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Abstract
Amongst the human papillomaviruses (HPVs), the genus Alphapapillomavirus contains HPV
types that are uniquely pathogenic. They can be classified into species and types based on genetic
distances between viral genomes. Current circulating infectious HPVs constitute a set of viral
genomes that have evolved with the rapid expansion of the human population. Viral variants were
initially identified through restriction enzyme polymorphisms and more recently through sequence
determination of viral fragments. Using partial sequence information, the history of variants, and
the association of HPV variants with disease will be discussed with the main focus on the recent
utilization of full genome sequence information for variant analyses. The use of multiple sequence
alignments of complete viral genomes and phylogenetic analyses have begun to define variant
lineages and sublineages using empirically defined differences of 1.0–10.0% and 0.5–1.0%,
respectively. These studies provide the basis to define the genetics of HPV pathogenesis.
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Introduction and background
Papillomaviruses are small circular double-stranded DNA viruses. They are highly species
specific and preferentially infect cutaneous or mucocutaneous epithelium. Papillomavirus
genomes have been isolated and characterized from reptiles (Herbst et al., 2009), birds
(Terai et al., 2002), marsupials (Bennett et al., 2010) and multiple other mammalian species
(for recent review see Bernard et al. (2010)) suggesting an evolutionary history spanning
more than 300 million years (Herbst et al., 2009). Papillomaviruses replicate their genomes
using the host enzymatic machinery, ensuring a high degree of proof reading with low
mutation rates (Rector et al., 2007). As their genomes have evolved, mutations, insertions/
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deletions (indels) and rearrangements have been selected and/or fixed through host isolation
into discrete entities (called types), with the intermediary genomes generally lost (Bernard et
al., 2006; Gottschling et al., 2007). More recent evolutionary events are responsible for the
large heterogeneity of related viral variants detected in the modern era.

Papillomavirus evolution has been predominantly asexual, although extremely rare
recombination events cannot be excluded. This implies that multiple mutations/variations
occurring in papillomavirus genomes are not related to genetic distance as in recombining
genomes, i.e., linkage disequilibrium, but to sequential accumulation of genetic changes.
This process of speciation has been termed lineage fixation (Chen et al., 2005). That is,
groups of single nucleotide polymorphisms and/or insertions/deletions (indels) tend to
become fixed within viral lineages. Over time, the quantity of these lineage-defining
variations increases eventually leading to speciation (entities referred to as types). For
papillomaviruses this has been defined when approximately 10% or more of the nucleotide
positions differ between 2 genomes that share a most recent common ancestor; this takes
millions of years (Chen et al., 2009; Rector et al., 2007).

A distinct human papillomavirus (HPV) “type” is established and curated when the DNA
sequence of the L1 open reading frame (ORF) of the cloned viral genome differs from that
of any other characterized type by at least 10% (Bernard et al., 2010; de Villiers et al.,
2004). Within the PV research community, isolates of the same HPV type are referred to as
variants or subtypes when the nucleotide sequences of the L1 ORF differ by less than 10%.
The criterion for HPV types has proven extremely stable and useful for basic researchers,
clinicians, epidemiologists and immunologists.

Over 160 HPV types have been fully characterized (see 〈http://www.hpvcenter.se/html/
refclones.html〉); approximately 60 of these are predominantly detected in mucosal epithelia
and sort to the genus Alphapapillomavirus (alpha-PV) (Bernard et al., 2010; de Villiers et
al., 2004). Human alpha-PV infections are involved in the development of both benign and
malignant disease, e.g., condylomata acuminatum/respiratory papillomatosis and cervical/
anal/head and neck cancers, respectively. Cervical cancer is the most common gynecologic
malignancy and one of the leading causes of cancer mortality in women worldwide (Jemal et
al., 2011). Most oncogenic or high-risk (HR) types associated with invasive cervical cancer
(Li et al., 2011; Munoz et al., 2003; Smith et al., 2007) are clustered in one clade of the
alpha-HPVs that contains species groups alpha-5, alpha-6, alpha-7 and alpha-9 (Burk et al.,
2009; Schiffman et al., 2005) and account for ∼90% of all cervical cancers worldwide (Li et
al., 2011; Smith et al., 2007). Despite phylogenetic relatedness, HPV variants can differ in
pathogenicity (Berumen et al., 2001; Burk et al., 2003; Chan et al., 2013; Cornet et al.,
2013b; Giannoudis and Herrington, 2001; Hecht et al., 1995; Sabol et al., 2012; Schiffman
et al., 2010; Villa et al., 2000; Xi et al., 2007). Because of their medical importance, the
predominant research focus on papillomaviruses is their association with pathologic and
oncogenic lesions. Thus, this review will focus exclusively on human papillomaviruses and
predominantly on the HPVs within the genus Alphapapillomavirus.

In this review, we update knowledge of variant lineages and sublineages using currently
available complete genome sequences of human Alphapapillomavirus from species groups:
alpha-3 (HPV61), alpha-5 (HPV26, 51, 69 and 82), alpha-6 (HPV30, 53, 56, 66), alpha-7
(HPV18, 39, 45, 59, 68, 70, 85 and 97), alpha-9 (HPV16, 31, 33, 35, 52, 58 and 67),
alpha-10 (HPV6 and 11), alpha-11 (HPV34 and 73) and alpha-13 (HPV54). We summarize
the rationale for the grouping of related HPV types and highlight HPV16 lineages as an
example of the increased complexity in a dichotomized classification into European and
non-European groups by reviewing the use of an alphanumeric nomenclature. The
establishment of a coherent classification and nomenclature system for HPV variant lineages
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will facilitate comparisons amongst studies that directly determine HPV sequences,
especially as next-generation sequencing of PCR products and complete sample DNA
(metagenomics) is rapidly being applied in new studies (Barzon et al., 2011; Conway et al.,
2012; Ekstrom et al., 2011; Mokili et al., 2013). Moreover, specific variants occur on
lineages that are stable and have correlated changes and diagnostic polymorphisms
throughout the genome that can be used by all investigators (Alizon et al., 2011; Chen et al.,
2005). Without a system for naming variant lineages, investigators have had to rely on
referring to specific changes at nucleotide positions.

Historical perspective and previous reviews of HPV variants
This review builds upon the pioneering work of early investigators in the field that
appreciated the significance of studying HPV variants. The earliest work in the field
predated PCR and relied upon restriction enzyme digestion polymorphisms and/or Southern
blot hybridization to recognize related viral variants (de Villiers et al., 1981; Mounts et al.,
1982). Previous reviews of viral variants can be found from the era when sequencing DNA
was cumbersome, time consuming and technically challenging (Bernard, 1994; Bernard et
al., 1994). The lab of Bernard was the first to recognize the association of HPV16 (Ho et al.,
1993) and HPV18 (Ong et al., 1993) viral variants with human population migrations and
continent of origin (see Bernard (1994)) for review of this topic). The lab of CM Wheeler
provided some of the early evidence for the intratype variation of HPV types associated with
cervical neoplasia and HPV16 and HPV18 heterogeneity (Arias-Pulido et al., 2005; Stewart
et al., 1996; Yamada et al., 1997, 1995). With the demonstration of an association of HPV16
variants and cervical cancer (Berumen et al., 2001; Cornet et al., 2013b; Hildesheim et al.,
2001; Sichero et al., 2007; Xi et al., 2006), many of the studies on variants explored this
aspect of the biology of variants as described in a number of excellent reviews (Bernard et
al., 2006; Giannoudis and Herrington, 2001; Hildesheim and Wang, 2002; Lizano et al.,
2009; Sichero and Villa, 2006). This current review focuses predominantly on the study of
alpha-HPV variants using complete genome analyses.

The study of HPV variants from other genera provided evidence for significant intratype
variation of HPV5 and HPV8 from individuals with epidermodysplasia verruciformis (Deau
et al., 1993, 1991). In fact, the intratype heterogeneity of HPVs from the genera
Betapapillomavirus and Gammapapillomavirus has remained basically unexplored, and
there is currently a significant effort to characterize novel types from these genera (Bottalico
et al., 2011; Kohler et al., 2011; Li et al., 2012). With implementation of Next-Gen
sequencing (Barzon et al., 2011; Ekstrom et al., 2011), it is anticipated that there will be
rapid advances in studying these genome variants (Bernard, 2013), particularly if associated
with pathologic lesions.

Although the co-evolution of human populations and HPV16 and HPV18 variants is well
supported, the geographic associations for variants of other types remains unresolved
(Calleja-Macias et al., 2004, 2005; Chan et al., 1997; Heinzel et al., 1995; Matos et al.,
2013; Prado et al., 2005). Global studies of HPV variant lineages from worldwide
populations are needed to better understand the relationship between HPV and the recent
and past evolution and dispersion of their human hosts.

HPV variants and cervical cancer pathogenesis
The natural history of HPV and subsequent development of cervical cancer follows a set of
stages from sexual exposure to an oncogenic HPV (Bouvard et al., 2009), persistence of
infection, development of a precancerous lesion and progression of the precancerous lesion
to invasive disease (for recent review see Schiffman and Wentzensen (2013)). Each stage of
a pernicious papillomavirus infection leading to cancer (Burk, 1999) may be influenced by
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both the host and viral genome variations and environmental factors (Hildesheim and Wang,
2002; Wheeler, 2008). Since the outcome of cervical cancer for any specific HPV exposure
is extremely rare, most studies have used case-control designs to investigate the association
of specific variants with precancer and cervix cancer. Histologic diagnosis is the end point
of choice, although many studies have used cytologic outcomes. The most robust histologic
“biomarker” of precancer is cervical intraepithelial neoplasia grade 3 lesions (CIN3) (Luhn
et al., 2013), nevertheless studies also utilize CIN2 to enhance power by forming a high-
grade class. Thus, if we only consider oncogenic HPV types, the contribution of viral
variants to cancer development could be related to (1) acquisition of infection given
exposure (differences in infectivity), (2) long-term persistence (e.g., greater than 1 or 2 years
and could reflect viral differences in immune clearance or other properties), (3) development
of precancer usually given persistence (differences in viral dysregulation of cellular
differentiation and/or accumulation of somatic cellular changes in the premalignant or
stromal cells) and lastly, (4) invasion of HPV containing cells. It is assumed that most
invasive cervix cancer goes through all stages, however there are significant differences
between the more common squamous cell carcinoma and the rarer adenocarcinoma of the
cervix (Kim et al., 2013; Schiffman et al., 2007; Schiffman and Wentzensen, 2013).

Analysis of the pathogenic affects of HPV variants for this review encompassed evaluation
of over 50 manuscripts spanning nearly 20 years. The topic turned out to be extremely
complicated because of the complexity of the interaction of the virus with differences in host
genetics (de Araujo Souza et al., 2009; Hildesheim and Wang, 2002; Xi et al., 2006) and
prevalence of circulating HPV variants in different populations and/or geographic regions.
In addition, description or characterization of the variants was not always simple to convert
to a “categorical” description, such as has been previously designated or summarized in this
review (see Table 1 and Figs. 1–5). No studies on relative infectivity were identified, thus
point 1 above has not been evaluated for different variants. A summary of the current data is
presented below.

HPV16 variants and cervical pathogenesis—There is compelling data that HPV16
variants influence persistence, progression to precancer, development of cancer and
histologic type of cervix cancer. Most studies implicate the non-European (NE) lineages (B/
C/D, see Fig. 1) as being more pathogenic in comparison to isolates from the European (E)
lineage (A).

Persistence—The magnitude of the effect (NE vs. E) is approximately 2-fold (Schiffman
et al., 2010; Villa et al., 2000); although this biologic affect can be modified by host genetic
makeup (Xi et al., 2006). Amongst European populations with predominantly HPV16
isolates of the A lineage, variation at HPV16 EUR-350T vs. −350G, imparted an
approximately 2 fold risk of persistence (Cornet et al., 2013a; Gheit et al., 2011).

Precancer—Consistent results implicate the NE lineages compared to E isolates, with a 2–
4 fold increase for cervical neoplasia in general and CIN3, specifically, in many studies
(Hildesheim et al., 2001; Schiffman et al., 2010; Sichero et al., 2007; Villa et al., 2000; Xi et
al., 2007; Zuna et al., 2009). Complexities of differences in HPV16 variant distributions in
specific populations have indicated that in Taiwan, the E(As) or A4 lineage imparts a 10-
fold risk for CIN3+ compared to the E lineage (A1). This study demonstrated that within a
specific lineage there can be definable viral genetic markers, as had been suggested for the
AA (D) lineage (Smith et al., 2011).

Cancer and histologic subtype—There is a strong evidence that HPV16 NE variants
have elevated risks for cancer, although much of the affect is related to the increased risk for
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the AA (D) lineage (Berumen et al., 2001; Burk et al., 2003; Zuna et al., 2009), and there
appears to be geographic complexity (Cornet et al., 2013b). There is also multiple studies
that indicate the HPV16 AA (D) lineage compared to the E (A) lineage is disproportionately
(4–35 fold increased) associated with adenocarcinoma (AdCa) vs. squamous cell carcinoma
(SCC) (Berumen et al., 2001; Burk et al., 2003; Quint et al., 2010; Zuna et al., 2011).
Nevertheless, a study from Indonesian, Surinamese and Dutch cancer cases did not replicate
this finding (De Boer et al., 2005).

HPV18 variants and cervical pathogenesis—HPV18 is the second most common
HPV type associated with cervix cancer, but it is much less prevalent than HPV16 in the
population limiting study of this interesting oncogenic HPV. In fact, there is a lack of
compelling evidence for HPV18 variants role in different stages of the pathogenesis.

Persistence—There are conflicting studies on whether non-African (European) A lineage
isolates or Af variants (B/C) are associated with persistence (Schiffman et al., 2010; Sichero
et al., 2007). These analyses could be confounded by genetic make-up of the host (Xi et al.,
2006).

Precancer—There are few studies on precancer, in part, because it is well established that
HPV18-associated precancerous lesions are infrequently detected compared to HPV18-
related cancer (Guan et al., 2012). At least one study indicates that the European and AsAi
variants are approximately 2-fold risk factors compared to the Af variants for 2-year
cumulative incidence of CIN3 (Xi et al., 2007).

Cancer and histologic subtype—There is no compelling evidence that different
HPV18 variants are associated with risk of cancer (Arias-Pulido et al., 2005). However, one
out of three studies suggests that the AsAi lineage (A1/A2) is 4-fold more common in AdCa
than the E lineage (A3/A4) (Arias-Pulido et al., 2005; Burk et al., 2003; De Boer et al.,
2005).

HPV31 variants and cervical pathogenesis—Two recent studies provide consistent
data that HPV31 lineage C is more persistent that A and/or B (Schiffman et al., 2010; Xi et
al., 2013). Enigmatically, it appears that HPV31 lineages A/B are more commonly
associated with and development of, CIN3 (Schiffman et al., 2010; Xi et al., 2012). In
particular, lineage B was associated with CIN3 compared to lineage C with an aOR of 2.7
(95% CI: 1.2–5.7) (Xi et al., 2012).

HPV52 variants and cervical pathogenesis—At least 2 groups have reported that
HPV52 variants are associated with precancer (Chang et al., 2011; Formentin et al., 2013;
Schiffman et al., 2010). The most convincing association was reported from a large study in
Taiwan that demonstrated variants from lineage C compared to B were associated with a 7.6
fold risk (95% CI: 1.3–44) in women with HPV52 as a single infection (Chang et al., 2011).
In contrast, a study from Canada indicated the A1 lineage was more common in CIN2/3
(OR=10.5, 95% CI: 1.2–96) (Formentin et al., 2013).

HPV58 variants and cervical pathogenesis—The complexity of HPV58
heterogeneity has complicated compiling the few studies that have investigated these
variants (Chan et al., 2013; Chang et al., 2011; Schiffman et al., 2010). A study from Taiwan
reported that in single HPV58 infections, lineage A1 compared to A3 was associated with
CIN3+ in a nested case-control study (OR=2.4, 95% CI: 0.5–12.1). In contrast, another
study indicated A3 was a risk factor for CIN3+(OR=4.4, 95% CI: 1.5–13) (Chan et al.,
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2013). Lastly, comparison of A vs. B/C/D suggested the former lineage was associated with
persistence and possibly CIN3+ (Schiffman et al., 2010).

Future studies investigating the association and/or risks of infection with specific variants
should consider grouping variants by categorical states, such as lineages or sublineages as
the first level of testing hypothesis about natural history or disease states. This
recommendation is based on the fact that most nucleotide changes within lineages are highly
correlated and analysis by lineage takes this into consideration. However, there are also non-
lineage specific changes (e.g., SNPs) that should be analyzed independently (Smith et al.,
2011). With implementation of Next-Gen sequencing in large studies, future work will
illuminate the role of variants in the pathogenesis of cervix cancer. Consideration of
population stratification and other risk factors will require large collaborative studies.

The era of whole genome analyses
HPV variant classification: lineage and sublineage taxons—The parameters for
classifying related isolates of a given type were previously reported using the large dataset
for HPV isolates (HPV16, HPV31, HPV33, HPV35, HPV52, HPV58 and HPV67) from the
alpha-9 species group (Burk et al., 2011; Chen et al., 2011; Smith et al., 2011). A table of
each genome compared to all others was created from the multiple sequence matrix. The
distribution of percent differences between variants revealed a trimodal pattern (Fig. S1A).
This trimodal distribution of pairwise comparisons indicated at least 3 discrete categories of
relatedness, suggesting a natural taxonomy once the underlying relationship of each
distribution was elucidated. To sort out the distinctions between variants, pairwise
comparisons within each variant lineage (i.e., intra-lineage) or between variant lineages for
each of the seven HPV types (i.e., inter-lineage)(Fig. S1B) were plotted. Previous
examination of phylogenies for each of the alpha-9 types combined with an approximate
cut-off of 1.0% difference between complete genomes was/is used to define major variant
lineages based on lineage similarity plots as shown in Fig. 1, middle panel (Chen et al.,
2011, 2005). Each major lineage was/is named using an alphanumeric, with the “A” clade
always containing the reference genome for each type. The overlap between inter- and intra-
lineage distributions (0.7–0.9%) indicates that a fixed value cannot simply be used to
distinguish variant lineages (Fig. S1B). A conservative 1.0% difference or more has been
used to define lineages, with the caveat that no classification system can exactly categorize
the process of evolution. Two distributions are discernable between and within the genome
comparisons of sublineages for each HPV type (Fig. S1C). Differences between genomes in
the 0.5–1% range are designated as sublineages (e.g., A1, A2, etc.). These criteria to classify
variants of HPV types from Alphapapillomavirus were based on available complete
genomes in PubMed as part of an ongoing project to decipher HPV viral evolution and
oncogenicity (Burk et al., 2009).

Subtypes—The use of the term “subtype”, although commonly used, at one time meant a
difference in restriction digestion pattern of a papillomavirus (Mounts et al., 1982), with a
current definition of genomes that are 2% to < 10% different in their L1 ORFs (Bernard et
al., 2010; de Villiers et al., 2004). Because of the large continuum of differences between
existing and potential subtypes, we favor the use of the term variants to include subtypes.
The rationale for the use of complete genome (CG) sequences to define viral lineages
instead of a specific region is well illustrated when comparing the L1 ORF and CG sequence
differences between subtypes. As examples, subtypes within the alpha-HPV taxon
demonstrate how different the two measurements, complete genome and L1 ORF
comparisons are: HPV44 vs. HPV55 (CG: 6.2%, L1: 6.7%), HPV68 vs. ME180 (CG: 6.7%,
L1: 7.9%), HPV34 vs. HPV64 (CG: 4.7%, L1: 5.4%), HPV82 vs. AE2 (CG: 10.2%, L1:
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7.7%), HPV54 vs. AE9 (CG: 6.5%, L1: 4.6%), HPV52 lineage A vs. lineage D (CG: 2.2%,
L1: 2.2%), HPV58 lineage A vs. D (CG: 1.7%, L1: 2.2%).

Analyses of complete genome variants of HPV16—Since HPV16 is the most
pathogenic and medically important HPV type, we review the relationships amongst HPV16
variant complete genomes. Prior phylogenetic analyses of HPV16 variants (Chen et al.,
2005; Ho et al., 1991; Yamada et al., 1997) identified 4 major intratypic variant lineages:
European (E), Asian–American (AA), African-1 (Af-1) and African-2 (Af-2). Fig. 1 depicts
a whole-genome phylogenetic tree (left panel, labeled “Complete genome phylogeny”) and a
plot of the pairwise differences between all HPV16 complete-genome sequences (middle
panel, labeled “Complete genome”); a plot of the differences based on the L1 ORF
nucleotide sequence is shown for comparison (right panel, labeled “L1 ORF”). A global
alignment of the 62 complete genomes resulted in a matrix that is 7916 bp in length with a
maximum of 10 insertions/deletions (indels) across all sequences (Smith et al., 2011). All
indels were within the highly variable non-coding region between E5 and L2 (NCR,
positions 4102–4236) of the HPV16 genome. Comparison between all sequences identified
a total of 540 single nucleotide polymorphisms (SNPs) with any pair of sequences having a
maximum of 180 (2.3% of genome) differences. In addition to these genomes, Sabol et al.
(2012) have reported a 63 bp duplication within the E1 ORF (HPV16 (E1).1374_1436dup,
also listed as E1-1374^63nt duplication) and 76 complete HPV16 genomes were sequenced
from central China (Sun et al., 2012), although the heterogeneity was limited to the A
lineages. The most striking observation about HPV16 variants is the presence of genetic
heterogeneity in what is called the “non-European” lineages (i.e., lineages B/C/D) in
contrast to the relative homogeneity of the A (European) lineage. In addition to the
differences between the major variant lineages, there appears to be sublineage structure; a
feature notably well developed within the D (AA) lineage. The tree demonstrates excellent
support (i.e., all partitions have posterior probability of 1.0) for the placement of all named
lineages and sublineages. Sublineages refer to groups of genome sequences with 0.5–1.0%
differences between their genomes that cluster in the phylogenetic tree (Chen et al., 2011).
Sublineages are indicated by brackets within distinct blocks of similar color in Fig. 1. Taken
together, these analyses suggest the presence of evolutionarily fixed sublineages at a deeper
taxonomic level than the 4 commonly recognized variant clades (i.e., E, Af-1, Af-2 and AA;
renamed A, B, C and D, respectively) (Chen et al., 2005). Of note is the loss of clear
resolution between lineages and sublineages when only the L1 ORF nucleotide sequence is
compared (compare Fig. 1. middle panel to right-side panel). This observation provides a
concrete example for using complete HPV genomes to define variant taxons, whereas the L1
ORF sequence is sufficient and robust for distinguishing HPV types (Bernard et al., 2010).

Human alpha-PV species groups variant lineages—In this review, we present
archetypal HPV genome isolates that represent a specific variant lineage or sublineage as
defined above. The originally defined HPV type genome is always assigned to lineage “A”
or when sublineages are present, “A1”. It is appreciated that with continued characterization
of HPV complete genomes throughout the world there will be additional isolates identified
that define future lineages and sublineages. The list of HPV genomes used in Figs. 2–5 is
provided in Table 1. These figures show the phylogenetic relationships between
representative isolates selected to provide a simplified topology for nomenclature; the
species groups are presented by clinical importance based on association with cancers. Fig. 2
displays types constituting species group alpha-9 (Chen et al., 2011; Smith et al., 2011);
HPV16, 52 and 58 each has 4 variant lineages and multiple sublineages. HPV35 is the least
heterogeneous. Fig. 3 shows the topology of alpha-7 variant lineages and sublineages (Chen
et al., 2013). HPV68 contains 2 distantly related clades that are also referred to as subtypes
formed by isolates related to either the prototype HPV68 (lineages A and B) or the variant
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ME180 (lineages C/D/E/F). Relatively rare types, HPV85 and HPV97 have insufficient
numbers of isolates detected to say with confidence that there is little or no viral
heterogeneity. Fig. 4 shows the clade containing alpha-5 and alpha-6. HPV82 shows
significant diversity and like HPV68, has 2 clades also referred to as subtypes (i.e., HPV82
prototype, lineages A/B; and AE, lineage C). Fig. 5 displays the topology of HPV isolates of
types from species groups: alpha-11 (HPV34 and HPV73), alpha-10 (HPV6 and HPV11),
alpha-13 (HPV54) and alpha-3 (HPV61). HPV34 and HPV54 isolates show deep
bifurcations that represent subtypes. The characterization and nomenclature of HPV variants
of HPV6 and HPV11 were recently reviewed (Burk et al., 2011).

Conclusions
This review summarizes the current classification of HPV variants and provides a
framework for developing a common nomenclature as the papillomavirus fields embrace
Next-Gen sequencing. Massively parallel high-throughput sequencing is anticipated to
generate large amounts of data on papillomavirus isolates, where it will be commonplace to
obtain the complete sequence in the matter of a few days. Implementation of the new
technologies will enable defining the genotype-phenotype relationships between viral
isolates and clinical outcomes, such as cervix cancer. The classification of variant genomes
should be based on a set of complete genomes, whereas the classification of HPV types is
based on the L1 nucleotide sequences (Bernard et al., 2010; de Villiers et al., 2004). The use
of full genome sequences for variant classification is derived from the fact that isolates of
the same type are closely related and the full extent of the sequence heterogeneity is best
summed across the whole genome and recently evolved variant genomes have changes that
are not always evenly distributed throughout the genome. Nevertheless, to define distinct
variant lineages, a nucleotide sequence difference of approximately 1.0% or more between
two or more variants of the same type is utilized. This value is derived from empiric data on
the distribution of differences between isolate genomes of the same type from the alpha-9
species group (see Fig. S1). Similarly, differences across the genome of 0.5%–1.0% are used
to identify sublineages. Each variant lineage has been classified and named with an
alphanumeric value. The prototype or reference sequence (i.e., the cloned genome
designated as the original type) is always designated variant lineage A and/or sublineage A1
(Chen et al., 2009, 2011 in press). Therefore, with classification of variants based on full
genome sequences, it is thus possible to characterize and name isolates by the use of
lineage-specific diagnostic single nucleotide polymorphisms (SNPs) or lineage-specific
indels found in short sequence reads in various predefined regions of the genome.

To facilitate the consistent numbering of nucleotide positions, a summary table with key
landmark nucleotide positions can be used as a reference to name specific nucleotide
variations within human alpha-PV genomes. Nucleotide positions are based on the reference
sequence for each type. At some point in the past, agreement arose within the PV
community that the “A” of the first ATG in the E6 ORF should be designated position “1”.
However, as shown in the Table S1, few of the human alpha-PVs used this criterion in
naming position “1”. For instance, the sequence of HPV16 defines position “1” based on an
alignment with the first 60 bp of HPV1a, HPV6b and BPV1 (Seedorf et al., 1985).
Moreover, there were sequencing errors in some reference clones that have been corrected
over time. For convenience, a table with both the first 8 nucleotides of the reference genome
and the potential E6 start codon are provided. These 8 bp sequences can be used to search
the genome to locate landmarks of interest. We recommend use of the E1 ORF ATG as a
reasonably conserved site, at least, in the human alpha-PVs for multiple sequence
alignments. Thus, the location of the E1 ATG established from the reference sequence
numbering and the 8 bp subsequent to the E1 ATG are listed for quick identification by
searching. Recent discussions amongst the Papillomavirus Working Group of the ICTV
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suggested that nucleotide position “1” of new papillomavirus genomes should be the first
nucleotide after the stop codon in the L1 ORF. This recommendation is based on the fact
that every papillomavirus has a unique L1 ORF stop codon, whereas there can be many 5′
ATGs in the E6 ORF that are not functional. As mentioned above, for multiple sequence
alignment we recommend the E1 ORF start site, irrespective of nucleotide position.

The use of whole genomes for variant taxonomy provides HPV researchers a simple
mechanism to discuss the properties of HPV variant lineages without having to describe sets
of nucleotide changes to define a group of HPV variants. This will be particularly useful for
future studies of the oncogenic HPV types. As discussed above, there is growing evidence
that variants of HPV16, HPV31, HPV52 and HPV58 have different oncogenic properties
(Berumen et al., 2001; Chan et al., 2013; Chang et al., 2011; Cornet et al., 2013b;
Hildesheim et al., 2001; Schiffman et al., 2010; Smith et al., 2011; Xi et al., 2012).

In summary, both the foundations of HPV variant research and classification and
nomenclature for HPV variants based on the sequences of complete genomes are reviewed.
A summary of the genomes for each lineage and sublineage are listed that can be
incorporated into analyses by investigators sequencing either the full genome or subgenomic
regions for variant classifications. These variants should be useful for detailed studies
addressing the genetic basis of the pathogenesis of specific HPVs, viral–host interactions
and host evolution, amongst other applications and scientific inquiries. The question then
becomes to define the specific nucleotides or combination of nucleotides that are associated
with specific pathologic consequences. It is anticipated that multicenter studies and/or meta-
analyses will be needed to validate the nucleotide level of pathogenesis and provide insights
into the molecular basis of HPV-associated disease. This review provides the framework
based on previous studies that should be instrumental in the next stages of HPV genome
research.
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Fig.1.
HPV16 variant tree topology and pairwise comparisons of individual complete genomes. A
maximum likelihood (ML) tree was inferred from a global alignment of 62 complete
genome nucleotide sequences of HPV16 using RAxML HPC v7.2.8 (Stamatakis, 2006). The
62 HPV16 genomes were previously described in Smith et al. (2011). Distinct variant
lineages (i.e., termed A/B/C/D) and sublineages (e.g., termed A1/A2/A3/A4) were classified
according to the topology and nucleotide sequence differences from > 1% to < 10%, and >
0.5% to < 1% ranges, respectively (Bernard et al., 2010; Chen et al., 2011). The p-distance
method in MEGA5 (Tamura et al., 2011) was used to calculate pairwise nucleotide sequence
differences for each isolate compared to all other isolates based on the complete genome
nucleotide sequences and are shown in the middle panel, labeled “Complete genome” at the
top of the figure. For comparison, the L1 ORF nucleotide sequence of each isolate was
compared to that of all other isolates and is shown in the right panel, labeled “L1 ORF”.
Values for each comparison of a given isolate are connected by lines and the comparison to
self is indicated by the 0% difference point.
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Fig. 2.
Phylogenetic trees showing representative types and variant lineages/sublineages of alpha-9.
A maximum likelihood tree was constructed using RAxML HPC v7.2.8 (Stamatakis, 2006)
inferred from the global alignment of complete genome nucleotide sequences using the
program MUSCLE (Edgar, 2004) linearized at the first ATG of the E1 ORF. Representative
genomes of each lineage and/or sublineage are listed in Table 1, with GenBank accession
numbers. The bold part represents groupings of each type. The length of dashed and solid
lines represents distance between isolates, although the number of changes is different for
these two lines; the scale is indicated in the upper left corner of Figs. 2, 4 and 5; it is shown
in the upper right corner of Fig. 3.
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Fig. 3.
Phylogenetic trees showing representative types and variant lineages/sublineages of alpha-7.
A maximum likelihood tree was constructed using RAxML HPC v7.2.8 (Stamatakis, 2006)
inferred from the global alignment of complete genome nucleotide sequences using the
program MUSCLE (Edgar, 2004) linearized at the first ATG of the E1 ORF. Representative
genomes of each lineage and/or sublineage are listed in Table 1, with GenBank accession
numbers. The bold part represents groupings of each type. The length of dashed and solid
lines represents distance between isolates, although the number of changes is different for
these two lines; the scale is indicated in the upper left corner of Figs. 2, 4 and 5; it is shown
in the upper right corner of Fig. 3.
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Fig. 4.
Phylogenetic trees showing representative types and variant lineages/sublineages. A
maximum likelihood tree was constructed using RAxML HPC v7.2.8 (Stamatakis, 2006)
inferred from the global alignment of complete genome nucleotide sequences using the
program MUSCLE (Edgar, 2004) linearized at the first ATG of the E1 ORF. Representative
genomes of each lineage and/or sublineage are listed in Table 1, with GenBank accession
numbers. The bold part represents groupings of each type. The length of dashed and solid
lines represents distance between isolates, although the number of changes is different for
these two lines; the scale is indicated in the upper left corner of Figs. 2, 4 and 5; it is shown
in the upper right corner of Fig. 3.
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Fig. 5.
Phylogenetic trees showing representative types and variant lineages/sublineages. A
maximum likelihood tree was constructed using RAxML HPC v7.2.8 (Stamatakis, 2006)
inferred from the global alignment of complete genome nucleotide sequences using the
program MUSCLE (Edgar, 2004) linearized at the first ATG of the E1 ORF. Representative
genomes of each lineage and/or sublineage are listed in Table 1, with GenBank accession
numbers. The bold part represents groupings of each type. The length of dashed and solid
lines represents distance between isolates, although the number of changes is different for
these two lines; the scale is indicated in the upper left corner of Figs. 2, 4 and 5; it is shown
in the upper right corner of Fig. 3.
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