Signal intensity levels (ImageJ) of bands in
Figure 2B.
(DOC)

Table S7 Signal intensity levels (ImageJ) of bands in
Figure 2C.
(DOC)

Table S8 Signal intensity levels (ImageJ) of IP bands in
Figure 2D.
(DOC)

Table S9 Signal intensity levels (ImageJ) of input bands
in Figure 2D.

(DOC)

Table S10 List of primers used in study.

(DOC)

Acknowledgments

We are grateful to Professor Richard D. Vierstra (Department of Genetics,

University of Wisconsin–Madison) for providing RAD23 antibody and

seed for the rad23 mutants. Antibodies against SEP3 were kindly provided

by Cezary Smaczniak (Laboratory of Molecular Biology, Wageningen

University) and Robert Sablowski (Cell & Developmental Biology, JIC).

We wish to thank Dr. Chan-Pin Lin (Department of Plant Pathology and

Microbiology, National Taiwan University) and Chih-Horng Kuo

(Institute of Plant and Microbial Biology, Academia Sinica) for providing

the sequence of the Peanut Witches’ Broom SAP54 homologue prior to

publication of the genome sequence. We gratefully acknowledge Gerhard

Saalbach (JIC Proteomics Facility) for performing mass spectrometry

analyses, Sam Mugford and Jacqueline Busscher-Lange for technical

support, Andrew Davis for providing photographic services, and Jitender

Cheema for the construction of the MADS-box protein phylogeny. We are

grateful to Mark Banfield (Biological Chemistry, JIC) for help with the

purification of SAP54 for antibody production and to Ian Bedford, Anna

Jordan, and Gavin Hatt (JIC Insectary) for rearing and care of leafhopper

and phytoplasma stocks and the John Innes Horticultural Services for

growing the plants used in this study. The mass spectrometry proteomics

data have been deposited in the ProteomeXchange Consortium (http://

proteomecentral.proteomexchange.org) via the PRIDE partner repository

(26) with the dataset identifier PXD000223 and DOI 10.6019/

PXD000223.

Author Contributions

The author(s) have made the following declarations about their

contributions: Conceived and designed the experiments: AMM GCA

RGHI SAH. Performed the experiments: AMM ZO KK AMZ. Analyzed

the data: AMM ZO KK AMZ GCA RGHI SAH. Contributed reagents/

materials/analysis tools: AMM GCA RGHI SAH. Wrote the paper: AMM

SAH. Edited the manuscript: AMM ZO KK AMZ GCA RGHI SAH.

References

1. Dean P (2011) Functional domains and motifs of bacterial type III effector

proteins and their roles in infection. FEMS Microbiol Rev 35: 1100–1125.

2. Bozkurt TO, Schornack S, Banfield MJ, Kamoun S (2012) Oomycetes, effectors,

and all that jazz. Curr Opin Plant Biol 15: 483–492.

3. Romer P, Recht S, Strauss T, Elsaesser J, Schornack S, et al. (2010) Promoter

elements of rice susceptibility genes are bound and activated by specific TAL

effectors from the bacterial blight pathogen, Xanthomonas oryzae pv. oryzae.

New Phytol 187: 1048–1057.

4. Vyas A, Kim SK, Giacomini N, Boothroyd JC, Sapolsky RM (2007) Behavioral

changes induced by Toxoplasma infection of rodents are highly specific to

aversion of cat odors. Proc Natl Acad Sci U S A 104: 6442–6447.

5. Roy BA (1993) Floral mimicry by a plant pathogen. Nature 362: 56–58.

6. Mayer CJ, Vilcinskas A, Gross J (2008) Phytopathogen lures its insect vector by

altering host plant odor. J Chem Ecol 34: 1045–1049.

7. Sugio A, MacLean AM, Kingdom HN, Grieve VM, Manimekalai R, et al.

(2011) Diverse targets of phytoplasma effectors: from plant development to

defense against insects. Annu Rev Phytopathol 49: 175–195.

8. Sugio A, Kingdom HN, MacLean AM, Grieve VM, Hogenhout SA (2011)

Phytoplasma protein effector SAP11 enhances insect vector reproduction by

manipulating plant development and defense hormone biosynthesis. Proc Natl

Acad Sci U S A 108: E1254–E1263.

9. MacLean AM, Sugio A, Makarova OV, Findlay KC, Grieve VM, et al. (2011)

Phytoplasma effector SAP54 induces indeterminate leaf-like flower development

in arabidopsis plants. Plant Physiol 157: 831–841.

10. Kaufmann K, Wellmer F, Muino JM, Ferrier T, Wuest SE, et al. (2010)

Orchestration of floral initiation by APETALA1. Science 328: 85–89.

11. de Folter S, Immink RGH, Kieffer M, Parenicova L, Henz SR, et al. (2005)

Comprehensive interaction map of the Arabidopsis MADS box transcription

factors. Plant Cell 17: 1424–1433.

12. Yang YZ, Jack T (2004) Defining subdomains of the K domain important for

protein-protein interactions of plant MADS proteins. Plant Mol Biol 55: 45–59.

13. Davies B, EgeaCortines M, Silva ED, Saedler H, Sommer H (1996) Multiple

interactions amongst floral homeotic MADS box proteins. Embo J 15: 4330–

4343.

14. Alvarez-Buylla ER, Pelaz S, Liljegren SJ, Gold SE, Burgeff C, et al. (2000) An

ancestral MADS-box gene duplication occurred before the divergence of plants

and animals. Proc Natl Acad Sci U S A 97: 5328–5333.

15. Urbanus SL, de Folter S, Shchennikova AV, Kaufmann K, Immink RGH, et al.

(2009) In planta localisation patterns of MADS domain proteins during floral

development in Arabidopsis thaliana. BMC Plant Biol 9: 5.

16. Ditta G, Pinyopich A, Robles P, Pelaz S, Yanofsky MF (2004) The SEP4 gene of

Arabidopsis thaliana functions in floral organ and meristem identity. Curr Biol

14: 1935–1940.

17. Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF (2000) B and C floral organ

identity functions require SEPALLATA MADS-box genes. Nature 405: 200–203.

18. Lindbo JA (2007) TRBO: A high-efficiency tobacco mosaic virus RNA-based

overexpression vector. Plant Physiol 145: 1232–1240.

19. Verelst W, Twell D, de Folter S, Immink R, Saedler H, et al. (2007) MADS-

complexes regulate transcriptome dynamics during pollen maturation. Genome

Biol 8(11): R249.

20. Meng LH, Mohan R, Kwok BHB, Elofsson M, Sin N, et al. (1999) Epoxomicin,

a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory

activity. Proc Natl Acad Sci U S A 96: 10403–10408.

21. Farmer LM, Book AJ, Lee KH, Lin YL, Fu HY, et al. (2010) The RAD23 family

provides an essential connection between the 26S proteasome and ubiquitylated

proteins in Arabidopsis. Plant Cell 22: 124–142.

22. Smaczniak C, Immink RGH, Angenent GC, Kaufmann K (2012)

Developmental and evolutionary diversity of plant MADS-domain factors:

insights from recent studies. Development 139: 3081–3098.

23. Ferrandiz C, Gu Q, Martienssen R, Yanofsky MF (2000) Redundant regulation

of meristem identity and plant architecture by FRUITFULL, APETALA1 and

CAULIFLOWER. Development 127: 725–734.

Phytoplasma Effector Degrades MADS-box Proteins

PLOS Biology | www.plosbiology.org 13 April 2014 | Volume 12 | Issue 4 | e1001835

http://proteomecentral.proteomexchange.org
http://proteomecentral.proteomexchange.org


24. Immink RGH, Tonaco IAN, de Folter S, Shchennikova A, van Dijk ADJ, et al.

(2009) SEPALLATA3: the ‘glue’ for MADS box transcription factor complex
formation. Genome Biol 10(2): R24.

25. Pracros P, Renaudin J, Eveillard S, Mouras A, Hernould M (2006) Tomato

flower abnormalities induced by stolbur phytoplasma infection are associated
with changes of expression of floral development genes. Mol Plant Microbe

Interact 19: 62–68.
26. Su YT, Chen JC, Lin CP (2011) Phytoplasma-induced floral abnormalities in

catharanthus roseus are associated with phytoplasma accumulation and

transcript repression of floral organ identity genes. Mol Plant Microbe Interact
24: 1502–1512.

27. Himeno M, Neriya Y, Minato N, Miura C, Sugawara K, et al. (2011) Unique
morphological changes in plant pathogenic phytoplasma-infected petunia

flowers are related to transcriptional regulation of floral homeotic genes in an
organ-specific manner. Plant J 67: 971–979.

28. Dantuma NP, Heinen C, Hoogstraten D (2009) The ubiquitin receptor Rad23:

At the crossroads of nucleotide excision repair and proteasomal degradation.
DNA Repair 8: 449–460.

29. Birch PRJ, Armstrong M, Bos J, Boevink P, Gilroy EM, et al. (2009) Towards
understanding the virulence functions of RXLR effectors of the oomycete plant

pathogen Phytophthora infestans. J Exp Bot 60: 1133–1140.

30. Anderson DM, Frank DW (2012) Five mechanisms of manipulation by bacterial
effectors: a ubiquitous theme. PLoS Pathog 8(8): e1002823.

31. Angot A, Vergunst A, Genin S, Peeters N (2007) Exploitation of eukaryotic
ubiquitin signaling pathways by effectors translocated by bacterial type III and

type IV secretion systems. PLoS Pathog 3: 1–13.
32. Zhang Y, Higashide WM, McCormick BA, Chen J, Zhou DG (2006) The

inflammation-associated Salmonella SopA is a HECT-like E3 ubiquitin ligase.

Mol Microbiol 62: 786–793.
33. Abramovitch RB, Janjusevic R, Stebbins CE, Martin GB (2006) Type III

effector AvrPtoB requires intrinsic E3 ubiquitin ligase activity to suppress plant
cell death and immunity. Proc Natl Acad Sci U S A 103: 2851–2856.

34. Bos JIB, Armstrong MR, Gilroy EM, Boevink PC, Hein I, et al. (2010)

Phytophthora infestans effector AVR3a is essential for virulence and
manipulates plant immunity by stabilizing host E3 ligase CMPG1. Proc Natl

Acad Sci U S A 107: 9909–9914.
35. Park CH, Chen SB, Shirsekar G, Zhou B, Khang CH, et al. (2012) The

magnaporthe oryzae effector AvrPiz-t targets the RING E3 ubiquitin ligase
APIP6 to suppress pathogen-associated molecular pattern-triggered immunity in

rice. Plant Cell 24: 4748–4762.

36. Singer AU, Schulze S, Skarina T, Xu XH, Cui H, et al. (2013) A pathogen type
III effector with a novel E3 ubiquitin ligase architecture. PLoS Pathog 9(1):

e1003121.
37. Le Negrate G, Krieg A, Faustin B, Loeffler M, Godzik A, et al. (2008) ChlaDub1

of Chlamydia trachomatis suppresses NF-kappa B activation and inhibits I

kappa B alpha ubiquitination and degradation. Cellular Microbiol 10: 1879–
1892.

38. Le Negrate G, Faustin B, Welsh K, Loeffler M, Krajewska M, et al. (2008)
Salmonella secreted factor L deubiquitinase of Salmonella typhimurium inhibits

NF-kappa B, suppresses I kappa B alpha ubiquitination and modulates innate

immune responses. J Immunol 180: 5045–5056.
39. Kubori T, Galan JE (2003) Temporal regulation of Salmonella virulence effector

function by proteasome-dependent protein degradation. Cell 115: 333–342.

40. Anderson DM, Schmalzer KM, Sato H, Casey M, Terhune SS, et al. (2011)
Ubiquitin and ubiquitin-modified proteins activate the Pseudomonas aeruginosa

T3SS cytotoxin, ExoU. Mol Microbiol 82: 1454–1467.
41. Patel JC, Hueffer K, Lam TT, Galan JE (2009) Diversification of a salmonella

virulence protein function by ubiquitin-dependent differential localization. Cell

137: 283–294.
42. Nomura K, Debroy S, Lee YH, Pumplin N, Jones J, et al. (2006) A bacterial

virulence protein suppresses host innate immunity to cause plant disease. Science
313: 220–223.

43. Fromont-Racine M, Rain JC, Legrain P (1997) Toward a functional analysis of
the yeast genome through exhaustive two-hybrid screens. Nat Genet 16: 277–

282.

44. Gietz RD, Schiestl RH (2007) High-efficiency yeast transformation using the
LiAc/SS carrier DNA/PEG method. Nat Protoc 2: 31–34.

45. de Folter S, Immink RG (2011) Yeast protein-protein interaction assays and
screens. Methods Mol Biol 754: 145–165.

46. Severing EI, van Dijk ADJ, Morabito G, Busscher-Lange J, Immink RGH, et al.

(2012) Predicting the impact of alternative splicing on plant MADS domain
protein function. PLoS ONE 7(1): e30524.

47. van Dijk ADJ, Morabito G, Fiers M, van Ham RCHJ, Angenent GC, et al.
(2010) Sequence motifs in MADS transcription factors responsible for specificity

and diversification of protein-protein interaction. PLoS Comp Biol 6(11):
e1001017.

48. Kushnirov VV (2000) Rapid and reliable protein extraction from yeast. Yeast

16: 857–860.
49. Nakagawa T, Kurose T, Hino T, Tanaka K, Kawamukai M, et al. (2007)

Development of series of gateway binary vectors, pGWBs, for realizing efficient
construction of fusion genes for plant transformation. J Biosci Bioeng 104: 34–

41.

50. de Folter S, Urbanus SL, van Zuijlen LG, Kaufmann K, Angenent GC (2007)
Tagging of MADS domain proteins for chromatin immunoprecipitation. BMC

Plant Biol 7: 47.
51. Zhang JH, Hogenhout SA, Nault LR, Hoy CW, Miller SA (2004) Molecular and

symptom analyses of phytoplasma strains from lettuce reveal a diverse
population. Phytopathology 94: 842–849.

52. Karimi M, Inze D, Depicker A (2002) GATEWAY((TM)) vectors for

Agrobacterium-mediated plant transformation. Trends Plant Sci 7: 193–195.
53. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-

mediated transformation of Arabidopsis thaliana. Plant J 16: 735–743.
54. Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M (2006) In-gel digestion

for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:

2856–2860.
55. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates,

individualized p.p.b.-range mass accuracies and proteome-wide protein
quantification. Nat Biotechnol 26: 1367–1372.

Phytoplasma Effector Degrades MADS-box Proteins

PLOS Biology | www.plosbiology.org 14 April 2014 | Volume 12 | Issue 4 | e1001835


