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Introduction

The term microbiota refers to the microbial population pres-
ent within the human body,1 including bacteria, viruses, archea, 
protozoans, and fungi. Every individual human harbors 10–100 
trillion symbiotic microbial cells, with gut bacteria being the most 
abundant.2 In this context, the microbiota is implicitly assumed 
to be similar to a multicelled organ. However, due to the abun-
dance of microhabitats in the human body and the large number 
of interactions between the different species with the host and the 
external environment, microbiota can also be conceptualized as 
a dynamic ecological community (Fig. 1).3 Indeed, each micro-
bial community within the human body has its own structure, 
depending on the exact environment where it is localized.4 Many 
essential body processes require the presence of diverse microor-
ganisms, as they provide the host with essential nutrients, metab-
olize indigestible compounds, and defend against colonization by 
opportunistic pathogens, as well as possessing immunomodula-
tory properties (for more details see also ref. 5).

As with all ecosystems, a balance exists between the human 
body and the microbiota. However, this dynamic equilibrium 
can be altered at any time by environmental factors and exter-
nal interferences, such as the use of antibiotics.6 These alterations 
frequently result in microbial imbalances on or inside the body, 

a phenomenon also called dysbiosis. Thus, in some ecosystems, 
such as the gut, a high biodiversity is associated with a healthy 
status, while low biodiversity is more linked to pathological con-
ditions.7 On the contrary, in other ecosystems such as the vagina, 
high diversity is directly associated with illness such as vaginosis.8 
Nevertheless, a disruption of normal microbiota profile or biodi-
versity is frequently related with a physiopathological condition 
for the host. From this perspective, there is an increasing interest 
in the use of microorganisms (i.e., probiotics) to resolve dysbioses.

To achieve the study of this biodiversity, traditional meth-
ods were based for many years on culture dependent techniques. 
However, although the use of these techniques provided a large 
and interesting set of data, they also resulted in an erroneous view 
of the human microbiota composition in certain cases. Indeed, 
many microorganisms need special growth conditions, such as 
the extremely oxygen sensitive (EOS) bacteria, that makes their 
culturing and even their detection difficult;9 whereas others 
have never been grown in culture and may require special, as yet 
unknown, growth conditions preventing their identification by 
culture-dependent methods.4 Recently, several culture-indepen-
dent techniques have been developed allowing for a qualitative 
and quantitative means of identification and are mostly based on 
PCR and DNA hybridization techniques. These simple meth-
ods have completely changed the notion of the human micro-
biota, opening the door to new and more complete fields such as 
metagenomics, which is the study of microbial genomes within 
diverse environmental samples.10 Metagenomics was first intro-
duced in 199811 and is now a widely used technique that has revo-
lutionized the study of the microbiota as a result of its ability to 
generate a comprehensive catalog of microbial sequences present 
in various different ecological niches within a large host organism 
such as humans.

In the past, only single organisms were considered important 
regarding pathogenic interactions with humans. For this reason, 
only a few studies of either microbial communities or non-patho-
genic bacteria were performed, since these bacterial types were 
believed not to impact on the well-being of humans. Fortunately, 
this incorrect concept and underestimation of the importance of 
the human microbiota has changed in the last few years.

Genomic Approaches to Study the Human 
Microbiota: Defining the Human Microbiome

The term microbiome refers to the genetic material of the 
catalog of microbial taxa associated with humans.12 Being 
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The term microbiome refers to the genetic material of the 
catalog of microbial taxa associated with humans. As in all eco-
systems, the microbiota reaches a dynamic equilibrium in the 
human body, which can be altered by environmental factors 
and external stimuli. Metagenomics is a relatively new field 
of study of microbial genomes within diverse environmental 
samples, which is of increasing importance in microbiology. 
The introduction of this ecological perception of microbiology 
is the key to achieving real knowledge about the influence of 
the microbiota in human health and disease. The aim of this 
review is to summarize the link between the human microbiota 
(focusing on the intestinal, vaginal, skin, and airway body sites) 
and health from this ecological point of view, highlighting the 
contribution of metagenomics in the advance of this field.
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frequently confused with the term microbiota, the microbiome 
was first defined by Joshua Lederberg in 200113 and is some-
times referred to as our second genome.14 Although great effort 
has been applied to the study of the human microbiota (e.g., 
the Human Microbiome Project, which was launched in 2008 

with a funding of $157 million to determine 
whether there is a shared core microbiome 
among individuals),15 the differences among 
individuals is huge compared with genomic 
variations.12 This fascinating reality has 
potential implications in personal medicine, 
whereby microbiota composition analysis 
could be used routinely in clinical practice to 
diagnose dysbiosis-related disorders.16

Although the term metagenomics was 
originally coined for the shotgun charac-
terization of total DNA, it is also presently 
being applied for studies of marker genes such 
as the 16S rRNA.12 Both shotgun character-
ization of total DNA and marker genes are 
used mainly to analyze community structure 
of the human microbiome. Sequencing the 
full-length 16S rRNA gene was performed 
classically by the Sanger dideoxy chain ter-
mination technique; today, next genera-
tion sequencing methodologies such as Ion 
Torrent PGM sequencing of 16S rRNA 
gene-based amplicons17 reduces the cost and 
increases the depth. Although a bacterial 
species is hard to define, the current defini-

tion requires a minimum of 97% identity in the 16S rRNA.4 
However, although 16S rRNA sequence is the best measure of 
low-abundance organisms18 and it has been widely used allow-
ing for cross-study comparisons,15 more comprehensive results are 
found without focusing on target regions such as the 16S rRNA. 
Shotgun characterization allows either the cataloging of genes of 
organisms present in a community4 or the analysis of individual 
genomes in the ecosystem under study.19 All these powerful tools 
provide information on community diversity and structure20 even 
if caution is necessary in the sampling method. Huge variations 
can be introduced by methodological bias.17 The flowchart dia-
gram (Fig. 2) briefly describes the main steps for metagenomic 
analysis. Several microecological processes have been defined 
using metagenomics such as microbiota establishment,21 effect of 
diet on gut microbiome,22 and microbiota changes in inflamma-
tory bowel disease (IBD)23 and obesity.23,24

The Role of Microbiome in Human Health

As we can deduce from Figure 1, where the human micro-
biota (microbiome by extension) has been represented as a col-
lection of dynamic ecological communities, the perturbation of 
one of these communities has a direct impact on health and well-
being of the host.25,26 As a result of recent technological advances, 
the vagina and the gastrointestinal tract (GIT) have been well 
characterized (and are to date the most studied human micro-
ecosystems) representing low and high complexity communi-
ties, respectively.16 Although dysbiosis has been mainly linked 
to the GIT, it can take place on any exposed surface or mucus 
membrane such as the vagina, the skin, or the respiratory system. 
Indeed, this kind of variation in the microbial population can 

Figure 1. The human microbiome conceptualized as a dynamic ecological community. inter-
relations between all the components of the ecosystem lead to an equilibrium state required to 
maintain the health status of the host.

Figure  2. Metagenomic approach general flowchart. After sampling 
the whole ecosystem and processing the samples, DNA is extracted and 
sequenced generating raw data. The sequences generated are anno-
tated and submitted to metaanalysis. There are several points to store 
samples or data.
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strongly impact human health. Nowadays, the challenge of link-
ing microbiome to human health and disease is being confronted 
by different research teams around the world. They are currently 
studying different disease states to identify potential correlations 
and ecological models of community structure and function in 
order to understand the dynamics of all ecosystems that comprise 
the human microbiome.

GIT ecosystem
The composition of the human intestinal microbiome is less 

diverse than other bacterial ecosystems, such as those found in 
soil or water, presumably reflecting the harsh physico-chemical 
conditions of this niche. Most of the microorganisms colonizing 
humans are bacteria present in the GIT at a density of approxi-
mately 1013–1014 cells/g of fecal matter (particularly in the colon, 
70% of total microbiota), and many of them are EOS.27 The 
intestinal microbiome also contains a minority population of 
eukaryotic microorganisms (fungi, yeasts), viruses, and archae.4 
The human gut microbiome is considered to be beneficial for the 
host due to its key role in the stimulation and maturation of the 
immune system, promotion of mucosal structure and function, 
and providing colonization resistance against pathogen attack 
(Fig. 3).5 Recently, microbiota functions have been reviewed 
thoroughly by Sommer et al.28 and Serikov et al.29

Metagenomics approach to study the intestinal microbiome
The development of molecular ecology, with emphasis on 16S 

rDNA-based approaches, has dramatically changed our vision of 

the gut microbiome. Recent reviews have described the metage-
nomic exploration of the human intestinal microbiome through 
the availability of the reference gene catalog and mainly from 
the European project MetaHIT23 and the American Human 
Microbiome Project.30,31 The MetaHIT consortium has reported 
3.3 million non-redundant genes in the human gut microbiome 
alone23 and much effort has focused on defining a core human 
gut microbiome (i.e., a set of features shared across all or the vast 
majority of gut microbiomes).32 The average human’s intestinal 
microbiome is now better defined and comprises a huge diver-
sity of bacterial species present in each individual (approximately 
160).23 Firmicutes and bacteroidetes are both dominant phyla 
representing 90% of the human microbiome. However, the 
microbiome composition differs along the GIT (from mouth 
to the rectum), as well as between individuals.33 In spite of this 
relative heterogeneity, through fecal metagenomic analysis, it is 
possible to distinguish three main robust clusters named “entero-
types” in the gut microbiome, which are determined by species 
composition. Each of these three enterotypes is identifiable by 
the variation in the levels of one of three genera Bacteroides, 
Prevotella, and Ruminococcus.34 Their abundance and proportions 
vary between individuals and is associated with long-term dietary 
habits.35 However, the enterotype is quite a complicated concept 
because of the necessity to consider the intestinal microbiome 
according to different factors that could eventually impact its 
composition (e.g., aging, geographical origin, nutritional needs 

Figure 3. Commensal intestinal bacteria crosstalk with the host. Commensal bacteria supply the host with essential nutrients and defend the host 
against opportunistic pathogens. Commensals are involved in the development of the intestinal architecture as well as in immunomodulatory pro-
cesses (Modified from Martín et al.).5 ieC, intestinal epithelial cell.
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and habits, physiological variations and the impact of westerniza-
tion, etc.).36 Thus, the enterotype concept is one possible way to 
simplify the microbiome complexity.

Intestinal microbiome: a component of health
Intestinal bacteria were first qualified as commensals. This 

adjective comes from the Latin: cum (“with”) and mensa 
(“table”), which means sharing of the meal. Indeed, the host sup-
plies the energy substrate for microorganisms via food intake. 
In exchange, the intestinal microbiome (through its large reper-
toire of enzymatic activities), constitutes a complementary meta-
bolic directory of the human digestive system. The co-evolution 
of the GIT and the microbiome led to the selection of adapted 
bacteria developing a beneficial cohabitation with the human 
host.27,37,38 The metagenomic approach allows a better knowl-
edge of this symbiotic relationship. The intestinal microbiome 
(the collective genomes of the microorganisms that reside in our 
GIT) consists of 150-fold more genes than the human genome 
itself, suggesting the importance and the impact of our “second 
genome” on human physiology.23 For instance, the understand-
ing of the ability of the microbiome to metabolize fiber has made 
some progress, due to the exploration of functional libraries using 
Escherichia coli as host.39 Besides, the composition of the intesti-
nal microbiota is widely influenced by diet. For example, a study 
using high-throughput 16s rDNA and comparing the microbiota 
of children with a western diet to children with a fiber-rich diet 
(in a rural African village of Burkina Faso), demonstrated that 
bacterial composition was clearly different. Indeed, the bacterial 
microbiome of the inhabitants of Burkina Faso was more adapted 
to the degradation of cellulose.22

The gut microbiota represents a real functional barrier 
allowing the inhibition of pathogen growth and colonization. 
Metagenomic sequencing has enabled systematic and unbiased 
characterization of microbial populations including the viral 
spectrum and it will enable the development of therapeutic strat-
egies and/or vaccines in the near future.40 Indeed, the use of this 
approach also allows the identification of new potential patho-
gens. For example, a novel virus (bat papillomavirus) was discov-
ered and characterized using 454 sequencing from rectal swabs 
randomly collected from asymptomatic wild, food, and pet ani-
mals.41 A modification of the GIT ś microbial barrier could be an 
influencing factor in diseases such as IBD, one of the most stud-
ied diseases in this field. Recent advances in “omics” approaches 
(i.e., genomics, transcriptomics, proteomics, and metabolomics) 
have opened the door for further investigation of the structure 
and function of the gut microbiome without the need to cul-
tivate, identifying some promising approaches for future thera-
peutic and diagnostic applications.42 For instance, the beneficial 
effects in the physiopathology of Crohn disease (CD, a type of 
IBD) patients of the commensal bacterium Faecalibacterium 
prausnitzii43 on one side and the undesired effects of the opportu-
nistic pathogen, adherent and invasive Escherichia coli (AIEC)44 
on the other, are two well-illustrated examples of the potential of 
these therapeutic and diagnostic applications. Indeed, F. praus-
nitzii could be considered as a sensor of human intestinal health, 
with different studies based on metagenomics methods reporting 
a reduction of this anti-inflammatory bacterium in CD patients 

and in other patients with intestinal disorder.9 In contrast, it was 
recently shown by DNA pyrosequencing that in TLR5-deficient 
mice, AIEC colonization might induce lasting changes in the 
microbiota.45 Metagenomic approaches to analyze microbiome 
composition in a genetically susceptible host, through the detec-
tion of a pathobiont in a developing microbiome can predict the 
development of chronic inflammation.45 In the same way, the 
reduction in diversity of fecal microbiome in CD patients was 
revealed by a metagenomic approach.7 Some authors have already 
proposed the identification of novel specific diagnostic targets for 
CD patients through integrated metagenomics/metaproteomics 
approaches.46 IBD is not the only example of the link between 
disease and microbiome; metabolic disorders, celiac disease, 
irritable bowel syndrome (IBS), and colorectal cancer can also 
be cited.9 It would be interesting to determine the link between 
enterotypes and pathologic phenotypes. In fact, if an enterotype 
is shown to be related to disease, long-term dietary interventions 
may allow modulation of an individual’s enterotype for improv-
ing health.35

Vaginal ecosystem
The microbiome associated with the vagina has an important 

influence on human development, physiology, and immunity. 
This community of mutualistic bacteria constitutes the first line 
of defense for the host by excluding non-indigenous microbes that 
may cause sickness.47 A mature microbiota is already established 
in early adolescence after the hormonal changes typical of this 
period48 and it includes some microorganisms also present in the 
GIT, even if the relative frequencies are different. The first micro-
biological study of the human vagina reported lactobacilli as the 
dominant microorganisms of this cavity,49 being more than 70% 
of all microorganisms isolated from vaginal exudates of healthy 
and fertile women (and 100% in some cases).47,50,51 Nevertheless, 
the species found may vary depending on the methodology used 
for the identification. In this context, following culture and 
phenotypic characterization, the most dominant species found 
are Lactobacillus acidophilus and/or L. fermentum,52-54 but when 
genetic methods are applied, the predominant species reported 
are L. crispatus, L. gasseri, and L. jensenii.55-58

Metagenomics to study the vaginal microbiome
Understanding bacterial composition and the interrelation-

ships of constituent species is necessary to understand the role of 
the vaginal ecosystem, as well as the effect of different habits and 
practices. Although the vaginal ecosystem is dynamic as a result 
of its physiological function (menstrual cycle) and personal hab-
its (contraception and hygiene practices), it remains stable over 
the long-term as a result of physiological and microbiological fac-
tors. In this sense, the Vaginal Human Microbiome Project (at 
the Virginia Commonwealth University) aims to investigate the 
complex vaginal microbiome and its link to human health and 
disease as well as its variability with different physiological condi-
tions.59 This fundamental knowledge is needed to diagnose and 
properly assess the risk of disease.

Just as it has been described by culture-dependent methods, 
metagenomic approaches also describe the vagina as an ecosys-
tem rich in lactobacilli. While 20 species of lactobacilli have 
been isolated from the vagina, normally only one or two species 
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predominate at the same time in each ecosystem, the most fre-
quently reported being L. crispatus, L. inners, L. jensenii, and L. 
gasseri.60-66 Although the paradigm of the association between 
lactobacilli abundance and vaginal health seems to be true for 
the majority of women, it does not necessarily apply to all. In 
fact, it has been shown that a typical vaginal environment (i.e., 
pH > 4.5) is usually rich in lactobacilli. In this sense, vaginal eco-
systems dominated by other lactic acid-producing bacteria, such 
as Bifidobacterium sp., Atopobium vaginae, Megasphaera sp., and 
Leptotrichia sp. have also been described.57,62,67 A higher vaginal 
pH has been reported in some racial and ethnic groups68-70 as 
well as the absence of lactobacilli and the presence of Gardnerella 
vaginalis, Prevotella sp., Pseudomonas sp., and/or Streptococcus sp. 
being predominant.57 In fact, several studies have demonstrated 
the presence of different microbiome profiles named vagitypes, 
many of which are dominated by a single bacterial taxon.59 
However, caution has to be taken with this interpretation, since 
it is not possible to completely rule out a transition state between 
disease and health in these atypical microbiomes.71,72

Metagenomics has also identified differences in vaginal 
microbiome profiles depending on geographical origin,67,69,70 as 
well as during the menstrual cycle and the period of a woman’s 
life, mainly due to hormonal changes.48 Thus, estrogen defi-
ciency (typical of post-menopause states) leads to a reduction in 
lactobacilli population.73-75 The vaginal microbiome also suffers 
changes due to other environmental factors and sexual prac-
tices.76,77 Genetic polymorphisms related to normal signaling of 

the innate immune system have also been associated with vagi-
nal microbiota changes, promoting the presence of less healthy 
microbiota.78-80 During pregnancy, changes in the vaginal ecosys-
tem (estrogen and progesterone levels, epithelium thickness, and 
extra glycogen production)81,82 lead to a significant reduction in 
diversity and richness of the vaginal microbiota.83

Vaginal microbiome: a component of health
The vaginal microbiota, primarily lactobacilli, has been found 

to assert its beneficial effect against pathogens by two main 
mechanisms: (1) exclusion, driven by the competition for epithe-
lial cell receptors and (2) inhibition of growth, due to genera-
tion of antimicrobial compounds84 (Fig. 4). The first mechanism 
results from the ability of lactobacilli to compete for receptors 
against urogenital pathogens such as group B Streptococcus (GBS), 
Staphylococcus aureus, Gardnerella vaginalis, Neisseria gonorrhoeae, 
Pseudomonas aeruginosa, Klebsiella pneumoniae, Candida albicans, 
and Actinomyces neuii.85-90 Impairment of adherence by treatment 
of lactobacilli or epithelial cells with proteases, lipases, or peri-
odic acid suggests that the bacterial adhesins and cellular recep-
tors are proteins, lipids, or polysaccharides respectively.86,90-92 
Furthermore, identification of the proteins anchored to the bacte-
rial cell wall has provided a list of polypeptides putatively involved 
in mucous adherence.93-95 In addition, some lactobacilli can co-
aggregate with potential pathogens, such as E. coli, C. albicans, 
and G. vaginalis, which may help in their clearance.86,88

Regarding the second mechanism, lactobacilli are able to pro-
duce several antimicrobial compounds which are mainly organic 

Figure 4. Beneficial effect of lactobacilli on the vaginal ecosystem. Lactobacilli protect the host epithelium as a result of two main mechanisms: (1) exclu-
sion, driven by the competition to epithelial cell receptors and (2) inhibition of growth, due to generation of antimicrobial compounds. when the vaginal 
microbiota is dominated by lactobacilli a health status is found in this ecosystem; alternatively, when no dominant species predominates in the vaginal 
ecosystem this dysbiosis normally leads to a disease state.
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acids produced from the fermentation of sugars, that lead to 
the typically low pH of the vagina which inhibits the growth 
of most pathogens.96 Furthermore, vaginal lactobacilli are also 
able to produce bacteriocins, bio-surfactants,97,98 and hydrogen 
peroxide (H

2
O

2
).99 At least three bacteriocins have been identi-

fied in vaginal Lactobacillus strains: Lactocine 160, Salivaricine 
CRL 1328, and L23.99,100-103 Indeed, the prevalence of H

2
O

2
 

producing strains has been correlated with reduced incidence of 
bacterial vaginosis (BV) and vaginal infections.50,77 However, the 
exclusion capacities of this compound are controversial, as the 
antimicrobial activity of H

2
O

2
 can be neutralized by semen and 

cervix–vaginal fluids.104 Hydrogen 
peroxide has also been postulated 
to be simultaneously regulated 
by and regulate the lactobacilli 
population, due to the ability of 
some lactobacilli to destroy this 
molecule99 and the existence of a 
H

2
O

2
-mediated prophage induc-

tion mechanism that leads to lysis 
of the host lactobacillus.105,106 The 
role of H

2
O

2
 in this ecosystem is an 

example of how a single modifica-
tion in one element of the ecosys-
tem (including an environmental 
one) can alter the health status of 
the host in this dynamic ecological 
community (Fig. 5).

Abnormal vaginal microbiota 
can occur because of sexually 
transmitted pathogens or over-
growth of resident organisms.107 
The most common pathologies are 
BV, the proliferation of Candida sp. 
(mainly C. albicans) (candidiasis) 
and Trichomonas vaginalis (tricho-
moniasis)47 (Fig. 6). BV is the most 
frequent vaginal imbalance and 
was shown by molecular meth-

ods to be associated with a high microbiota diver-
sity.60 and the presence of unfamiliar bacteria such 
as Mobiluncus sp., Atopobium sp., Megasphaera sp., 
and Ureaplasma urealyticum.8,57,108-110 Metagenomics 
has also been used recently to identify some uncul-
tivable organisms associated with BV, the presence 
of which has been proposed as a diagnostic alter-
native to traditional culture-dependent method-
ologies.8,60,107,111 Epidemiologically, vaginal dysbiosis 
such as BV has been associated with preterm birth, 
development of pelvic inflammatory disease, and 
acquisition of sexually transmitted infections.112

Skin microbiome
Skin represents a physical barrier to infection as 

a result of epidermis cohesion and more particularly 
to its cornified layer. Skin also harbors several phys-
iological populations of microorganisms including 

commensal or symbiotic bacteria, fungi, parasites, and viruses 
known as the skin microbiota.113 The presence of a complex eco-
system plays a well-documented role in preventing adherence and 
invasion by virulent pathogens through biological competition.114 
A better understanding of the skin microbiota’s roles requires 
investigation beyond the taxonomic catalog of bacteria for the 
characterization of specific activities associated with functional 
gene products.115 Advances in molecular technologies allowed the 
identification of a much greater diversity of cutaneous microbi-
ota than what was revealed previously using culture-based meth-
ods.113,116 Recently, the construction of shotgun metagenomic 

Figure 5. Role of hydrogen peroxide in the vaginal ecosystem. Hydrogen peroxide is an antimicrobial sub-
stance also known to counterbalance lactobacilli population due to a SOS response-mediated prophage 
induction in lysogenic lactobacilli.105,106 Some lactobacilli are able to destroy this substance.99 An overall 
reduced number of H2O2 producing lactobacilli enhances the risk of disease.

Figure 6. vaginal equilibrium. A reduction in lactobacilli or overgrowth of some patho-
gens or no-dominant commensal bacteria can lead to a dysbiosis-related illness.
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libraries provided access to the functions performed by dominant 
skin colonizing taxa, including Corynebacterium, Staphylococcus, 
and Propionibacterium.115 This approach revealed the specific 
capabilities of skin microbiota to interact with and exploit com-
pounds from the human skin.

Moreover, metagenomics techniques led to the identification 
of a new virus, the human polyomavirus, although there was 
no correlation between its presence on the skin and pathology. 
In fact, this virus is present on healthy skin and in the majority 
of merkel cell carcinomas.117,118 The characterization of the skin 
viral microbiota, using high throughput metagenomic sequenc-
ing (HTS) (a highly comprehensive method based on random 
sequencing of the entire DNA) would allow identification of 
microbiome patterns associated with particular skin conditions.119

Airway microbiome
The human respiratory system, from the nose to the lung, is 

the ecological niche for many commensal microorganisms and 
for potential respiratory or invasive pathogens. In contrast to 
the GIT, the respiratory tract of healthy individuals harbors a 
homogenous microbiota that decreases in biomass from upper to 
lower tract.120 Although the colonization by potential pathogens 
of the upper respiratory tract microbiome, especially the naso-
pharyngeal microbiome, induces identifiable disease in only a 
small percentage of people, colonization represents a major source 
of secretions containing bacteria that spreads between individu-
als.121 For instance, in the case of children the impact of age, sea-
son, type of child day care, number of siblings, acute respiratory 
illness, diet, and sleeping position have been described; whereas 
in adults, other factors have been also implicated such as contact 
with children, chronic obstructive pulmonary disease, obesity, 
immunosuppression, allergic conditions, acute sinusitis, etc.121 
For instance, a metagenomic study on the detailed composi-
tion and variability in nasopharyngeal microbiota in samples 
from young children revealed that it differs between seasons.122 
During fall/winter which tends to be associated with increased 
incidence of respiratory and invasive infections, a predominance 
of Proteobacteria and Fusobacteria was observed. However, 
in spring, Bacteroidetes and Firmicutes were more abundant 
and, among them, (Brevi)bacillus and Lactobacillus species that 
can protect against respiratory or invasive infections. Another 
component of the nasopharyngeal microbiome are viruses and 
approximately 30% of all presumed viral cases fail diagnostic 
tests for etiologic agents.123 Thus, metagenomics could allow the 
detection of known viruses in this specific environment, as well 
as the detection of new ones.124 In the same way, some authors 
propose to define “the human virome project”, as a systematic 
exploration of the viruses that infect humans for an investiga-
tion of a novel pathogen, and provide a blueprint for compre-
hensive diagnosis of unexplained acute illnesses or outbreaks in 
clinical and public health settings.125,126 For example, in the case 
of the 2009 H1N1 influenza virus, this kind of strategy was 
shown to have the potential to replace conventional diagnostic 
tests.126

Little is known concerning the recently described lower 
respiratory tract microbiome, even if it is likely to provide 

important pathogenic insights (cystic fibrosis, respiratory dis-
ease of the newborn, chronic obstructive pulmonary disease, 
and asthma).127 Moreover, infectious agents are known to be or 
are suspected of having key roles in a number of chronic lung 
conditions. The bulk of published evidence demonstrates that 
phylogenetically diverse microbial communities in the lungs 
of healthy humans can be detected using high-throughput 
sequencing.128-130 Better characterization of the lung microbi-
ome could help in understanding its role in preserving health 
or causing disease particularly in specific groups of patients, for 
example in smokers.131

Concluding Remarks

Nowadays, we recognize the need to study the human micro-
biome as a whole ecosystem to better understand the relation 
between microbiota and host health or disease. For this reason, 
powerful methodologies are required to globally analyze these 
ecosystems, with metagenomic approaches being key for further 
analysis of the human microbiome. However, external influ-
ences, as well as methodological and sampling bias and inter-
individual differences have to be taken into account in the data 
interpretation. For this reason, to define the average human 
microbiome, standard operating procedures are critically needed 
as well as metaanalysis studies, since it is reasonable to anticipate 
that communities would differ on the basis of the existence of 
inter-individual differences.

Due to the close relationship between the microbiome and 
health and the existence of biomarkers typical of different pathol-
ogies, the suggestion to modulate our microbiota sounds logical 
from a therapeutic point of view. Furthermore, the inter-indi-
vidual differences and physiological parameters suggest personal 
medicine as a future treatment.

In the future, this kind of approach (i.e., metagenomics) 
would identify biomarkers of well-being that correspond to a gen-
eral and more balanced microbiota. In addition, metagenomics 
can also provide us with a better understanding of the relation-
ship between us and our microbiome and the role of this interac-
tion with health.
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