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Abstract
Brain injury profoundly affects global brain dynamics, and these changes are manifest in the
electroencephalogram (EEG). Despite the heterogeneity of injury mechanisms and the modularity
of brain function, there is a commonality of dynamical features that characterize the EEG along
the gamut from coma to recovery. After severest injury, EEG activity is concentrated below 1 Hz.
In minimally conscious state during wakefulness, there is a peak of activity in the 3–7 Hz range,
often coherent across the brain, and often also activity in the beta (15–30 Hz) range. These
spectral changes likely result from varying degrees of functional deafferentation at thalamic and
cortical levels. EEG-based indices of brain dynamics that go beyond these simple spectral
measures may provide further diagnostic information and physiologic insights.
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INTRODUCTION
Patients who survive severe brain injury are often left with a chronic disturbance of
consciousness. The consequent suffering and disability has a major impact on the individual
patient and their family. The aggregate burden to society is accentuated by two factors:
traumatic brain injury primarily affects young people, and ongoing improvements in medical
intensive care have increased survival rates, especially after very severe injuries. Over the
last decade, it has become increasingly evident that even with a severe initial deficit, the
outlook is not hopeless: many patients have a spontaneous late recovery (even after many
years), and some treatment options show promise. Improved understanding of the
physiologic basis and phenomenology of these disturbances therefore is crucial: to provide
accurate diagnosis and prognostication, and to guide and assess potential treatments.

Determination of consciousness requires more than behavioral observation
In severe brain injury, making even basic diagnostic distinctions is challenging. The critical
distinction between the vegetative state (VS) and the minimally conscious state (MCS) is the
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presence of at least some elements of consciousness, even if inconsistent (see Box 1 for
definitions and characteristics of these states and related entities). Reliance on clinical
observations to identify elements of consciousness is questionable[1] : it presumes an intact
motor system, but severe damage to the motor system (or motor disability consequent to
prolonged immobility) is common in this population. This puts a premium on methods of
assessing brain function that do not rely on motor output [2–5].

One such approach is functional imaging. Functional magnetic resonance imaging (fMRI)
studies have demonstrated that some VS and MCS patients can generate complex activations
consistent with motor imagery, and even communicate via such signals [2,3,6], despite a
lack of verbal or gestural communication systems. Translation of such methods to the
electroencephalogram (EEG) has demonstrated that brain signals linked to motor imagery
can be measured in brain-injured subjects using this modality as well [4]. However, fMRI
and EEG measurements carried out over short periods of time are of limited value in patients
with severe brain injuries, because of their marked and frequent fluctuations in state.
Because of such state fluctuations, evidence of cognitive responses may be present at one
time, and not at another [4]. Moreover, statistical methods that do not take state fluctuations
of background activity into account may lead to false positive findings in EEG assessments
of severely brain-injured subjects [7].

These considerations motivate augmenting behavioral observation with direct measures of
brain activity that allow not only for assessment of interaction with the environment, but
also of state and state fluctuations. The EEG is a particularly attractive modality for this
purpose: it is non-invasive, it is relatively inexpensive, it allows for repeated or extended
measurements at the bedside, and it can resolve dynamics at the timescale of neuronal
activity. (For a comprehensive introduction to EEG, see [8]) Our review therefore focuses
on EEG measures of brain activity, and an emerging framework for linking these measures
to the neurophysiology of the normal and injured brain.

Why focus on global dynamics?
Since many cognitive and behavioral functions are modular and localized, an emphasis on
global dynamics might at first seem puzzling. Our reasons for this focus are twofold. First,
although brain injury often affects modular functions, these effects often depend
idiosyncratically on the specific injury pattern (e.g., the vascular territory involved, or the
location of the traumatic injury). In contrast, the effects of brain injury on arousal and
attentional modulation are pervasive and general, and, as we suggest below, are likely to
have an underlying pathophysiology that is independent of the mode or details of the injury.
The second reason is that global deficits are arguably more significant for functional
recovery: preservation of specific modular functions in the absence of intact arousal
mechanisms is a devastating injury [9], while loss of a modular function may be susceptible
to remediation via prosthetics and functional substitution.

A perspective on EEG analysis
As a measure of brain dynamics, the EEG is in some sense an embarrassment of riches:
typical recordings provide signals with a bandwidth ranging over a broad frequency range
(e.g., 1 Hz to 70 Hz), recorded at dozens or even hundreds of scalp locations, over a period
of minutes to hours. Reducing these high-dimensional datasets to a small number of
meaningful quantities is a critical challenge. The challenge is exacerbated by the presence of
non-stationarities (i.e., the state changes mentioned above) and the many environmental and
physiologic artifacts that contaminate clinical recordings – and the possibility that state
changes and artifacts may be interrelated.
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While there is no simple solution, we would like to suggest a set of guidelines. First, for
identification of state changes and artifact, it is essential to inspect the raw signal itself,
along with video images of the patient. Second, for dimensional reduction, there is an
advantage to approaches that have only minimal dependence on specific physiologic
models, and well-characterized statistical properties – spectral analysis (Fig. 1A) is a prime
example [10–12], as we illustrate below. Finally, while statistical vetting is a necessity, such
validation can be highly dependent on the statistical model [7]. Therefore, a physiologic or
mechanistic interpretation of EEG observables provides important reassurance that a set of
inferences is based on more than a chance association. With these considerations, this article
reviews not just the phenomenology of EEG dynamics in the injured brain, but also
summarizes current thinking about mechanism.

LARGE-SCALE EEG DYNAMICS IN STRUCTURAL BRAIN INJURIES
We begin by considering the phenomenology of global EEG dynamics in the severely
injured brain that characterize and differentiate the states along the gamut from coma to
normal function. We focus on the power spectrum and related measures[10–12], as this
enables a link to the likely pathophysiological underpinnings, which we then describe.
Finally, we consider other quantitative indices derived from the EEG that show promise as
probes of global dynamics in severe brain injury.

Phenomenology
Although a wide variety of EEG patterns may appear with structural brain injuries and even
in normal wake and sleep states, broad regularities are readily identifiable, particularly at the
extremes of very severe injury and normal brain function [8,13]. Figure 1B illustrates typical
EEG power spectra obtained from human subjects in coma, MCS, and normal wakefulness.
In coma (Figure 1B1), power is concentrated at very low (<1Hz) frequencies; above 3 Hz,
there is a gradual and nearly featureless decline. This example, taken from a patient in VS
following a very severe anoxic injury, is representative of all EEG channels in this subject.
Such power spectra (power concentrated below 1 Hz, and uniform across the scalp) are
characteristic of patients with the most severe forms of structural injuries produced by
trauma, hypoxia or other causes.

In contrast, an example EEG power spectrum during normal wakefulness contains a
complex mix of frequencies (Figure 1B3). As is typical of the normal EEG power spectrum,
there are peaks in the alpha band (8–12 Hz) and the beta band (15–30Hz). The relative and
absolute sizes of these peaks normally vary with location (with alpha being more prominent
over parietal and occipital areas, and beta more prominent over frontal areas), and also
across subjects. Figure 1A1 is another example, in which the alpha peak is more prominent
and the beta activity is nearly absent.

The EEG power spectrum in MCS following severe structural brain injury (Figure 1A2,
1B2, 1C1 left) reveals a third pattern: a strong peak in the theta (4–7 Hz) range, usually near
7 Hz (as in this example) but occasionally as low as 3 Hz, and present diffusely over the
scalp. While theta rhythms can be present in normal subjects, they occur only in specific
circumstances: either transiently in the frontal midline during effortful cognition, or more
broadly over frontocentral EEG channels during drowsiness [8]. The diffuse spatial
distribution of the theta rhythm in Figure 1B2, along with its presence during wakefulness,
identify it as pathologic pattern, characteristic of MCS patients ([14],Forgacs et al., abstract,
Society for Neuroscience, San Diego, November 2013).

Schiff et al. Page 3

Curr Opin Neurobiol. Author manuscript; available in PMC 2015 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Pathophysiologic mechanisms
Converging evidence from physiological and clinical studies suggests a linkage between the
alterations in EEG dynamics seen in Figure 1B, along with other characteristic features of
the EEG in severe brain injury, and the consequences of varying degrees of deafferentation
and disconnection.

Low-frequency activity—The concentration of power below 1 Hz seen in VS (Figure
1B3) likely reflects total deafferentation of the cortex. Such slow oscillations are known to
arise in two very different scenarios: total anatomical deafferentation in the feline `slab'
model, in which all long-range white matters to a cortical region are transected [15], and the
total functional deafferentation of deep anesthesia[16]. Similar patterns of slow oscillations
are present in two other circumstances characterized by severe functional deafferentation:
across structurally intact frontal-parietal cortices during temporal lobe seizures[17,18], and
during normal slow-wave sleep, in which functional deafferentation results from
disfacilitation of neocortical neurons[19].

Although sleep and anesthesia share some features, they are very distinct in origin and
mechanism. A much closer functional relationship exists, however, between anesthesia and
the altered consciousness produced by brain injuries[20]. Because anesthesia is readily
controlled, it provides for unique insights into the physiologic processes underlying global
brain dynamics.

Within the context of anesthetic coma induced by propofol, the slow oscillation has recently
been the subject of a detailed study that included multi-unit recordings from humans[21].
This work revealed unexpected local and global dynamical structure in neuronal firing
patterns within each slow oscillation of the EEG. Specifically, at a scale of <4mm, neuronal
populations can show spiking activity that fluctuates between silence and rates typically
encountered during wakefulness. These fluctuations are sharply gated by the slow
oscillation. Moreover, they appear asynchronously across the cortex, suggesting functional
isolation.

Propofol anesthesia is also associated with another dynamical feature: a spectral power peak
centered at ~11Hz over frontocentral EEG channels, that is coherent (i.e., synchronous)
across the brain [22]. Computational modeling suggests that this rhythm may arise via a dual
mechanism that silences the typical dominant posterior ~10Hz (alpha) rhythm of normal
wakefulness and produces an `anteriorized' alpha-range oscillation via thalamic nuclei
projecting to the frontal lobe [23].

Recent work [24] indicates that these dynamics seen in propofol anesthesia underlie another
pathologic EEG pattern seen in coma, namely, burst suppression. The burst suppression
pattern, seen in patients with severe structural or anoxic brain injury, consists of alternation
between periods of electrical silence and periods of apparently irregular high-voltage
activity, each lasting several seconds. Ching et al. [24] showed that the spectral
characteristics of the bursts match those of propofol-associated activity, namely, a globally
coherent oscillation at ~11 Hz along with slow wave oscillations that are asynchronous
across the brain [25]. The electrically silent periods that alternate with this activity appear to
be linked to failure of ATP production across populations of neurons [24].

Theta-range activity—In states that are intermediate between that of coma and normal
wakefulness, a variety of spectral features are observed. The most common is a peak in theta
power (Figure 1A2, 1B2, 1C1 left), which has been identified in patients with both global (S
Williams et al, [14]) and focal [26] structural brain injuries, and is characteristic of MCS
during wakefulness.
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Two mechanisms are known to be capable of producing strong power in the theta range after
severe or moderate deafferentation at the level of the neocortex and thalamus. The first is
cellular: in the setting of deafferentation present in neocortical slice preparations, layer V
pyramidal cells have intrinsic membrane oscillations at approximately 7 Hz. The second is
circuit-based: deafferentation of the thalamus from its cortical inputs leads to bursting in the
wakeful state [27] and increased theta power in the EEG [28,29]. These mechanisms have
distinguishing characteristics. The circuit mechanism is likely to be associated with a lesser
degree of deafferentation, and the thalamic bursting component is expected to produce 15–
30Hz (beta) power in the EEG. In the cellular mechanism, likely to be operative in the
presence of more severe deafferentation, weak coupling of intrinsically oscillating neurons
is expected to produce long-range synchronization of theta activity [30] manifest in a theta-
range peak in coherence (as in Figure 1C1 right). The presence of theta-range as well as
beta-range peaks in the examples of Figure 1A2 and 1B2 suggests a contribution from both
mechanisms.

Models—The power spectral features that are present in the normal wake and sleep EEG
can be captured by mathematical and computational models. Neural mass models [31–36]
are especially appropriate for this purpose, as they seek to account for overall qualitative
features of EEG dynamics without requiring fine-grained anatomical detail, but approaches
postulating specific neuronal connectivities [24] have also proven successful.

Neural mass models can form the basis of both for “forward” and “inverse” approaches. In
forward approaches, models are constructed based on a simplified description of brain
connectivity, and the analytic behavior of the model is investigated to determine whether
this caricature provides a useful framework for understanding brain dynamics. The
simplification may consist of a continuum approximation to the whole brain [37], or, models
that emphasize the connectivities of specific brain areas or populations. The series of models
developed by Robinson and colleagues[34]exemplifies the latter approach: it focuses on the
interactions of four populations: corticothalamic layer V neurons, cortical inhibitory
neurons, thalamic reticular neurons, and thalamic relay neurons. With each of these
populations modeled as separate “masses,” the model accounts for the typical spectral power
distributions found in normal wakefulness, the sleep stages, theta-dominated drowsiness and
burst suppression, and in addition accounts for the spatial coherence structure of the normal
EEG during wakefulness[38]. These models thus serve as a foundation for formalizing the
linkage between the physiology of neuronal populations and the dynamics that can be
observed in the EEG.

Building on the Robinson framework, Drover et al. [39] developed a neural mass model of a
reduced corticothalamic system consisting of two sets of cortical populations linked at the
thalamic level. The rationale for considering a two-cortical-region model is the hypothesis
that one of the functions of the intralaminar thalamus is to set up patterns of cortical
interactions that are appropriate to specific behaviors [40]. Such interactions typically link a
sensory and a motor area, with one region driving the other, depending on task demands.
When this linkage was modeled as the result of a partially shared reticular nucleus (i.e.,
shared inhibition), the resulting dynamics demonstrated transitions between several modes
of corticocortical coupling: one mode in which the two cortical regions were both active and
synchronized, and two modes in which one cortical region dominates and drives the other.
When the linkage consisted of shared excitation (e.g., via a partially shared thalamic relay
nucleus), only the synchronous mode was present. In a pilot study that examined the EEG of
a patient with severe chronic brain injury and a reproducible behavioral improvement with
zolpidem[14,41], the authors found that this behavioral improvement was associated with an
increase in the number of mode transitions involving frontal brain regions, which correlated
with an increase in metabolic activity as measured by PET scans.
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This modeling study provides a rationale for examining not only standard (time-averaged)
spectra and coherences, but how they fluctuate in time[14], as the latter may be an indirect
indicator of thalamic activity that cannot be directly observed in the EEG. The model's
predictions of the power spectra and coherences of EEG activity were derived from a
standard linearized analysis at the fixed points of the neural mass model. But importantly,
the predictions about their fluctuations over time – the spectrograms and coherograms –
were derived from examining the stability of the fixed points of the neural mass model, and
how these fixed points relate to each other. Thus, the nonlinear nature of the neural mass
model played a crucial role in this analysis.

Neural mass models also form the starting point for “inverse” approaches, such as dynamic
causal modeling [35,42]. Here, a series of candidate neural mass models are constructed,
based on hypotheses concerning the relevant anatomical connectivity. The mass model is
then augmented by a biophysical or hemodynamic model that couples the neural mass
variables to the observables (i.e., the EEG or the BOLD response). Finally, a model
selection procedure (the “inversion”) is used to determine which candidate connectivity
model is most likely to account for the observed data.

This approach has recently been applied to the spectral changes in the EEG that underlie the
transition to unconsciousness during propofol anesthesia[43]. Specifically, the investigators
considered three models of increasing complexity: (i) connected anterior and posterior
cortical masses, (ii) addition of a thalamic mass connected to both cortical masses, and (iii)
subdivision of the thalamic mass into two parts, one connected to the anterior cortical mass
and one connected to the posterior cortical mass. As described above, the transition to
unconsciousness was associated with an increase in low-frequency activity in the delta- and
alpha- bands. Bayesian model selection favored model (ii): a thalamic mass connected to an
anterior and a posterior cortical mass. In the context of this model, propofol produced a
selective loss of anterior-to-posterior cortical connectivity, with retention of posterior-to-
anterior connectivity and thalamocortical connectivity, extending and refining the
observations of Lewis et al.[25]. Thus, dynamic causal modeling goes beyond standard
spectral analysis by seeking to identify the direction of functional connectivity and thereby
make predictions about causality. As reviewed elsewhere [44], the strategy taken to extract
directional information from the observed data signals relies on specific parametric features
of a neural mass model, such as the expected propagation times between brain areas. This is
in contrast to the information-theoretic approach of Granger causality analysis[45], which is
fundamentally nonparametric. Note also that while the underlying neural mass models
themselves are nonlinear, the nonlinearity is not crucial to these inferences – the model is
studied in a linearized regime, and inferences are based on observed power spectra and
coherences.

Other approaches to characterizing global dynamics
Other extensions of standard spectral characterizations -- bispectra, bicoherences, and their
higher-order analogues -- focus on whether activity at one frequency is coupled to activity at
another [10]. Phase-amplitude coupling is a specific kind of cross-frequency interaction that
has attracted muchinterest, and for which specialized indices have been developed[46].
Applying these indices to EEG recordings during propofol induction of anesthesia,
Mukamel et al. [47] identified state-dependent coupling of the amplitude of the alpha-range
activity to the phase of the low-frequency activity.

Graph-theoretic methods have also been advanced as a dimensional reduction tool that
characterizes spatial characteristics of the EEG, in resting wakefulness [48] and in epilepsy
[33], and, recently, in brain injury (T Nauvel et al., abstract, Society for Neuroscience, New
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Orleans, November 2012). Although preliminary, these findings suggest that graphical
methods may be able to identify broad patterns characteristic of recovery from brain injury.

Examining EEG responses to stimulation provides an additional approach to understanding
brain dynamics. Using methods of dynamic causal modeling and source localization, Boly et
al.[49] studied the mismatch negativity response in patients in VS, MCS, and healthy
controls. The dynamic causal model deduced from data from VS subjects was distinguished
from the model deduced from data from MCS subjects and controls by a lack of feedback
from an inferred frontal component to one in the temporal lobe. King et al.[50] examined
single-trial EEG responses in VS, MCS, and confusional state (CS) patients, and found that
multivariate pattern classifiers could distinguish among these states. Rosanova et al. and
Ferrarelli et al.[51]showed that the dynamics of EEG responses to repetitive transcranial
magnetic stimulation (TMS) showed a reliable and systematic dependence on the level of
consciousness, across a range of states including VS, MCS, sleep states, locked-in-state
(LIS), and normal subjects. At the extremes, patients in VS following structural brain
injuries had TMS responses that were more local or had shorter timecourses and simpler
dynamics than those recorded during dreaming, LIS, and normal wakefulness. Finally,
Casali and colleagues[52] combined EEG measures of resting brain and responses to pulses
of transcranial magnetic stimulation (TMS), to derive an index (based on algorithmic
complexity) that correlated well with level of consciousness.

CONCLUSION
Severe brain injury often results in major disability, and its aggregate effects place a
profound burden on the patient, family and society. Evaluation of the level of consciousness
and cognitive abilities of patients is critical to prognostication, routine care, and clinical
investigation. However, behavioral observation is unreliable, in large part because of the
motor impairment often associated with brain injury. The EEG bypasses this potential
confound. Its high temporal resolution allows for a focus on dynamics, and much progress
has been made in identifying the basic features of large-scale brain dynamics that are
common to different levels of injury and disorders of consciousness. To date, most of these
efforts have focused on standard spectral measures (i.e., power spectra and coherences), and
in linking these measures with pathophysiologic processes. Recent advances in the
understanding of anesthetic-induced loss of consciousness, along with computational and
mathematical modeling, suggest that other kinds of dynamical measures, sensitive to
fluctuations and correlations among spectral features, may provide further diagnostic
accuracy and mechanistic insight.
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Highlights

• EEG assays brain dynamics directly; behavioral observations rely on motor
output.

• In vegetative state, EEG power is largely confined to very low frequencies (<1
Hz).

• In minimally conscious state, EEG power peaks in the 3–7 Hz range.

• These findings likely reflect varying degrees of functional deafferentation.

• Dynamical indices beyond spectral measures may also prove valuable.
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Box 1

Characteristics of major disorders of consciousness
and related entities associated with brain injury.

Adapted with permission from Goldfine et. al, [53],
which provides a clinically-oriented review of these
states. Coma is always transient (though it may last

weeks); severely-injured patients transition
spontaneously from coma to VS or alternatively to

MCS, and may further improve to CS and full
recovery.

Syndrome Definition Behavioral Characteristics

Coma state of unarousable
unresponsiveness

Eyes closed; motor function consists of
reflex and postural responses only

Vegetative State (VS) state of intermittent
arousal without evidence
of consciousness

Spontaneous cycling through eyes-closed
and eyes-open states, spontaneous eye and
limb movements without evidence of goal-
oriented behavior or sensory responsiveness

Minimally Conscious
State (MCS)

State of intermittent or
inconsistent evidence of
consciousness

Intermittent or inconsistent response to
verbal command, verbal output, or object
use; intermittent or inconsistent purposeful
eye movements

Confusional State (CS) State of impaired
consciousness with
preserved functional
object use or consistent
communication

Disorientation; fluctuating levels of
impairment; functional object use or
consistent communication

Locked in State (LIS) State of complete or
almost complete loss of
motor output; not a
disorder of
consciousness

The misleading appearance of a disorder of
consciousness due to lack of motor output;
communication via brain-computer
interface, EEG, functional brain imaging,
autonomic responses, or subtle eye
movements is possible
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Figure 1. Electroencephalographic (EEG) patterns across states of consciousness
A. The power spectrum describes the frequency content of a single channel of EEG. The
example of panel A1 shows prominent oscillations at approximately 10 Hz (alpha range),
both in the raw tracing (left) and the power spectrum (right). The example of panel A2
shows oscillations at approximately 25 Hz (beta range), superimposed on smaller and slower
fluctuations; correspondingly, the power spectrum has two main peaks, a large one at
approximately 25 Hz and a smaller one at 7 Hz. A1: normal subject, channel Oz (Laplacian
derivation); A2: minimally conscious patient subject, bipolar channel Fz-Cz. Note that the
power spectrum is calculated from many samples of EEG, totaling 489s for A1 and 348s for
A2, but only one typical second of the raw trace is shown.
B. EEG power spectra identify major features of brain dynamics across levels of
consciousness. In vegetative state (panel B1), power is concentrated below 1 Hz and the rest
of the spectrum is largely featureless. In minimally conscious state (panel B2, but also
panels A2 and C1), there is a prominent peak in the 3–7 Hz range, and often a peak in the
15–30 Hz (beta) range. In normal wakefulness (panel B3), there is a peak in the alpha range
(8–12 Hz), and variable peaks in the beta range. B1: patient subject, channel Oz (Laplacian
derivation); B2: patient subject, channel Fz (Laplacian derivation); B3: normal subject,
channel Pz (Laplacian derivation).
C. The coherence identifies the degree of synchronization of activity in pairs of EEG
channels. Panel C1: EEG spectra from two locations (POz, upper trace, and P4, lower trace,
Laplacian derivations) have similar dynamics (left) and the coherence (right) shows that the
dominant theta-range peak is highly synchronous on these channels. Panel C2: EEG spectra
from two locations (F8–FC6, upper trace, and F4–FC2, lower trace) also have similar
dynamics (left) but the coherence (right) shows that the activity in the 20 Hz range is
synchronous, while that in the 12 Hz range is not (arrows). In this patient, the 12 Hz activity
corresponds to sleep spindles, which are asynchronous. This asynchrony of sleep spindles is
an abnormal finding, likely due to the presence of central thalamic infarctions. C1:
Minimally conscious patient subject recorded during wakefulness; C2: Another minimally
conscious patient subject recorded during sleep.
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All power spectra and coherences performed in Chronux (http://chronux.org/)[11], and error
bars (barely visible in Panels A and B) indicate 95% confidence intervals.
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