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Abstract
Driven by recent advances in medical imaging, image segmentation and numerical techniques,
computer models of ventricular electrophysiology account for increasingly finer levels of
anatomical and biophysical detail. However, considering the large number of model parameters
involved parameterization poses a major challenge. A minimum requirement in combined
experimental and modeling studies is to achieve good agreement in activation and repolarization
sequences between model and experiment or patient data. In this study, we propose basic
techniques which aid in determining bidomain parameters to match activation sequences. An
iterative parameterization algorithm is implemented which determines appropriate bulk
conductivities which yield prescribed velocities. In addition, a method is proposed for splitting the
computed bulk conductivities into individual bidomain conductivities by prescribing anisotropy
ratios.

1. Introduction
In-silico models of ventricular electrophysiology are widely recognized to be an invaluable
adjunct to experimental in-vitro or in-vivo models. Recent advances in medical imaging,
image segmentation and image-based finite element (FE) mesh generation [1], along with
major advances in the numerical solution of model equations have led to the generation of
micro-anatomically accurate and biophysically detailed ventricular models [2]. However,
considering the large number of parameters in these models data assimilation and
parameterization poses a major challenge.

A minimum requirement in such modeling studies which aim at making case-specific
predictions on ventricular electrophysiology is that activation and repolarization sequences
are carefully matched. Conduction velocity in the ventricles is orthotropic and may vary in
space, thus profoundly influencing shape and location of activation isochrones. Moreover,
while anisotropy ratios, on mathematical grounds, are of rather minor relevance when
simulating impulse propagation in tissue, they play a prominent role when the stimulation of
cardiac tissue via externally applied electric fields is studied.

In this study, we propose an automatic tuning procedure which iteratively refines bidomain
bulk conductivities using observed conduction velocities in 1D cable simulations as input.
We propose a method for splitting these bulk conductivities into individual bidomain
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conductivities by prescribing anisotropy ratios and using those experimental data afflicted
with the smallest uncertainty.

2. Methods
2.1. Governing equations

The bidomain equations are considered to be among the most accurate descriptions of
cardiac bioelectricity at a macroscopic size scale. In the elliptic-parabolic form they are
given by

(1)

where ϕi and ϕe are intra- and extracellular potentials, respectively, Vm = ϕi – ϕe is the
transmembrane voltage, σi and σe are the intra- and extracellular conductivity tensors,
respectively, β is the membrane surface-to-volume ratio, Cm is the membrane capacitance
per unit area, and Iion is the membrane ionic current density which depends on Vm and a set
of state variables, η. At tissue boundaries, no flux boundary conditions are imposed on ϕi
and ϕe.

In a 1D case where impulse propagation occurs along a thin strand of tissue aligned with an
axis ζ, or in the case of a planar wave front moving along an axis ζ, the monodomain
equation

(2)

is equivalent to the bidomain equation if the monodomain conductivity σmζ is chosen to be
half the harmonic mean between intracellular and interstitial conductivities, that is,

(3)

suggesting that conduction velocity in a full 3D bidomain model at a given location can be
matched closely by an equivalent monodomain model using a harmonic mean conductivity
tensor.

2.2. Conduction velocity parameterization
Conduction velocity, Cv, is not a parameter in the bidomain equations and as such cannot be
directly parameterized. However, assuming a continuously propagating planar wavefront

along a given direction, ζ, space and time are related by  which allows to replace
spatial derivatives in Eq. (2) by temporal derivatives

(4)

Since membrane properties on the right hand side remain unchanged, Vm remains to be a
solution of Eq. (4) as long as σmζ/Cv2/β is constant. Thus Cv is governed by the
proportionality relation

(5)
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Ideally, these parameters and their spatial variation would be measured accurately in-vivo
for a given subject, however, this is difficult, if not impossible, to achieve. Even when
considering ex-vivo measurements, the number of reports in the literature is scarce and the
variation in measured values across these studies is vast. These uncertainties inevitably arise
due to the significant degree of biological variation and the substantial errors in the
measurement techniques themselves.

2.3. Iterative parameterization strategy
Modeling and technical uncertainties may also have an impact on model predictions as well.
For instance, Cv also depends on the particular model used to describe cellular dynamics.
Uncertainties due to technical factors such as discretization errors are of lesser concern since
these are, in general, small (<5%) relative to the uncertainties in model parameters.
Therefore, resorting to use overly expensive numerical schemes to minimize discretization
errors is not a likely candidate strategy for improving the predictive power of computer
simulations. The direct use of experimentally measured conductivity values, is not warranted
neither when aiming to achieve good agreement with a specific experiment.

To find a balanced trade-off, we propose a strategy which relies on prescribing Cv directly.
This is based on the consideration that Cv is a quantity which is much easier, more robustly
and more accurately measurable in-vivo than tissue conductivities. The proposed strategy

assumes that Cv predicted by a given computer simulation setup, , can be represented as a
function

(6)

which depends on the main factors conductivity along an axis ζ, σmζ, surface-to-volume
ratio, β, the chosen model of cellular dynamics, Iion, and technical factors such as spatial
discretization, Δζ, and others such as the used spatio-temporal discretization method,
convergence criteria and error tolerances, the influence of which shall be summarized by ξ.
In most practical scenarios, ξ, Iion and Δζ are parameters defined by users in the course of
selecting a simulation software, an ionic model and a provided mesh to describe the
geometry. Thus, only two free parameters, σmζ and β, are left which can be tuned to achieve

a close match between the pre-specified conduction velocity, Cv, and the velocity, ,
predicted by the simulation.

In ventricular models Cv is orthotropic, thus necessitating to find parameters along each of

the three eigenaxes. Among the two parameters available for fitting  , β scales conduction
velocity isotropically along all axes ζ. Using (5) and (2), and keeping β at a chosen default
value, one can find unique monodomain conductivities along all axes ζ, which yield the

prescribed conduction velocities, , by iteratively refining conductivities σmζ based on 
measured in simple 1D cable simulations. The iterative update scheme we propose is given
as
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Algorithm 1 Iterative conductivity tuning

where  is an arbitrary initial guess which is used during the first simulation run.

2.4. Compensation of discretization effects
When using bidomain parameters as chosen based on the proposed strategy, Cv must be
independent of the choice of spatial discretization, Δζ. The influence of Δζ is studied in a 1D
strand model of 1cm length in which Δζ is varied between 1μm up to 400μm. σmζ is
iteratively tuned at the 1μm grid to yield a Cv of 0.6m/s, 0.4m/s and 0.2m/s, respectively. At
each discretization and for each σmζ, propagation is initiated at the left hand side end of the

cable and  as well as the spatial extent of the wavefront, ΔX ζ, is measured at its center.

Plots are constructed to show  as a function of Δζ. Finally, each simulation is repeated,

replacing σmζ, as fitted for the 1μm grid, by , as computed by the iterative tuning loop
described in algorithm 1.

2.5. Obtaining bidomain conductivities
Although anisotropy ratios, on mathematical grounds, are of rather minor relevance when
simulating impulse propagation in tissue, when the stimulation of cardiac tissue via
externally applied electric fields are studied, anisotropy ratios play a prominent role. For this
case additional constraints are required to adjust the anisotropy ratio α while keeping

conduction velocities unaltered. Using the definition  to characterize differences in
conductivities between intracellular and extracellular space along an axis ζ, and

 to characterize differences in conductivity within the same space, but
between an axis ζ = t|n relative to the longitudinal axis, ζ = l, we may express the anisotropy
ratio εl,ζas

Note that we present quantities relative to the longitudinal axes where ζ is then either t or n.
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To determine the four individual bidomain conductivities we chose the desired anisotropy
ratio εlt and the longitudinal conductivity σil as these quantities show the smallest variance
in the literature [3-5]. Using these constraints the bidomain conductivities are determined
using (3) as

(7)

where * denotes quantities which were determined by iterative simulations, as outlined in
Algorithm 1, and primed quantities are chosen values. Solving equations (7) for αl and αζ
allows to find the bidomain conductivities

(8)

(9)

In the transversely orthotropic case, Eq. (7) is solved with ζ = t, whereas in the orthotropic
case Eq. (7) is solved once more with ζ = n.

3. Results
3.1. Monodomain-bidomain equivalence

While the exact equivalence between bidomain and monodomain model using harmonic
mean conductivities does not hold in 3D, along the principal eigenaxes the agreement
between the models is quite good (Fig. 1). This close agreement suggests that the equivalent
monodomain model can be used within the Algorithm 1, yielding a set of conductivities
which enforce the prescribed Cv also when using a 3D bidomain model.

3.2. Conduction velocity parameterization
Using the iterative algorithm 1, conductivities were chosen to arrive at the prescribed

velocities of  =0.6, 0.4 and 0.2m/s for planar wave fronts traveling along the axes ζ = f, s,

n, respectively. Fig. 2A shows how simulated velocities  are affected when increasing
grid resolution Δζ stepwise from 1μm to 400μm. Numerical errors of 5% incurred at

different spatial resolutions of Δζ =275μm, 180μm and 90μm for  and ,
respectively. As expected, scaling of simulated velocities with the prescribed velocity, i.e.

, reveals that spatial discretization errors are mainly governed by the ratio Δζ/

ΔX ζ(Fig. 2B). Convergence experiments were repeated for  =0.6m/s and all
discretizations Δζ, but equations were re-parameterized using the automatic parameterization
strategy (APS) as described in algorithm 1. While conductivities varied in the range between
−6 to +24%, wave fronts propagated with the exact prescribed Cv, independently of Δζ.

3.3. Choice of individual conductivities
Considering a transversely isotropic scenario, the analytic expressions 9 were used to obtain
individual conductivities given three different anisotropy ratios: 1) unequal anisotropy, with
εl,t = 4.5, 2) equal anisotropy, with εl,t = 1, and 3) inverse anisotropy, with εl,t = 1/4.5. The
propagation patterns and the virtual electrode propagation (VEP) are shown in Fig. 3. Note
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that during normal propagation differences in anisotropy ratio do not manifest in the
activation patterns. However, a different VEP is induced for each anisotropy ratio.

4. Discussion
In this study an iterative parameterization strategy is proposed that allows to find appropriate
tissue conductivities which result then in the prescribed Cv along the orthotropic eigenaxes f,
s and n of the tissue, as well as prescribed anisotropy ratios. Computationally cheap 1D
equivalent monodomain models can be used in the parameterization loop to determine
conductivities which are also suited for bidomain simulations. It is worth noting that
parameter variations due to the automatic parameterization strategy, between −6% up to
+24% around the nominal values, are well below the experimentally measured variability.
The effectiveness of the methods is demonstrated for spatial discretizations of up to 400μm,
however, for even coarser discretizations this may not be the case anymore. However, in line
with the current trend towards anatomically detailed ventricular models, finer spatial
resolution down to average discretizations of around ≈ 100μm are becoming standard to
resolve geometric details. With such finer spatial steps Δζ, relative discretization of wave
fronts Δζ/ΔX ζ is less than 0.3 and necessary modifications of conductivity values are below
6%.
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Figure 1.
Comparison between bidomain and an equivalent monodomain model in a 3D slab model.
White dashed lines in the Monodomain panel indicate position of the wavefront in a
bidomain setting for the same instant in time. f, s and n are orthotropic main axes.
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Figure 2.
A) Influence of spatial discretization Δζ upon predicted conduction velocities for

propagation along the axes f, s and n. B) Deviations in relative velocity,  depend
on the ratio Δζ to spatial extent of wave front, ΔXζ. Using APS, predicted Cv (black dotted
trace) is independent of Δζ, at the cost of minor variations of the chosen conductivity value,
σmf (pink trace)
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Figure 3.
Anisotropy ratios are chosen without affecting conduction velocity. Upper panels show
activation sequences for three different anisotropy ratios. Lower panels show the induced
VEPs in response to a strong hyperpolarizing point stimulus for the same given anisotropy
ratios.
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